Interfacing with the Brain: How Nanotechnology Can Contribute
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 MH111872
NIMH NIH HHS - United States
R01 MH094730
NIMH NIH HHS - United States
R01 DA045550
NIDA NIH HHS - United States
R03 NS118156
NINDS NIH HHS - United States
R21 AT010933
NCCIH NIH HHS - United States
R61 MH135106
NIMH NIH HHS - United States
PubMed
40063703
PubMed Central
PMC11948619
DOI
10.1021/acsnano.4c10525
Knihovny.cz E-zdroje
- Klíčová slova
- Nanoneuro interface, brain-on-a-chip, brain−machine interfaces, control of ion channels, deep brain stimulation, electrode arrays, extracellular recordings, nanostructured interface, neuro-implants, neuronal communication,
- MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- nanostruktury chemie MeSH
- nanotechnologie * metody MeSH
- rozhraní mozek-počítač * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain-machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain-machine interfaces and look forward in discussing perspectives and limitations based on the authors' expertise across a range of complementary disciplines─from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary.
Advanced Science Institute Yonsei University Seodaemun gu Seoul 03722 Korea
Basque Foundation for Science Ikerbasque 48013 Bilbao Spain
Biogipuzkoa HRI Paseo Dr Begiristain s n 20014 Donostia San Sebastián Spain
Catalan Institute of Nanoscience and Nanotechnology CSIC and BIST 08193 Bellaterra Spain
Center for 10 ray and Nano Science CXNS Deutsches Elektronen Synchrotron DESY 22607 Hamburg Germany
Center for Nanoparticle Research Institute for Basic Science Seoul 08826 Republic of Korea
Center for Neuroengineering and Medicine UC Davis Sacramento California 95817 United States
CIC biomaGUNE Basque Research and Technology Alliance 20014 Donostia San Sebastián Spain
Department of Chemical and Pharmaceutical Sciences University of Trieste 34127 Trieste Italy
Department of Chemistry Yonsei University Seodaemun gu Seoul 03722 Korea
Department of Mechanical Engineering Indian Institute of Technology Kharagpur Kharagpur 721302 India
Department of Physics Faculty of Applied Science Thamar University Dhamar 87246 Yemen
Deutsches Elektronen Synchrotron DESY 22607 Hamburg Germany
Division Biophotonics Federal Institute for Materials Research and Testing 12489 Berlin Germany
Executive University Board Universität Hamburg 20148 Hamburg Germany
Fachbereich Biologie Universität Hamburg 20146 Hamburg Germany
Fachbereich Chemie Universität Hamburg 20146 Hamburg Germany
Fachbereich Chemie Universität Marburg 35032 Marburg Germany
Fachbereich Mathematik Universität Hamburg 20146 Hamburg Germany
Fachbereich Physik Universität Hamburg 22761 Hamburg Germany
Faculty of Electrical Engineering and Information Technology RWTH Aachen 52074 Aachen Germany
Faculty of Medicine University of Freiburg 79110 Freiburg Germany
Institute for Basic Science Center for Nanomedicine Seodaemun gu Seoul 03722 Korea
Institute for Materials and 10 ray Physics Hamburg University of Technology 21073 Hamburg Germany
Institute of Materials in Electrical Engineering 1 RWTH Aachen University 52074 Aachen Germany
Institute of Medical Psychology University of Lübeck 23562 Lübeck Germany
Institute of Physiology Czech Academy of Sciences Prague 12000 Czech Republic
Institute of Psychology Universität Hamburg 20146 Hamburg Germany
JCNS 1 Forschungszentrum Jülich 52428 Jülich Germany
Laboratory of Chemical Nanotechnology Geneva CH 1202 Switzerland
Max Planck Institute for Polymer Research Ackermannweg 10 55129 Mainz Germany
Max Planck Research Group NeuroCode Max Planck Institute for Human Development 14195 Berlin Germany
Max Planck UCL Centre for Computational Psychiatry and Ageing Research 14195 Berlin Germany
Nanion Technologies GmbH 80339 München Germany
National Cell Bank Department Pasteur Institute of Iran P O Box 1316943551 Tehran Iran
Neuroscience Area International School for Advanced Studies Trieste 34136 Italy
Physics Department Faculty of Science Al Azhar University 4434104 Cairo Egypt
School of Life Sciences Southern University of Science and Technology Shenzhen 518055 China
U S Naval Research Laboratory Washington D C 20375 United States
Universitat Rovira i Virgili 43007 Tarragona Spain
Université Paris Cité CNRS Saints Pères Paris Institute for the Neurosciences 75006 Paris France
University at Buffalo Department of Physics Buffalo New York 14260 United States
University of California Davis Davis California 95616 United States
University of the Chinese Academy of Sciences Beijing 100049 China
Zobrazit více v PubMed
Alivisatos A. P.; Andrews A. M.; Boyden E. S.; Chun M.; Church G. M.; Deisseroth K.; Donoghue J. P.; Fraser S. E.; Lippincott-Schwartz J.; Looger L. L.; Masmanidis S.; McEuen P. L.; Nurmikko A. V.; Park H.; Peterka D. S.; Reid C.; Roukes M. L.; Scherer A.; Schnitzer M.; Sejnowski T. J.; Shepard K. L.; Tsao D.; Turrigiano G.; Weiss P. S.; Xu C.; Yuste R.; Zhuang X. W. Nanotools for Neuroscience and Brain Activity Mapping. ACS Nano 2013, 7, 1850–1866. 10.1021/nn4012847. PubMed DOI PMC
Alivisatos A. P.; Chun M.; Church G. M.; Deisseroth K.; Donoghue J. P.; Greenspan R. J.; McEuen P. L.; Roukes M. L.; Sejnowski T. J.; Weiss P. S.; et al. The Brain Activity Map. Science 2013, 339, 1284–1285. 10.1126/science.1236939. PubMed DOI PMC
Andrews A. M. The BRAIN Initiative: Toward a Chemical Connectome. ACS Chem. Neurosci. 2013, 4, 645–645. 10.1021/cn4001044. PubMed DOI PMC
Nuremberg Funnel. Wikipedia. https://en.wikipedia.org/wiki/Nuremberg_Funnel (accessed December 22, 2023).
Orwell G.1984; Houghton Mifflin Harcour: New York, 1983.
Raspopovic S.; Capogrosso M.; Petrini F. M.; Bonizzato M.; Rigosa J.; Di Pino G.; Carpaneto J.; Controzzi M.; Boretius T.; Fernandez E.; et al. Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 2014, 6, 222ra19.10.1126/scitranslmed.3006820. PubMed DOI
Kathe C.; Skinnider M. A.; Hutson T. H.; Regazzi N.; Gautier M.; Demesmaeker R.; Komi S.; Ceto S.; James N. D.; Cho N.; et al. The Neurons That Restore Walking after Paralysis. Nature 2022, 611, 540–547. 10.1038/s41586-022-05385-7. PubMed DOI PMC
Lorach H.; Galvez A.; Spagnolo V.; Martel F.; Karakas S.; Intering N.; Vat M.; Faivre O.; Harte C.; Komi S.; et al. Walking Naturally after Spinal Cord Injury Using a Brain-Spine Interface. Nature 2023, 618, 126–133. 10.1038/s41586-023-06094-5. PubMed DOI PMC
Hochberg L. R.; Serruya M. D.; Friehs G. M.; Mukand J. A.; Saleh M.; Caplan A. H.; Branner A.; Chen D.; Penn R. D.; Donoghue J. P. Neuronal Ensemble Control of Prosthetic Devices by a Human with Tetraplegia. Nature 2006, 442, 164–171. 10.1038/nature04970. PubMed DOI
Hochberg L. R.; Bacher D.; Jarosiewicz B.; Masse N. Y.; Simeral J. D.; Vogel J.; Haddadin S.; Liu J.; Cash S. S.; Van Der Smagt P.; et al. Reach and Grasp by People with Tetraplegia Using a Neurally Controlled Robotic Arm. Nature 2012, 485, 372–375. 10.1038/nature11076. PubMed DOI PMC
Kuang R. J.; Pirakalathanan J.; Lau T.; Koh D.; Kotschet E.; Ko B.; Lau K. K. An Up-to-Date Review of Cardiac Pacemakers and Implantable Cardioverter Defibrillators. J. Med. Imaging Radiat. Oncol. 2021, 65, 896–903. 10.1111/1754-9485.13319. PubMed DOI
Krauss J. K.; Lipsman N.; Aziz T.; Boutet A.; Brown P.; Chang J. W.; Davidson B.; Grill W. M.; Hariz M. I.; Horn A.; et al. Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. 10.1038/s41582-020-00426-z. PubMed DOI PMC
Naples J. G.; Ruckenstein M. J. Cochlear Implant. Otolaryngologic Clinics of North America 2020, 53, 87–102. 10.1016/j.otc.2019.09.004. PubMed DOI
Picaud S.; Sahel J. A. Retinal Prostheses: Clinical Results and Future Challenges. Curr. Res. Biol. 2014, 337, 214–222. 10.1016/j.crvi.2014.01.001. PubMed DOI
Humayun M. S.; Lee S. Y. Advanced Retina Implants. Ophthalmology Retina 2022, 6, 899–905. 10.1016/j.oret.2022.04.009. PubMed DOI
Vėbraitė I.; David-Pur M.; Rand D.; Głowacki E. D.; Hanein Y. Electrophysiological Investigation of Intact Retina with Soft Printed Organic Neural Interface. J. Neural Eng. 2021, 18, 066017.10.1088/1741-2552/ac36ab. PubMed DOI
Mendes L. A.; Lima I. N.; Souza T.; do Nascimento G. C.; Resqueti V. R.; Fregonezi G. A. Motor Investigation of Intact Retina with Soft Printed Organic Neural Interface. Cochrane Database Syst. Rev. 2020, 1, CD012991. PubMed PMC
Medtronic Scientific Compendium - Research on Brain Sensing and BrainSense Technology. https://www.medtronic.com/content/dam/medtronic-com/products/neurological/dbs/documents/brainsense-compendium-white-paper.pdf (accessed December 22, 2023).
Wise K. D.; Angell J. B.; Starr A. An Integrated-Circuit Approach to Extracellular Microelectrodes. IEEE Trans. Biomed. Eng. 1970, BME 17, 238–247. 10.1109/TBME.1970.4502738. PubMed DOI
Wise K. D.; Angell J. B. A Integrated-Circuit Approach to Extracellular Microelectrodes. IEEE Trans. Biomed. Eng. 1975, BME 22, 212–219. 10.1109/TBME.1975.324562. PubMed DOI
Najafi K.; Wise K.; Mochizuki T. A High-Yield IC-Compatible Multichannel Recording Array. IEEE Trans. Electron Devices 1985, 32, 1206–1211. 10.1109/T-ED.1985.22102. DOI
Anderson D. J.; Najafi K.; Tanghe S. J.; Evans D. A.; Levy K. L.; Hetke J.; Xue X.; Zappia J.; Wise K. Batch Fabricated Thin-Film Electrodes for Stimulation of the Central Auditory System. IEEE Trans. Biomed. Eng. 1989, 36, 693–704. 10.1109/10.32101. PubMed DOI
Regehr W. G.; Pine J.; Rutledge D. B. A Long-Term in Vitro Silicon-Based Microelectrode-Neuron Connection. IEEE Trans. Biomed. Eng. 1988, 35, 1023–1032. 10.1109/10.8687. PubMed DOI
Regehr W. G.; Pine J.; Cohan C. S.; Mischke M. D.; Tank D. W. Sealing Cultured Invertebrate Neurons to Embedded Dish Electrodes Facilitates Long-Term Stimulation and Recording. J. Neurosci. Methods 1989, 30, 91–106. 10.1016/0165-0270(89)90055-1. PubMed DOI
Fromherz P.; Offenhäusser A.; Vetter T.; Weis J. A Neuron-Silicon Junction: A Retzius Cell of the Leech on an Insulated-Gate Filed-Effect Transistor. Science 1991, 252, 1290–1293. 10.1126/science.1925540. PubMed DOI
Fromherz P.; Stett A. Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip. Phys. Rev. Lett. 1995, 75, 1670–1673. 10.1103/PhysRevLett.75.1670. PubMed DOI
Eckhorn R.; Thomas U. A New Method for the Insertion of Multiple Microprobes Into Neural and Muscular Tissue, Including Fiber Electrodes, Fine Wires, Needles and Microsensors. J. Neurosci. Methods 1993, 49, 175–179. 10.1016/0165-0270(93)90121-7. PubMed DOI
Braun D.; Fromherz P. Fluorescence Interference-Contrast Microscopy of Cell Adhesion on Oxidized Silicon. Appl. Phys. A: Mater. Sci. Process. 1997, 65, 341–348. 10.1007/s003390050589. DOI
Volkmann J. Deep Brain Stimulation for the Treatment of Parkinson’s Disease. J. Clin. Neurophysiol. 2004, 21, 6–12. 10.1097/00004691-200401000-00003. PubMed DOI
Beurrier C.; Bioulac B.; Audin J.; Hammond C. High-Frequency Stimulation Produces a Transient Blockade of Voltage- Gated Currents in Subthalamic Neurons. J. Neurophysiol. 2001, 85, 1351–1356. 10.1152/jn.2001.85.4.1351. PubMed DOI
Knöpfel T.; Fromherz P. Fluorescence Monitoring of Membrane Potentials: The Spatio-Temporal Resolution in Isolated Neurons of Helix pomatia. Z. Naturforschung C 1987, 42, 986–990. 10.1515/znc-1987-7-843. DOI
Fromherz P.; Dambacher K. H.; Ephardt H.; Lambacher A.; Müller C. O.; Neigl R.; Schaden H.; Schenk O.; Vetter T. Fluorescent Dyes as Probes of Voltage Transients in Neuron Membranes. Ber. Bunsenges. Phys. Chem. 1991, 95, 1333–1345. 10.1002/bbpc.19910951105. DOI
Santamaria F.; Peralta X. G.. Use of Nanoparticles in Neuroscience; Springer, 2018.
Goshi N.; Morgan R. K.; Lein P. J.; Seker E. A Primary Neural Cell Culture Model To Study Neuron, Astrocyte, and Microglia Interactions in Neuroinflammation. J. Neuroinflammation 2020, 17, 155.10.1186/s12974-020-01819-z. PubMed DOI PMC
Guttikonda S. R.; Sikkema L.; Tchieu J.; Saurat N.; Walsh R. M.; Harschnitz O.; Ciceri G.; Sneeboer M.; Mazutis L.; Setty M.; Zumbo P.; Betel D.; de Witte L. D.; Pe’er D.; Studer L. Fully Defined Human Pluripotent Stem Cell-Derived Microglia and Tri-Culture System Model C3 Production in Alzheimer’s Disease. Nat. Neurosci. 2021, 24, 343–354. 10.1038/s41593-020-00796-z. PubMed DOI PMC
Ravi V. M.; Joseph K.; Wurm J.; Behringer S.; Garrelfs N.; d’Errico P.; Naseri Y.; Franco P.; Meyer-Luehmann M.; Sankowski R.; et al. Human Organotypic Brain Slice Culture: A Novel Framework for Environmental Research in Neuro-Oncology. Life Science Alliance 2019, 2, ao4c09401.10.26508/lsa.201900305. PubMed DOI PMC
Di Lullo E.; Kriegstein A. R. The Use of Brain Organoids To Investigate Neural Development and Disease. Nat. Rev. Neurosci. 2017, 18, 573–584. 10.1038/nrn.2017.107. PubMed DOI PMC
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front. Synaptic Neurosci. 2018, 10, 15.10.3389/fnsyn.2018.00015. PubMed DOI PMC
Qian X.; Song H.; Ming G. L. Brain Organoids: Advances, Applications and Challenges. Development 2019, 146, dev166074.10.1242/dev.166074. PubMed DOI PMC
Velasco S.; Paulsen B.; Arlotta P. 3D Brain Organoids: Studying Brain Development and Disease Outside the Embryo. Annu. Rev. Neurosci. 2020, 43, 375–389. 10.1146/annurev-neuro-070918-050154. PubMed DOI
Obergrussberger A.; Friis S.; Bruggemann A.; Fertig N. Automated Patch Clamp in Drug Discovery: Major Breakthroughs and Innovation in the Last Decade. Expert Opin. Drug Discovery 2021, 16, 1–5. 10.1080/17460441.2020.1791079. PubMed DOI
Neher E.; Sakmann B. Single-Channel Currents Recorded From Membrane of Denervated Frog Muscle Fibres. Nature 1976, 260, 799–802. 10.1038/260799a0. PubMed DOI
Johnstone A. F. M.; Gross G. W.; Weiss D. G.; Schroeder O. H.-U.; Gramowski A.; Shafer T. J. Microelectrode Arrays: A Physiologically Based Neurotoxicity Testing Platform for the 21st Century. NeuroToxicology 2010, 31, 331–350. 10.1016/j.neuro.2010.04.001. PubMed DOI
Yang L.; Lee K.; Villagracia J.; Masmanidis S. C. Open Source Silicon Microprobes for High Throughput Neural Recording. J. Neural Eng. 2020, 17, 016036.10.1088/1741-2552/ab581a. PubMed DOI PMC
BRAIN 2.0: From Cells to Circuits, Toward Cures. https://braininitiative.nih.gov/vision/nih-brain-initiative-reports/brain-20-report-cells-circuits-toward-cures (accessed December 22, 2023).
Ilic B.; Czaplewski D.; Neuzil P.; Stanczyk T.; Blough J.; Maclay G. Preparation and Characterization of Platinum Black Electrodes. J. Mater. Sci. 2000, 35, 3447–3457. 10.1023/A:1004884723515. DOI
Cogan S. F. Neural Stimulation and Recording Electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309. 10.1146/annurev.bioeng.10.061807.160518. PubMed DOI
Cogan S. F.; Guzelian A. A.; Agnew W. F.; Yuen T. G.; McCreery D. B. Over-Pulsing Degrades Activated Iridium Oxide Films Used for Intracortical Neural Stimulation. J. Neurosci. Methods 2004, 137, 141–150. 10.1016/j.jneumeth.2004.02.019. PubMed DOI
Boehler C.; Stieglitz T.; Asplund M. Nanostructured Platinum Grass Enables Superior Impedance Reduction for Neural Microelectrodes. Biomaterials 2015, 67, 346–353. 10.1016/j.biomaterials.2015.07.036. PubMed DOI
Kireev D.; Seyock S.; Lewen J.; Maybeck V.; Wolfrum B.; Offenhausser A. Graphene Multielectrode Arrays as a Versatile Tool for Extracellular Measurements. Adv. Healthc. Mater. 2017, 6, 1601433.10.1002/adhm.201601433. PubMed DOI
Santoro F.; Dasgupta S.; Schnitker J.; Auth T.; Neumann E.; Panaitov G.; Gompper G.; Offenhäusser A. Interfacing Electrogenic Cells with 3D Nanoelectrodes: Position, Shape, and Size Matter. ACS Nano 2014, 8, 6713–6723. 10.1021/nn500393p. PubMed DOI
Weidlich S.; Krause K. J.; Schnitker J.; Wolfrum B.; Offenhausser A. MEAs and 3D Nanoelectrodes: Electrodeposition as Tool for a Precisely Controlled Nanofabrication. Nanotechnology 2017, 28, 095302.10.1088/1361-6528/aa57b5. PubMed DOI
Spira M. E.; Hai A. Multi-Electrode Array Technologies for Neuroscience and Cardiology. Nat. Nanotechnol. 2013, 8, 83–94. 10.1038/nnano.2012.265. PubMed DOI
Eles J. R.; Vazquez A. L.; Snyder N. R.; Lagenaur C.; Murphy M. C.; Kozai T. D.; Cui X. T. Neuroadhesive L1 Coating Attenuates Acute Microglial Attachment to Neural Electrodes as Revealed by Live Two-Photon Microscopy. Biomaterials 2017, 113, 279–292. 10.1016/j.biomaterials.2016.10.054. PubMed DOI PMC
Kozai T. D.; Catt K.; Du Z.; Na K.; Srivannavit O.; Razi-ul M. H.; Seymour J.; Wise K. D.; Yoon E.; Cui X. T. Chronic in Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. IEEE Trans. Biomed. Eng. 2016, 63, 111–119. 10.1109/TBME.2015.2445713. PubMed DOI PMC
Kozai T. D.; Alba N. A.; Zhang H.; Kotov N. A.; Gaunt R. A.; Cui X. T.. Nanostructured Coatings for Improved Charge Delivery to Neurons. In Nanotechnology and Neuroscience: Nano-Electronic, Photonic and Mechanical Neuronal Interfacing; Springer, 2014; pp 71–134.
Kozai T. D.; Gugel Z.; Li X.; Gilgunn P. J.; Khilwani R.; Ozdoganlar O. B.; Fedder G. K.; Weber D. J.; Cui X. T. Coatings for Improved Charge Delivery to Neurons. Biomaterials 2014, 35, 9255–9268. 10.1016/j.biomaterials.2014.07.039. PubMed DOI
Kolarcik C. L.; Catt K.; Rost E.; Albrecht I. N.; Bourbeau D.; Du Z.; Kozai T. D.; Luo X.; Weber D. J.; Cui X. T. Evaluation of Poly(3, 4-ethylenedioxythiophene)/Carbon Nanotube Neural Electrode Coatings for Stimulation in the Dorsal Root Ganglion. J. Neural Eng. 2015, 12, 016008.10.1088/1741-2560/12/1/016008. PubMed DOI PMC
Lind G.; Linsmeier C. E.; Thelin J.; Schouenborg J. Gelatine-Embedded Electrodes—a Novel Biocompatible Vehicle Allowing Implantation of Highly Flexible Microelectrodes. J. Neural Eng. 2010, 7, 046005.10.1088/1741-2560/7/4/046005. PubMed DOI
Robinson J. T.; Jorgolli M.; Shalek A. K.; Yoon M.-H.; Gertner R. S.; Park H. Vertical Nanowire Electrode Arrays as a Scalable Platform for Intracellular Interfacing to Neuronal Circuits. Nat. Nanotechnol. 2012, 7, 180.10.1038/nnano.2011.249. PubMed DOI PMC
Huang S.-H.; Shmoel N.; Jankowski M. M.; Erez H.; Sharon A.; Abu-Salah W.; Nelken I.; Weiss A.; Spira M. E. Immunohistological and Ultrastructural Study of the Inflammatory Response to Perforated Polyimide Cortical Implants: Mechanisms Underlying Deterioration of Electrophysiological Recording Quality. Front. Neurosci. 2020, 14, 926.10.3389/fnins.2020.00926. PubMed DOI PMC
Abbott J.; Ye T.; Ham D.; Park H. Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. Acc. Chem. Res. 2018, 51, 600–608. 10.1021/acs.accounts.7b00519. PubMed DOI
Xie X.; Aalipour A.; Gupta S. V.; Melosh N. A. Determining the Time Window for Dynamic Nanowire Cell Penetration Processes. ACS Nano 2015, 9, 11667–11677. 10.1021/acsnano.5b05498. PubMed DOI
Weiland J. D.; Anderson D. J.; Humayun M. S. In Vitro Electrical Properties for Iridium Oxide versus Titanium Nitride Stimulating Electrodes. IEEE Trans. Biomed. Eng. 2002, 49, 1574–1579. 10.1109/TBME.2002.805487. PubMed DOI
Janders M.; Egert U.; Stelzle M.; Nisch W.. Novel Thin Film Titanium Nitride Micro-Electrodes with Excellent Charge Transfer Capability for Cell Stimulation and Sensing Applications. In Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE, 1996; pp 245–247.
Lee K.-Y.; Kim I.; Kim S.-E.; Jeong D.-W.; Kim J.-J.; Rhim H.; Ahn J.-P.; Park S.-H.; Choi H.-J. Vertical Nanowire Probes for Intracellular Signaling of Living Cells. Nanoscale Res. Lett. 2014, 9, 56.10.1186/1556-276X-9-56. PubMed DOI PMC
Hai A.; Dormann A.; Shappir J.; Yitzchaik S.; Bartic C.; Borghs G.; Langedijk J. P.; Spira M. E. Spine-Shaped Gold Protrusions Improve the Adherence and Electrical Coupling of Neurons with the Surface of Micro-Electronic Devices. J. R. Soc. Interface 2009, 6, 1153–1165. 10.1098/rsif.2009.0087. PubMed DOI PMC
Chiappini C.; Campagnolo P.; Almeida C. S.; Abbassi-Ghadi N.; Chow L. W.; Hanna G. B.; Stevens M. M. Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles. Adv. Mater. 2015, 27, 5147–5152. 10.1002/adma.201501304. PubMed DOI PMC
Tay A. The Benefits of Going Small: Nanostructures for Mammalian Cell Transfection. ACS Nano 2020, 14, 7714–7721. 10.1021/acsnano.0c04624. PubMed DOI
Peng J.; Garcia M. A.; Choi J.-s.; Zhao L.; Chen K.-J.; Bernstein J. R.; Peyda P.; Hsiao Y.-S.; Liu K. W.; Lin W.-Y.; et al. Molecular Recognition Enables Nanosubstrate-Mediated Delivery of Gene-Encapsulated Nanoparticles with High Efficiency. ACS Nano 2014, 8, 4621–4629. 10.1021/nn5003024. PubMed DOI PMC
Nair B. G.; Hagiwara K.; Ueda M.; Yu H.-h.; Tseng H.-R.; Ito Y. High Density of Aligned Nanowire Treated with Polydopamine for Efficient Gene Silencing by siRNA According to Cell Membrane Perturbation. ACS Appl. Mater. Interfaces 2016, 8, 18693–18700. 10.1021/acsami.6b04913. PubMed DOI
Jiang Y.; Harberts J.; Assadi A.; Chen Y.; Spatz J. P.; Duan W.; Nisbet D. R.; Voelcker N. H.; Elnathan R. The Roles of Micro- and Nanoscale Materials in Cell-Engineering Systems. Adv. Mater. 2024, 36, 202410908.10.1002/adma.202410908. PubMed DOI
Cao Y.; Hjort M.; Chen H.; Birey F.; Leal-Ortiz S. A.; Han C. M.; Santiago J. G.; Pasca S. P.; Wu J. C.; Melosh N. A. Nondestructive Nanostraw Intracellular Sampling for Longitudinal Cell Monitoring. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E1866-E1874.10.1073/pnas.1615375114. PubMed DOI PMC
Lin Z. C.; Xie C.; Osakada Y.; Cui Y.; Cui B. Iridium Oxide Nanotube Electrodes for Sensitive and Prolonged Intracellular Measurement of Action Potentials. Nat. Commun. 2014, 5, 3206.10.1038/ncomms4206. PubMed DOI PMC
Casanova A.; Bettamin L.; Blatche M. C.; Mathieu F.; Martin H.; Gonzalez-Dunia D.; Nicu L.; Larrieu G. Nanowire Based Bioprobes for Electrical Monitoring of Electrogenic Cells. J. Phys.: Condens. Matter 2018, 30, 464001.10.1088/1361-648X/aae5aa. PubMed DOI
Liu R.; Lee J.; Tchoe Y.; Pre D.; Bourhis A. M.; D’Antonio-Chronowska A.; Robin G.; Lee S. H.; Ro Y. G.; Vatsyayan R.; et al. Ultra-Sharp Nanowire Arrays Natively Permeate, Record, and Stimulate Intracellular Activity in Neuronal and Cardiac Networks. Adv. Funct. Mater. 2022, 32, 2108378.10.1002/adfm.202108378. PubMed DOI PMC
Luo Y.; Abidian M. R.; Ahn J.-H.; Akinwande D.; Andrews A. M.; Antonietti M.; Bao Z.; Berggren M.; Berkey C. A.; Bettinger C. J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. 10.1021/acsnano.2c12606. PubMed DOI PMC
He F.; Lycke R.; Ganji M.; Xie C.; Luan L. Ultraflexible Neural Electrodes for Long-Lasting Intracortical Recording. iScience 2020, 23, 101387.10.1016/j.isci.2020.101387. PubMed DOI PMC
Zhao Z.; Li X.; He F.; Wei X.; Lin S.; Xie C. Parallel, Minimally-Invasive Implantation of Ultra-Flexible Neural Electrode Arrays. J. Neural Eng. 2019, 16, 035001.10.1088/1741-2552/ab05b6. PubMed DOI PMC
Luan L.; Wei X.; Zhao Z.; Siegel J. J.; Potnis O.; Tuppen C. A.; Lin S.; Kazmi S.; Fowler R. A.; Holloway S.; et al. Ultraflexible Nanoelectronic Probes Form Reliable, Glial Scar-Free Neural Integration. Sci. Adv. 2017, 3, e1601966.10.1126/sciadv.1601966. PubMed DOI PMC
Lycke R.; Kim R.; Zolotavin P.; Montes J.; Sun Y.; Koszeghy A.; Altun E.; Noble B.; Yin R.; He F.; et al. Low-Threshold, High-Resolution, Chronically Stable Intracortical Microstimulation by Ultraflexible Electrodes. Cell Rep. 2023, 42, 112554.10.1016/j.celrep.2023.112554. PubMed DOI PMC
Jones P. D.; Moskalyuk A.; Barthold C.; Gutöhrlein K.; Heusel G.; Schröppel B.; Samba R.; Giugliano M. Low-Impedance 3D PEDOT: PSS Ultramicroelectrodes. Front. Neurosci. 2020, 14, 405.10.3389/fnins.2020.00405. PubMed DOI PMC
Abbott J.; Ye T.; Krenek K.; Gertner R. S.; Ban S.; Kim Y.; Qin L.; Wu W.; Park H.; Ham D. A Nanoelectrode Array for Obtaining Intracellular Recordings from Thousands of Connected Neurons. Nat. Biomed. Eng. 2020, 4, 232–241. 10.1038/s41551-019-0455-7. PubMed DOI PMC
Sun L.; Yuan G.; Gao L.; Yang J.; Chhowalla M.; Gharahcheshmeh M. H.; Gleason K. K.; Choi Y. S.; Hong B. H.; Liu Z. Chemical Vapour Deposition. Nat. Rev. Methods Primers 2021, 1, 5.10.1038/s43586-020-00005-y. DOI
Graniel O.; Weber M.; Balme S.; Miele P.; Bechelany M. Atomic Layer Deposition for Biosensing Applications. Biosens. Bioelectron. 2018, 122, 147–159. 10.1016/j.bios.2018.09.038. PubMed DOI
Li P.; Chen S.; Dai H.; Yang Z.; Chen Z.; Wang Y.; Chen Y.; Peng W.; Shan W.; Duan H. Recent Advances in Focused Ion Beam Nanofabrication for Nanostructures and Devices: Fundamentals and Applications. Nanoscale 2021, 13, 1529–1565. 10.1039/D0NR07539F. PubMed DOI
Kim J.; Rim Y. S.; Chen H.; Cao H. H.; Nakatsuka N.; Hinton H. L.; Zhao C.; Andrews A. M.; Yang Y.; Weiss P. S. Fabrication of High-Performance Ultrathin In2O3 Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano 2015, 9, 4572–4582. 10.1021/acsnano.5b01211. PubMed DOI
Huff M. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication. Micromachines (Basel) 2021, 12, 991.10.3390/mi12080991. PubMed DOI PMC
Hai A.; Shappir J.; Spira M. E. Long-Term, Multisite, Parallel, in-Cell Recording and Stimulation by an Array of Extracellular Microelectrodes. J. Neurophysiol. 2010, 104, 559–568. 10.1152/jn.00265.2010. PubMed DOI
Xie C.; Lin Z.; Hanson L.; Cui Y.; Cui B. Intracellular Recording of Action Potentials by Nanopillar Electroporation. Nat. Nanotechnol. 2012, 7, 185–190. 10.1038/nnano.2012.8. PubMed DOI PMC
Prinz C. N. Interactions between Semiconductor Nanowires and Living Cells. J. Phys.: Condens. Matter 2015, 27, 233103.10.1088/0953-8984/27/23/233103. PubMed DOI
Dipalo M.; Amin H.; Lovato L.; Moia F.; Caprettini V.; Messina G. C.; Tantussi F.; Berdondini L.; De Angelis F. Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes. Nano Lett. 2017, 17, 3932–3939. 10.1021/acs.nanolett.7b01523. PubMed DOI PMC
Buch-Månson N.; Bonde S.; Bolinsson J.; Berthing T.; Nygård J.; Martinez K. L. Towards a Better Prediction of Cell Settling on Nanostructure Arrays-Simple Means to Complicated Ends. Adv. Funct. Mater. 2015, 25, 3246–3255. 10.1002/adfm.201500399. DOI
Zhu W.; von dem Bussche A.; Yi X.; Qiu Y.; Wang Z.; Weston P.; Hurt R. H.; Kane A. B.; Gao H. Nanomechanical Mechanism for Lipid Bilayer Damage Induced by Carbon Nanotubes Confined in Intracellular Vesicles. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 12374–12379. 10.1073/pnas.1605030113. PubMed DOI PMC
Lou H. Y.; Zhao W.; Li X.; Duan L.; Powers A.; Akamatsu M.; Santoro F.; McGuire A. F.; Cui Y.; Drubin D. G.; Cui B. Membrane Curvature Underlies Actin Reorganization in Response to Nanoscale Surface Topography. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 23143–23151. 10.1073/pnas.1910166116. PubMed DOI PMC
Fu T. M.; Duan X.; Jiang Z.; Dai X.; Xie P.; Cheng Z.; Lieber C. M. Sub-10-nm Intracellular Bioelectronic Probes From Nanowire-Nanotube Heterostructures. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1259–1264. 10.1073/pnas.1323389111. PubMed DOI PMC
Dipalo M.; Caprettini V.; Bruno G.; Caliendo F.; Garma L. D.; Melle G.; Dukhinova M.; Siciliano V.; Santoro F.; De Angelis F. Membrane Poration Mechanisms at the Cell-Nanostructure Interface. Adv. Biosyst. 2019, 3, e1900148.10.1002/adbi.201900148. PubMed DOI
Shokoohimehr P.; Cepkenovic B.; Milos F.; Bednar J.; Hassani H.; Maybeck V.; Offenhausser A. High-Aspect-Ratio Nanoelectrodes Enable Long-Term Recordings of Neuronal Signals with Subthreshold Resolution. Small 2022, 18, e2200053.10.1002/smll.202200053. PubMed DOI
McGuire A. F.; Santoro F.; Cui B. Interfacing Cells with Vertical Nanoscale Devices: Applications and Characterization. Annu. Rev. Anal. Chem. 2018, 11, 101–126. 10.1146/annurev-anchem-061417-125705. PubMed DOI PMC
Higgins S. G.; Becce M.; Belessiotis-Richards A.; Seong H.; Sero J. E.; Stevens M. M. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. Adv. Mater. 2020, 32, 1903862.10.1002/adma.201903862. PubMed DOI PMC
DeWeerdt S. How to Map the Brain. Nature 2019, 571, S6–S8. 10.1038/d41586-019-02208-0. PubMed DOI
Azevedo F. A.; Carvalho L. R.; Grinberg L. T.; Farfel J. M.; Ferretti R. E.; Leite R. E.; Filho W. J.; Lent R.; Herculano-Houzel S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain. J. Comp. Neurol. 2009, 513, 532–541. 10.1002/cne.21974. PubMed DOI
Harsch A.; Calderon J.; Timmons R. B.; Gross G. W. Pulsed Plasma Deposition of Allylamine on Polysiloxane: A Stable Surface for Neuronal Cell Adhesion. J. Neurosci. Methods 2000, 98, 135–144. 10.1016/S0165-0270(00)00196-5. PubMed DOI
Wyart C.; Ybert C.; Bourdieu L.; Herr C.; Prinz C.; Chatenay D. Constrained Synaptic Connectivity in Functional Mammalian Neuronal Networks Grown on Patterned Surfaces. J. Neurosci. Methods 2002, 117, 123–131. 10.1016/S0165-0270(02)00077-8. PubMed DOI
Fendler C.; Denker C.; Harberts J.; Bayat P.; Zierold R.; Loers G.; Munzenberg M.; Blick R. H. Microscaffolds by Direct Laser Writing for Neurite Guidance Leading to Tailor-Made Neuronal Networks. Adv. Biosyst. 2019, 3, e1800329.10.1002/adbi.201800329. PubMed DOI
Harberts J.; Fendler C.; Teuber J.; Siegmund M.; Silva A.; Rieck N.; Wolpert M.; Zierold R.; Blick R. H. Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS Nano 2020, 14, 13091–13102. 10.1021/acsnano.0c04640. PubMed DOI
Kim Y. H.; Baek N. S.; Han Y. H.; Chung M.-A.; Jung S.-D. Enhancement of Neuronal Cell Adhesion by Covalent Binding of Poly-d-Lysine. J. Neurosci. Methods 2011, 202, 38–44. 10.1016/j.jneumeth.2011.08.036. PubMed DOI
Li N.; Zhang Q.; Gao S.; Song Q.; Huang R.; Wang L.; Liu L.; Dai J.; Tang M.; Cheng G. Three-Dimensional Graphene Foam as a Biocompatible and Conductive Scaffold for Neural Stem Cells. Sci. Rep. 2013, 3, 1604.10.1038/srep01604. PubMed DOI PMC
Koitmäe A.; Harberts J.; Loers G.; Müller M.; Bausch C. S.; Sonnenberg D.; Heyn C.; Zierold R.; Hansen W.; Blick R. H. Approaching Integrated Hybrid Neural Circuits: Axon Guiding on Optically Active Semiconductor Microtube Arrays. Adv. Mater. Interfaces 2016, 3, 1600746.10.1002/admi.201600746. DOI
Huang Y.; Jiang Y.; Wu Q.; Wu X.; An X.; Chubykin A. A.; Cheng J. X.; Xu X. M.; Yang C. Nanoladders Facilitate Directional Axonal Outgrowth and Regeneration. ACS Biomater. Sci. Eng. 2018, 4, 1037–1045. 10.1021/acsbiomaterials.7b00981. PubMed DOI
Koitmae A.; Muller M.; Bausch C. S.; Harberts J.; Hansen W.; Loers G.; Blick R. H. Designer Neural Networks with Embedded Semiconductor Microtube Arrays. Langmuir 2018, 34, 1528–1534. 10.1021/acs.langmuir.7b03311. PubMed DOI
Fendler C.; Harberts J.; Rafeldt L.; Loers G.; Zierold R.; Blick R. H. Neurite Guidance and Neuro-Caging on Steps and Grooves in 2.5 Dimensions. Nanoscale Adv. 2020, 2, 5192–5200. 10.1039/D0NA00549E. PubMed DOI PMC
Bastiaens A.; Sabahi-Kaviani R.; Luttge R. Nanogrooves for 2D and 3D Microenvironments of SH-SY5Y Cultures in Brain-on-Chip Technology. Front. Neurosci. 2020, 14, 666.10.3389/fnins.2020.00666. PubMed DOI PMC
Capasso A.; Rodrigues J.; Moschetta M.; Buonocore F.; Faggio G.; Messina G.; Kim M. J.; Kwon J.; Placidi E.; Benfenati F.; Bramini M.; Lee G. H.; Lisi N. Interactions between Primary Neurons and Graphene Films with Different Structure and Electrical Conductivity. Adv. Funct. Mater. 2021, 31, 2005300.10.1002/adfm.202005300. DOI
Berthing T.; Bonde S.; Sorensen C. B.; Utko P.; Nygard J.; Martinez K. L. Intact Mammalian Cell Function on Semiconductor Nanowire Arrays: New Perspectives for Cell-Based Biosensing. Small 2011, 7, 640–647. 10.1002/smll.201001642. PubMed DOI
Elnathan R.; Kwiat M.; Patolsky F.; Voelcker N. H. Engineering Vertically Aligned Semiconductor Nanowire Arrays for Applications in the Life Sciences. Nano Today 2014, 9, 172–196. 10.1016/j.nantod.2014.04.001. DOI
Bonde S.; Buch-Manson N.; Rostgaard K. R.; Andersen T. K.; Berthing T.; Martinez K. L. Exploring Arrays of Vertical One-Dimensional Nanostructures for Cellular Investigations. Nanotechnology 2014, 25, 362001.10.1088/0957-4484/25/36/362001. PubMed DOI
Hanson L.; Lin Z. C.; Xie C.; Cui Y.; Cui B. Characterization of the Cell-Nanopillar Interface by Transmission Electron Microscopy. Nano Lett. 2012, 12, 5815–5820. 10.1021/nl303163y. PubMed DOI PMC
Santoro F.; Zhao W.; Joubert L. M.; Duan L.; Schnitker J.; van de Burgt Y.; Lou H. Y.; Liu B.; Salleo A.; Cui L.; Cui Y.; Cui B. Revealing the Cell-Material Interface with Nanometer Resolution by Focused Ion Beam/Scanning Electron Microscopy. ACS Nano 2017, 11, 8320–8328. 10.1021/acsnano.7b03494. PubMed DOI PMC
Shokouhi A. R.; Chen Y.; Yoh H. Z.; Brenker J.; Alan T.; Murayama T.; Suu K.; Morikawa Y.; Voelcker N. H.; Elnathan R. Engineering Efficient CAR-T Cells via Electroactive Nanoinjection. Adv. Mater. 2023, 35, 2304122.10.1002/adma.202304122. PubMed DOI
Harberts J.; Zierold R.; Fendler C.; Koitmäe A.; Bayat P.; Fernandez-Cuesta I.; Loers G.; Diercks B.-P.; Fliegert R.; Guse A. H.; Ronning C.; Otnes G.; Borgström M.; Blick R. H. Culturing and Patch Clamping of Jurkat T Cells and Neurons on Al2O3 Coated Nanowire Arrays of Altered Morphology. RSC Adv. 2019, 9, 11194–11201. 10.1039/C8RA05320K. PubMed DOI PMC
Hällström W.; Mårtensson T.; Prinz C.; Gustavsson P.; Montelius L.; Samuelson L.; Kanje M. Gallium Phosphide Nanowires as a Substrate for Cultured Neurons. Nano Lett. 2007, 7, 2960–2965. 10.1021/nl070728e. PubMed DOI
Xie C.; Hanson L.; Xie W.; Lin Z.; Cui B.; Cui Y. Noninvasive Neuron Pinning With Nanopillar Arrays. Nano Lett. 2010, 10, 4020–4024. 10.1021/nl101950x. PubMed DOI PMC
Piret G.; Perez M. T.; Prinz C. N. Neurite Outgrowth and Synaptophysin Expression of Postnatal CNS Neurons on GaP Nanowire Arrays in Long-Term Retinal Cell Culture. Biomaterials 2013, 34, 875–887. 10.1016/j.biomaterials.2012.10.042. PubMed DOI
Kang K.; Park Y. S.; Park M.; Jang M. J.; Kim S. M.; Lee J.; Choi J. Y.; Jung D. H.; Chang Y. T.; Yoon M. H.; Lee J. S.; Nam Y.; Choi I. S. Axon-First Neuritogenesis on Vertical Nanowires. Nano Lett. 2016, 16, 675–680. 10.1021/acs.nanolett.5b04458. PubMed DOI
Cortés-Llanos B.; Rauti R.; Ayuso-Sacido Á.; Pérez L.; Ballerini L. Impact of Magnetite Nanowires on in Vitro Hippocampal Neural Networks. Biomolecules 2023, 13, 783.10.3390/biom13050783. PubMed DOI PMC
Harberts J.; Siegmund M.; Hedrich C.; Kim W.; Fontcuberta i Morral A.; Zierold R.; Blick R. H. Generation of Human iPSC-Derived Neurons on Nanowire Arrays Featuring Varying Lengths, Pitches, and Diameters. Adv. Mater. Interfaces 2022, 9, 2200806.10.1002/admi.202200806. DOI
Losero E.; Jagannath S.; Pezzoli M.; Goblot V.; Babashah H.; Lashuel H. A.; Galland C.; Quack N. Neuronal Growth on High-Aspect-Ratio Diamond Nanopillar Arrays for Biosensing Applications. Sci. Rep. 2023, 13, 5909.10.1038/s41598-023-32235-x. PubMed DOI PMC
Tullii G.; Giona F.; Lodola F.; Bonfadini S.; Bossio C.; Varo S.; Desii A.; Criante L.; Sala C.; Pasini M.; Verpelli C.; Galeotti F.; Antognazza M. R. High-Aspect-Ratio Semiconducting Polymer Pillars for 3D Cell Cultures. ACS Appl. Mater. Interfaces 2019, 11, 28125–28137. 10.1021/acsami.9b08822. PubMed DOI PMC
Harberts J.; Haferkamp U.; Haugg S.; Fendler C.; Lam D.; Zierold R.; Pless O.; Blick R. H. Interfacing Human Induced Pluripotent Stem Cell-Derived Neurons With Designed Nanowire Arrays as a Future Platform for Medical Applications. Biomater. Sci. 2020, 8, 2434–2446. 10.1039/D0BM00182A. PubMed DOI
Harberts J.; Siegmund M.; Schnelle M.; Zhang T.; Lei Y.; Yu L.; Zierold R.; Blick R. H. Robust Neuronal Differentiation of Human iPSC-Derived Neural Progenitor Cells Cultured on Densely-Spaced Spiky Silicon Nanowire Arrays. Sci. Rep. 2021, 11, 18819.10.1038/s41598-021-97820-4. PubMed DOI PMC
Hallstrom W.; Lexholm M.; Suyatin D. B.; Hammarin G.; Hessman D.; Samuelson L.; Montelius L.; Kanje M.; Prinz C. N. Fifteen-Piconewton Force Detection from Neural Growth Cones Using Nanowire Arrays. Nano Lett. 2010, 10, 782–787. 10.1021/nl902675h. PubMed DOI
Hanson L.; Zhao W.; Lou H. Y.; Lin Z. C.; Lee S. W.; Chowdary P.; Cui Y.; Cui B. Vertical Nanopillars for in Situ Probing of Nuclear Mechanics in Adherent Cells. Nat. Nanotechnol. 2015, 10, 554–562. 10.1038/nnano.2015.88. PubMed DOI PMC
Piret G.; Perez M. T.; Prinz C. N. Support of Neuronal Growth Over Glial Growth and Guidance of Optic Nerve Axons by Vertical Nanowire Arrays. ACS Appl. Mater. Interfaces 2015, 7, 18944–18948. 10.1021/acsami.5b03798. PubMed DOI
Milos F.; Belu A.; Mayer D.; Maybeck V.; Offenhäusser A. Polymer Nanopillars Induce Increased Paxillin Adhesion Assembly and Promote Axon Growth in Primary Cortical Neurons. Adv. Biol. 2021, 5, 2000248.10.1002/adbi.202000248. DOI
Maurizi E.; Martella D. A.; Schiroli D.; Merra A.; Mustfa S. A.; Pellegrini G.; Macaluso C.; Chiappini C. Nanoneedles Induce Targeted siRNA Silencing of p16 in the Human Corneal Endothelium. Adv. Sci. 2022, 9, 2203257.10.1002/advs.202203257. PubMed DOI PMC
Chen Y.; Mach M.; Shokouhi A.-R.; Yoh H. Z.; Bishop D. C.; Murayama T.; Suu K.; Morikawa Y.; Barry S. C.; Micklethwaite K.; et al. Efficient Non-Viral CAR-T Cell Generation via Silicon-Nanotube-Mediated Transfection. Mater. Today 2023, 63, 8–17. 10.1016/j.mattod.2023.02.009. DOI
Yoh H. Z.; Chen Y.; Shokouhi A.-R.; Thissen H.; Voelcker N. H.; Elnathan R. The Influence of Dysfunctional Actin on Polystyrene-Nanotube-Mediated mRNA Nanoinjection into Mammalian Cells. Nanoscale 2023, 15, 7737–7744. 10.1039/D3NR01111A. PubMed DOI
Wang Z.; Wang H.; Lin S.; Labib M.; Ahmed S.; Das J.; Angers S.; Sargent E. H.; Kelley S. O. Efficient Delivery of Biological Cargos into Primary Cells by Electrodeposited Nanoneedles via Cell-Cycle-Dependent Endocytosis. Nano Lett. 2023, 23, 5877–5885. 10.1021/acs.nanolett.2c05083. PubMed DOI
Chen Y.; Yoh H. Z.; Shokouhi A.-R.; Murayama T.; Suu K.; Morikawa Y.; Voelcker N. H.; Elnathan R. Role of Actin Cytoskeleton in Cargo Delivery Mediated by Vertically Aligned Silicon Nanotubes. J. Nanobiotechnol. 2022, 20, 406.10.1186/s12951-022-01618-z. PubMed DOI PMC
Kim W.; Ng J. K.; Kunitake M. E.; Conklin B. R.; Yang P. Interfacing Silicon Nanowires with Mammalian Cells. J. Am. Chem. Soc. 2007, 129, 7228–7229. 10.1021/ja071456k. PubMed DOI
Elnathan R.; Delalat B.; Brodoceanu D.; Alhmoud H.; Harding F. J.; Buehler K.; Nelson A.; Isa L.; Kraus T.; Voelcker N. H. Maximizing Transfection Efficiency of Vertically Aligned Silicon Nanowire Arrays. Adv. Funct. Mater. 2015, 25, 7215–7225. 10.1002/adfm.201503465. DOI
Liu R.; Chen R.; Elthakeb A. T.; Lee S. H.; Hinckley S.; Khraiche M. L.; Scott J.; Pre D.; Hwang Y.; Tanaka A.; Ro Y. G.; Matsushita A. K.; Dai X.; Soci C.; Biesmans S.; James A.; Nogan J.; Jungjohann K. L.; Pete D. V.; Webb D. B.; Zou Y.; Bang A. G.; Dayeh S. A. High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons. Nano Lett. 2017, 17, 2757–2764. 10.1021/acs.nanolett.6b04752. PubMed DOI PMC
Parameswaran R.; Carvalho-de-Souza J. L.; Jiang Y.; Burke M. J.; Zimmerman J. F.; Koehler K.; Phillips A. W.; Yi J.; Adams E. J.; Bezanilla F.; Tian B. Photoelectrochemical Modulation of Neuronal Activity with Free-Standing Coaxial Silicon Nanowires. Nat. Nanotechnol. 2018, 13, 260–266. 10.1038/s41565-017-0041-7. PubMed DOI PMC
Liu Z.; Wen B.; Cao L.; Zhang S.; Lei Y.; Zhao G.; Chen L.; Wang J.; Shi Y.; Xu J.; Pan X.; Yu L. Photoelectric Cardiac Pacing by Flexible and Degradable Amorphous Si Radial Junction Stimulators. Adv. Healthc. Mater. 2020, 9, e1901342.10.1002/adhm.201901342. PubMed DOI
Verardo D.; Lindberg F. W.; Anttu N.; Niman C. S.; Lard M.; Dabkowska A. P.; Nylander T.; Mansson A.; Prinz C. N.; Linke H. Nanowires for Biosensing: Lightguiding of Fluorescence as a Function of Diameter and Wavelength. Nano Lett. 2018, 18, 4796–4802. 10.1021/acs.nanolett.8b01360. PubMed DOI PMC
Lard M.; Linke H.; Prinz C. N. Biosensing Using Arrays of Vertical Semiconductor Nanowires: Mechanosensing and Biomarker Detection. Nanotechnology 2019, 30, 214003.10.1088/1361-6528/ab0326. PubMed DOI
Araki T.; Yoshida F.; Uemura T.; Noda Y.; Yoshimoto S.; Kaiju T.; Suzuki T.; Hamanaka H.; Baba K.; Hayakawa H.; Yabumoto T.; Mochizuki H.; Kobayashi S.; Tanaka M.; Hirata M.; Sekitani T. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires. Adv. Healthc. Mater. 2019, 8, e1900130.10.1002/adhm.201900130. PubMed DOI
Chen Y.; Aslanoglou S.; Gervinskas G.; Abdelmaksoud H.; Voelcker N. H.; Elnathan R. Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery. Small 2019, 15, e1904819.10.1002/smll.201904819. PubMed DOI
Hansel C. S.; Crowder S. W.; Cooper S.; Gopal S.; Joao Pardelha da Cruz M.; de Oliveira Martins L.; Keller D.; Rothery S.; Becce M.; Cass A. E. G.; Bakal C.; Chiappini C.; Stevens M. M. Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery. ACS Nano 2019, 13, 2913–2926. 10.1021/acsnano.8b06998. PubMed DOI PMC
Chiappini C.; De Rosa E.; Martinez J. O.; Liu X.; Steele J.; Stevens M. M.; Tasciotti E. Biodegradable Silicon Nanoneedles Delivering Nucleic Acids Intracellularly Induce Localized in Vivo Neovascularization. Nat. Mater. 2015, 14, 532–539. 10.1038/nmat4249. PubMed DOI PMC
Suyatin D. B.; Wallman L.; Thelin J.; Prinz C. N.; Jörntell H.; Samuelson L.; Montelius L.; Schouenborg J. Nanowire-Based Electrode for Acute in Vivo Neural Recordings in the Brain. PLoS One 2013, 8, e56673.10.1371/journal.pone.0056673. PubMed DOI PMC
Tang J.; Qin N.; Chong Y.; Diao Y.; Yiliguma; Wang Z.; Xue T.; Jiang M.; Zhang J.; Zheng G. Nanowire Arrays Restore Vision in Blind Mice. Nat. Commun. 2018, 9, 786.10.1038/s41467-018-03212-0. PubMed DOI PMC
Zhang A.; Zhao Y.; You S. S.; Lieber C. M. Nanowire Probes Could Drive High-Resolution Brain-Machine Interfaces. Nano Today 2020, 31, 100821.10.1016/j.nantod.2019.100821. DOI
Fairfield J. A. Nanostructured Materials for Neural Electrical Interfaces. Adv. Funct. Mater. 2018, 28, 1701145.10.1002/adfm.201701145. DOI
VanDersarl J. J.; Xu A. M.; Melosh N. A. Nanostraws for Direct Fluidic Intracellular Access. Nano Lett. 2012, 12, 3881–3886. 10.1021/nl204051v. PubMed DOI
Wang Y.; Yang Y.; Yan L.; Kwok S. Y.; Li W.; Wang Z.; Zhu X.; Zhu G.; Zhang W.; Chen X.; Shi P. Poking Cells for Efficient Vector-Free Intracellular Delivery. Nat. Commun. 2014, 5, 4466.10.1038/ncomms5466. PubMed DOI
Chiappini C.; Martinez J. O.; De Rosa E.; Almeida C. S.; Tasciotti E.; Stevens M. M. Biodegradable Nanoneedles for Localized Delivery of Nanoparticles in Vivo: Exploring the Biointerface. ACS Nano 2015, 9, 5500–5509. 10.1021/acsnano.5b01490. PubMed DOI PMC
Cao Y.; Chen H.; Qiu R.; Hanna M.; Ma E.; Hjort M.; Zhang A.; Lewis R. S.; Wu J. C.; Melosh N. A. Universal Intracellular Biomolecule Delivery with Precise Dosage Control. Sci. Adv. 2018, 4, eaat8131.10.1126/sciadv.aat8131. PubMed DOI PMC
Gopal S.; Chiappini C.; Penders J.; Leonardo V.; Seong H.; Rothery S.; Korchev Y.; Shevchuk A.; Stevens M. M. Porous Silicon Nanoneedles Modulate Endocytosis to Deliver Biological Payloads. Adv. Mater. 2019, 31, e1806788.10.1002/adma.201806788. PubMed DOI PMC
Tay A.; Melosh N. Nanostructured Materials for Intracellular Cargo Delivery. Acc. Chem. Res. 2019, 52, 2462–2471. 10.1021/acs.accounts.9b00272. PubMed DOI PMC
Fujishiro A.; Kaneko H.; Kawashima T.; Ishida M.; Kawano T. In Vivo Neuronal Action Potential Recordings via Three-Dimensional Microscale Needle-Electrode Arrays. Sci. Rep. 2014, 4, 4868.10.1038/srep04868. PubMed DOI PMC
Rincón Montes V.; Gehlen J.; Ingebrandt S.; Mokwa W.; Walter P.; Müller F.; Offenhäusser A. Development and in Vitro Validation of Flexible Intraretinal Probes. Sci. Rep. 2020, 10, 19836.10.1038/s41598-020-76582-5. PubMed DOI PMC
Qing Q.; Pal S. K.; Tian B.; Duan X.; Timko B. P.; Cohen-Karni T.; Murthy V. N.; Lieber C. M. Nanowire Transistor Arrays for Mapping Neural Circuits in Acute Brain Slices. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1882–1887. 10.1073/pnas.0914737107. PubMed DOI PMC
Timko B. P.; Cohen-Karni T.; Qing Q.; Tian B.; Lieber C. M. Design and Implementation of Functional Nanoelectronic Interfaces with Biomolecules, Cells, and Tissue Using Nanowire Device Arrays. IEEE Trans. Nanotechnol. 2010, 9, 269–280. 10.1109/TNANO.2009.2031807. PubMed DOI PMC
Tian B.; Liu J.; Dvir T.; Jin L.; Tsui J. H.; Qing Q.; Suo Z.; Langer R.; Kohane D. S.; Lieber C. M. Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues. Nat. Mater. 2012, 11, 986.10.1038/nmat3404. PubMed DOI PMC
Lee J.-H.; Zhang A.; You S. S.; Lieber C. M. Spontaneous Internalization of Cell Penetrating Peptide-Modified Nanowires into Primary Neurons. Nano Lett. 2016, 16, 1509–1513. 10.1021/acs.nanolett.6b00020. PubMed DOI
Zhao Y.; You S. S.; Zhang A.; Lee J.-H.; Huang J.; Lieber C. M. Scalable Ultrasmall Three-Dimensional Nanowire Transistor Probes for Intracellular Recording. Nat. Nanotechnol. 2019, 14, 783–790. 10.1038/s41565-019-0478-y. PubMed DOI
Neto J. P.; Costa A.; Vaz Pinto J.; Marques-Smith A.; Costa J. C.; Martins R.; Fortunato E.; Kampff A. R.; Barquinha P. Transparent and Flexible Electrocorticography Electrode Arrays Based on Silver Nanowire Networks for Neural Recordings. ACS Appl. Nano Mater. 2021, 4, 5737–5747. 10.1021/acsanm.1c00533. DOI
Liu J.; Fu T. M.; Cheng Z.; Hong G.; Zhou T.; Jin L.; Duvvuri M.; Jiang Z.; Kruskal P.; Xie C.; Suo Z.; Fang Y.; Lieber C. M. Syringe-Injectable Electronics. Nat. Nanotechnol. 2015, 10, 629–636. 10.1038/nnano.2015.115. PubMed DOI PMC
Vitale F.; Vercosa D. G.; Rodriguez A. V.; Pamulapati S. S.; Seibt F.; Lewis E.; Yan J. S.; Badhiwala K.; Adnan M.; Royer-Carfagni G.; Beierlein M.; Kemere C.; Pasquali M.; Robinson J. T. Fluidic Microactuation of Flexible Electrodes for Neural Recording. Nano Lett. 2018, 18, 326–335. 10.1021/acs.nanolett.7b04184. PubMed DOI PMC
Bhandari R.; Negi S.; Solzbacher F. Wafer- Scale Fabrication of Penetrating Neural Microelectrode Arrays. Biomed. Microdevices 2010, 12, 797–807. 10.1007/s10544-010-9434-1. PubMed DOI
Yoo J.; Kwak H.; Kwon J.; Ha G. E.; Lee E. H.; Song S.; Na J.; Lee H. J.; Lee J.; Hwangbo A.; Cha E.; Chae Y.; Cheong E.; Choi H. J. Long-term Intracellular Recording of Optogenetically-induced Electrical Activities using Vertical Nanowire Multi Electrode Array. Sci. Rep. 2020, 10, 4279.10.1038/s41598-020-61325-3. PubMed DOI PMC
Hierlemann A.; Frey U.; Hafizovic S.; Heer F. Growing Cells Atop Microelectronic Chips: Interfacing Electrogenic Cells in Vitro with CMOS-Based Microelectrode Arrays. Proc. IEEE 2011, 99, 252–284. 10.1109/JPROC.2010.2066532. DOI
Brain Multiple Cores for Cell-Based Assays without Compromises. https://www.3brain.com/products/multiwell/coreplate-tm--multiwell (accessed January 31, 2025).
Brain Electrophysiological Signals & Microelectrode Array Principles. https://www.3brain.com/resources/microelectrode-array (accessed December 26, 2023).
Berdondini L.; Imfeld K.; Maccione A.; Tedesco M.; Neukom S.; Koudelka-Hep M.; Martinoia S. Active Pixel Sensor Array for High Spatio-Temporal Resolution Electrophysiological Recordings From Single Cell to Large Scale Neuronal Networks. Lab Chip 2009, 9, 2644–2651. 10.1039/b907394a. PubMed DOI
Bakkum D. J.; Frey U.; Radivojevic M.; Russell T. L.; Muller J.; Fiscella M.; Takahashi H.; Hierlemann A. Tracking Axonal Action Potential Propagation on a High-Density Microelectrode Array across Hundreds of Sites. Nat. Commun. 2013, 4, 2181.10.1038/ncomms3181. PubMed DOI PMC
Dong R.; Wang L.; Hang C.; Chen Z.; Liu X.; Zhong L.; Qi J.; Huang Y.; Liu S.; Wang L.; Lu Y.; Jiang X. Printed Stretchable Liquid Metal Electrode Arrays for in Vivo Neural Recording. Small 2021, 17, e2006612.10.1002/smll.202006612. PubMed DOI
Bosse B.; Damle S.; Akinin A.; Jing Y.; Bartsch D. U.; Cheng L.; Oesch N.; Lo Y. H.; Cauwenberghs G.; Freeman W. R. In Vivo Photovoltaic Performance of a Silicon Nanowire Photodiode-Based Retinal Prosthesis. Invest Ophthalmol Vis. Sci. 2018, 59, 5885–5892. 10.1167/iovs.18-24554. PubMed DOI PMC
Wang Z. L.; Song J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. 10.1126/science.1124005. PubMed DOI
Rudramurthy G. R.; Swamy M. K. Potential Applications of Engineered Nanoparticles in Medicine and Biology: An Update. J. Biol. Inorg. Chem. 2018, 23, 1185–1204. 10.1007/s00775-018-1600-6. PubMed DOI
Gorjikhah F.; Davaran S.; Salehi R.; Bakhtiari M.; Hasanzadeh A.; Panahi Y.; Emamverdy M.; Akbarzadeh A. Improving ″Lab-on-a-Chip″ Techniques Using Biomedical Nanotechnology: A Review. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1609–1614. 10.3109/21691401.2015.1129619. PubMed DOI
Prajapati S. K.; Malaiya A.; Kesharwani P.; Soni D.; Jain A. Biomedical Applications and Toxicities of Carbon Nanotubes. Drug Chem. Toxicol. 2022, 45, 435–450. 10.1080/01480545.2019.1709492. PubMed DOI
Raphey V. R.; Henna T. K.; Nivitha K. P.; Mufeedha P.; Sabu C.; Pramod K. Advanced Biomedical Applications of Carbon Nanotube. Mater. Sci. Eng., C 2019, 100, 616–630. 10.1016/j.msec.2019.03.043. PubMed DOI
Hamada N.; Sawada S.; Oshiyama A. New One-Dimensional Conductors: Graphitic Microtubules. Phys. Rev. Lett. 1992, 68, 1579–1581. 10.1103/PhysRevLett.68.1579. PubMed DOI
Mintmire J. W.; Dunlap B. I.; White C. T. Are Fullerene Tubules Metallic?. Phys. Rev. Lett. 1992, 68, 631–634. 10.1103/PhysRevLett.68.631. PubMed DOI
Ruhunage C.; Dhawan V.; Nawarathne C. P.; Hoque A.; Cui X. T.; Alvarez N. T. Evaluation of Polymer-Coated Carbon Nanotube Flexible Microelectrodes for Biomedical Applications. Bioengineering 2023, 10, 647.10.3390/bioengineering10060647. PubMed DOI PMC
Shin S. R.; Jung S. M.; Zalabany M.; Kim K.; Zorlutuna P.; Kim S. B.; Nikkhah M.; Khabiry M.; Azize M.; Kong J.; Wan K. T.; Palacios T.; Dokmeci M. R.; Bae H.; Tang X. S.; Khademhosseini A. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano 2013, 7, 2369–80. 10.1021/nn305559j. PubMed DOI PMC
Silva G. A. Neuroscience Nanotechnology: Progress, Opportunities and Challenges. Nat. Rev. Neurosci. 2006, 7, 65–74. 10.1038/nrn1827. PubMed DOI
Hanein Y. Carbon Nanotube Integration into MEMS Devices. Phys. Status Solidi B 2010, 247, 2635–2640. 10.1002/pssb.201000109. DOI
Shoval A.; Adams C.; David-Pur M.; Shein M.; Hanein Y.; Sernagor E. Carbon Nanotube Electrodes for Effective Interfacing with Retinal Tissue. Front. Neuroeng. 2009, 2, 510.10.3389/neuro.16.004.2009. PubMed DOI PMC
Castagnola E.; Maiolo L.; Maggiolini E.; Minotti A.; Marrani M.; Maita F.; Pecora A.; Angotzi G. N.; Ansaldo A.; Boffini M.; et al. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 342–350. 10.1109/TNSRE.2014.2342880. PubMed DOI
Castagnola E.; Biso M.; Ricci D. Improvement of Polypyrrole and Carbon Nanotube Co-Deposition Techniques for High Charge-Transfer Electrodes. Phys. Status Solidi B 2009, 246, 2469–2472. 10.1002/pssb.200982283. DOI
Castagnola E.; Biso M.; Ricci D.. Controlled Electrochemical Polypyrrole and Carbon Nanotube Co-Deposition onto Platinum Electrodes; In 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO), IEEE: 2009; pp 842–845.
Gabay T.; Ben-David M.; Kalifa I.; Sorkin R.; Abrams Z. R.; Ben-Jacob E.; Hanein Y. Electro- Chemical and Biological Properties of Carbon Nanotube Based Multi-Electrode Arrays. Nanotechnology 2007, 18, 035201.10.1088/0957-4484/18/3/035201. PubMed DOI
Bareket-Keren L.; Hanein Y. Carbon Nanotube-Based Multi Electrode Arrays for Neuronal Interfacing: Progress and Prospects. Front. Neural Circuits 2013, 6, 122.10.3389/fncir.2012.00122. PubMed DOI PMC
Kim G. H.; Kim K.; Nam H.; Shin K.; Choi W.; Shin J. H.; Lim G. CNT-Au Nanocomposite Deposition on Gold Microelectrodes for Improved Neural Recordings. Sens. Actuators, B 2017, 252, 152–158. 10.1016/j.snb.2017.04.142. DOI
Baranauskas G.; Maggiolini E.; Castagnola E.; Ansaldo A.; Mazzoni A.; Angotzi G. N.; Vato A.; Ricci D.; Panzeri S.; Fadiga L. Carbon Nanotube Composite Coating of Neural Microelectrodes Preferentially Improves the Multiunit Signal-to-Noise Ratio. J. Neural Eng. 2011, 8, 066013.10.1088/1741-2560/8/6/066013. PubMed DOI
David-Pur M.; Bareket-Keren L.; Beit-Yaakov G.; Raz-Prag D.; Hanein Y. All- Carbon-Nanotube Flexible Multi-Electrode Array for Neuronal Recording and Stimulation. Biomed. Microdevices 2014, 16, 43–53. 10.1007/s10544-013-9804-6. PubMed DOI PMC
Bendali A.; Hess L. H.; Seifert M.; Forster V.; Stephan A. F.; Garrido J. A.; Picaud S. Purified Neurons Can Survive on Peptide-Free Graphene Layers. Adv. Healthc. Mater. 2013, 2, 929–933. 10.1002/adhm.201200347. PubMed DOI
Mattson M. P.; Haddon R. C.; Rao A. M. Molecular Functionalization of Carbon Nanotubes and Use as Substrates for Neuronal Growth. J. Mol. Neurosci. 2000, 14, 175–182. 10.1385/JMN:14:3:175. PubMed DOI
Lovat V.; Pantarotto D.; Lagostena L.; Cacciari B.; Grandolfo M.; Righi M.; Spalluto G.; Prato M.; Ballerini L. Carbon Nanotube Substrates Boost Neuronal Electrical Signaling. Nano Lett. 2005, 5, 1107–1110. 10.1021/nl050637m. PubMed DOI
Fiorito S.; Russier J.; Salemme A.; Soligo M.; Manni L.; Krasnowska E.; Bonnamy S.; Flahaut E.; Serafino A.; Togna G. I.; Marlier L. N. J. L.; Togna A. R. Switching on Microglia with Electro-Conductive Multi Walled Carbon Nanotubes. Carbon 2018, 129, 572–584. 10.1016/j.carbon.2017.12.069. DOI
Fabbro A.; Villari A.; Laishram J.; Scaini D.; Toma F. M.; Turco A.; Prato M.; Ballerini L. Spinal Cord Explants Use Carbon Nanotube Interfaces To Enhance Neurite Outgrowth and To Fortify Synaptic Inputs. ACS Nano 2012, 6, 2041–2055. 10.1021/nn203519r. PubMed DOI
Fabbro A.; Prato M.; Ballerini L. Carbon Nanotubes in Neuroregeneration and Repair. Adv. Drug Delivery Rev. 2013, 65, 2034–2044. 10.1016/j.addr.2013.07.002. PubMed DOI
Hu H.; Ni Y.; Montana V.; Haddon R. C.; Parpura V. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett. 2004, 4, 507–511. 10.1021/nl035193d. PubMed DOI PMC
Lichtenstein M. P.; Carretero N. M.; Perez E.; Pulido-Salgado M.; Moral-Vico J.; Sola C.; Casan-Pastor N.; Sunol C. Biosafety Assessment of Conducting Nanostructured Materials by Using Co-Cultures of Neurons and Astrocytes. Neurotoxicology 2018, 68, 115–125. 10.1016/j.neuro.2018.07.010. PubMed DOI
Shao H.; Li T.; Zhu R.; Xu X.; Yu J.; Chen S.; Song L.; Ramakrishna S.; Lei Z.; Ruan Y.; He L. Carbon Nanotube Multilayered Nanocomposites as Multifunctional Substrates for Actuating Neuronal Differentiation and Functions of Neural Stem Cells. Biomaterials 2018, 175, 93–109. 10.1016/j.biomaterials.2018.05.028. PubMed DOI
Su W. T.; Shih Y. A. Nanofiber Containing Carbon Nanotubes Enhanced PC12 Cell Proliferation and Neuritogenesis by Electrical Stimulation. Biomed. Mater. Eng. 2015, 26, S189–S195. 10.3233/BME-151305. PubMed DOI
Fabbro A.; Bosi S.; Ballerini L.; Prato M. Carbon Nanotubes: Artificial Nanomaterials To Engineer Single Neurons and Neuronal Networks. ACS Chem. Neurosci. 2012, 3, 611–618. 10.1021/cn300048q. PubMed DOI PMC
Galvan-Garcia P.; Keefer E. W.; Yang F.; Zhang M.; Fang S.; Zakhidov A. A.; Baughman R. H.; Romero M. I. Robust Cell Migration and Neuronal Growth on Pristine Carbon Nanotube Sheets and Yarns. J. Biomater. Sci. Polym. Ed. 2007, 18, 1245–1261. 10.1163/156856207782177891. PubMed DOI
Malarkey E. B.; Fisher K. A.; Bekyarova E.; Liu W.; Haddon R. C.; Parpura V. Conductive Single-Walled Carbon Nanotube Substrates Modulate Neuronal Growth. Nano Lett. 2009, 9, 264–268. 10.1021/nl802855c. PubMed DOI PMC
Pampaloni N. P.; Scaini D.; Perissinotto F.; Bosi S.; Prato M.; Ballerini L. Sculpting Neurotransmission during Synaptic Development by 2D Nanostructured Interfaces. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2521–2532. 10.1016/j.nano.2017.01.020. PubMed DOI
Mazzatenta A.; Giugliano M.; Campidelli S.; Gambazzi L.; Businaro L.; Markram H.; Prato M.; Ballerini L. Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits. J. Neurosci. 2007, 27, 6931–6936. 10.1523/JNEUROSCI.1051-07.2007. PubMed DOI PMC
Fabbro A.; Cellot G.; Prato M.; Ballerini L. Interfacing Neurons with Carbon Nanotubes: (Re)engineering Neuronal Signaling. Prog. Brain Res. 2011, 194, 241–252. 10.1016/B978-0-444-53815-4.00003-0. PubMed DOI
Cellot G.; Cilia E.; Cipollone S.; Rancic V.; Sucapane A.; Giordani S.; Gambazzi L.; Markram H.; Grandolfo M.; Scaini D.; Gelain F.; Casalis L.; Prato M.; Giugliano M.; Ballerini L. Carbon Nanotubes Might Improve Neuronal Performance by Favouring Electrical Shortcuts. Nat. Nanotechnol. 2009, 4, 126–133. 10.1038/nnano.2008.374. PubMed DOI
Cellot G.; Toma F. M.; Kasap Varley Z.; Laishram J.; Villari A.; Quintana M.; Cipollone S.; Prato M.; Ballerini L. Carbon Nanotube Scaffolds Tune Synaptic Strength in Cultured Neural Circuits: Novel Frontiers in Nanomaterial-Tissue Interactions. J. Neurosci. 2011, 31, 12945–12953. 10.1523/JNEUROSCI.1332-11.2011. PubMed DOI PMC
Fabbro A.; Sucapane A.; Toma F. M.; Calura E.; Rizzetto L.; Carrieri C.; Roncaglia P.; Martinelli V.; Scaini D.; Masten L.; Turco A.; Gustincich S.; Prato M.; Ballerini L. Adhesion to Carbon Nanotube Conductive Scaffolds Forces Action-Potential Appearance in Immature Rat Spinal Neurons. PLoS One 2013, 8, e73621.10.1371/journal.pone.0073621. PubMed DOI PMC
Bosi S.; Ballerini L.; Prato M.. Carbon Nanotubes in Tissue Engineering. In Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes; Marcaccio M., Paolucci F., Eds.; Springer: Berlin, Heidelberg (Germany), 2013; pp 181–204.
Usmani S.; Aurand E. R.; Medelin M.; Fabbro A.; Scaini D.; Laishram J.; Rosselli F. B.; Ansuini A.; Zoccolan D.; Scarselli M.; Crescenzi M. D.; Bosi S.; Prato M.; Ballerini L. 3D Meshes of Carbon Nanotubes Guide Functional Reconnection of Segregated Spinal Explants. Sci. Adv. 2016, 2, e1600087.10.1126/sciadv.1600087. PubMed DOI PMC
Lee S. M.; Kim J. H.; Park C.; Hwang J. Y.; Hong J. S.; Lee K. H.; Lee S. H. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp. IEEE Trans. Biomed. Eng. 2016, 63, 138–147. 10.1109/TBME.2015.2478406. PubMed DOI
Hoon Lee J.; Min Lee S.; Jin Byeon H.; Sook Hong J.; Suk Park K.; Lee S. H. CNT/PDMS- Based Canal-Typed Ear Electrodes for Inconspicuous EEG Recording. J. Neural Eng. 2014, 11, 046014.10.1088/1741-2560/11/4/046014. PubMed DOI
Peng H. L.; Liu J.-Q.; Tian H.-C.; Xu B.; Dong Y.-Z.; Yang B.; Chen X.; Yang C.-S. Flexible Dry Electrode Based on Carbon Nanotube/Polymer Hybrid Micropillars for Biopotential Recording. Sens. Actuators, A 2015, 235, 48–56. 10.1016/j.sna.2015.09.024. DOI
Kumar S.; Kim B.-S.; Song H. An Integrated Approach of CNT Front-End Amplifier towards Spikes Monitoring for Neuro-Prosthetic Diagnosis. BioChip J. 2018, 12, 332–339. 10.1007/s13206-018-2405-y. DOI
Zhang J.; Liu X.; Xu W.; Luo W.; Li M.; Chu F.; Xu L.; Cao A.; Guan J.; Tang S.; Duan X. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Lett. 2018, 18, 2903–2911. 10.1021/acs.nanolett.8b00087. PubMed DOI
Abu-Saude M. J.; Morshed B. I. Patterned Vertical Carbon Nanotube Dry Electrodes for Impedimetric Sensing and Stimulation. IEEE Sensors J. 2015, 15, 5851–5858. 10.1109/JSEN.2015.2449301. DOI
Shein M.; Greenbaum A.; Gabay T.; Sorkin R.; David-Pur M.; Ben-Jacob E.; Hanein Y. Engineered Neuronal Circuits Shaped and Interfaced with Carbon Nanotube Microelectrode Arrays. Biomed. Microdevices 2009, 11, 495–501. 10.1007/s10544-008-9255-7. PubMed DOI
Su J. Y.; Zhang X.; Li M. N.; Gao T.; Wang R.; Chai X. Y.; Zhang D. G.; Zhang X. H.; Sui X. H. Insulation of Carbon Nanotube Yarn Electrodes for Intrafascicular Neural Stimulation and Recording. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) 2019, 815–818.
Pan A. I.; Lin M. H.; Chung H. W.; Chen H.; Yeh S. R.; Chuang Y. J.; Chang Y. C.; Yew T. R. Direct- Growth Carbon Nanotubes on 3D Structural Microelectrodes for Electrophysiological Recording. Analyst 2016, 141, 279–284. 10.1039/C5AN01750E. PubMed DOI
Keefer E. W.; Botterman B. R.; Romero M. I.; Rossi A. F.; Gross G. W. Carbon Nanotube Coating Improves Neuronal Recordings. Nat. Nanotechnol. 2008, 3, 434–439. 10.1038/nnano.2008.174. PubMed DOI
Ghane Motlagh B.; Choueib M.; Hajhosseini Mesgar A.; Hasanuzzaman M.; Sawan M. Direct Growth of Carbon Nanotubes on New High-Density 3D Pyramid-Shaped Microelectrode Arrays for Brain-Machine Interfaces. Micromachines (Basel) 2016, 7, 163.10.3390/mi7090163. PubMed DOI PMC
Burblies N.; Schulze J.; Schwarz H. C.; Kranz K.; Motz D.; Vogt C.; Lenarz T.; Warnecke A.; Behrens P. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells. PLoS One 2016, 11, e0158571.10.1371/journal.pone.0158571. PubMed DOI PMC
Tegtmeier K.; Aliuos P.; Stieghorst J.; Schickedanz M.; Golly F.; Zernetsch H.; Glasmacher B.; Doll T. Aligned Carbon Nanotube-Liquid Silicone Rubber Conductors and Electrode Surfaces for Stimulating Medical Implants. Phys. Status Solidi, A 2014, 211, 1439–1447. 10.1002/pssa.201330405. DOI
Lee S.; Yen S. C.; Sheshadri S.; Delgado-Martinez I.; Xue N.; Xiang Z.; Thakor N. V.; Lee C. Flexible Epineural Strip Electrode for Recording in Fine Nerves. IEEE Trans. Biomed. Eng. 2016, 63, 581–587. 10.1109/TBME.2015.2466442. PubMed DOI
Lee S.-J.; Zhu W.; Nowicki M.; Lee G.; Heo D. N.; Kim J.; Zuo Y. Y.; Zhang L. G. 3D Printing Nano Conductive Multi-Walled Carbon Nanotube Scaffolds for Nerve Regeneration. J. Neural Eng. 2018, 15, 016018.10.1088/1741-2552/aa95a5. PubMed DOI
Arslantunali D.; Budak G.; Hasirci V. Multiwalled CNT-pHEMA Composite Conduit for Peripheral Nerve Repair. J. Biomed. Mater. Res., Part A 2014, 102, 828–841. 10.1002/jbm.a.34727. PubMed DOI
Lee J. H.; Lee J.-Y.; Yang S. H.; Lee E.-J.; Kim H.-W. Carbon Nanotube-Collagen Three-Dimensional Culture of Mesenchymal Stem Cells Promotes Expression of Neural Phenotypes and Secretion of Neurotrophic Factors. Acta Biomater. 2014, 10, 4425–4436. 10.1016/j.actbio.2014.06.023. PubMed DOI
Liu X.; Miller Ii A. L.; Park S.; Waletzki B. E.; Terzic A.; Yaszemski M. J.; Lu L. Covalent Crosslinking of Graphene Oxide and Carbon Nanotube into Hydrogels Enhances Nerve Cell Responses. J. Mater. Chem. B 2016, 4, 6930–6941. 10.1039/C6TB01722C. PubMed DOI PMC
Mounesi Rad S.; Khorasani M. T.; Daliri Joupari M. Preparation of HMWCNT/PLLA Nanocomposite Scaffolds for Application in Nerve Tissue Engineering and Evaluation of Their Physical, Mechanical and Cellular Activity Properties. Polym. Adv. Technol. 2016, 27, 325–338. 10.1002/pat.3644. DOI
Shah K.; Vasileva D.; Karadaghy A.; Zustiak S. P. Development and Characterization of Polyethylene Glycol-Carbon Nanotube Hydrogel Composite. J. Mater. Chem. B 2015, 3, 7950–7962. 10.1039/C5TB01047K. PubMed DOI
Wu S.; Duan B.; Lu A.; Wang Y.; Ye Q.; Zhang L. Biocompatible Chitin/Carbon Nanotubes Composite Hydrogels as Neuronal Growth Substrates. Carbohydr. Polym. 2017, 174, 830–840. 10.1016/j.carbpol.2017.06.101. PubMed DOI
Chen J.; Liu B.; Gao X.; Xu D. A Review of the Interfacial Characteristics of Polymer Nanocomposites Containing Carbon Nanotubes. RSC Adv. 2018, 8, 28048–28085. 10.1039/C8RA04205E. PubMed DOI PMC
He J.; Wang X.-M.; Spector M.; Cui F.-Z. Scaffolds for Central Nervous System Tissue Engineering. Front. Mater. Sci. 2012, 6, 1–25. 10.1007/s11706-012-0157-5. DOI
Spivey E. C.; Khaing Z. Z.; Shear J. B.; Schmidt C. E. The Fundamental Role of Subcellular Topography in Peripheral Nerve Repair Therapies. Biomaterials 2012, 33, 4264–4276. 10.1016/j.biomaterials.2012.02.043. PubMed DOI
Corey J. M.; Lin D. Y.; Mycek K. B.; Chen Q.; Samuel S.; Feldman E. L.; Martin D. C. Aligned Electrospun Nanofibers Specify the Direction of Dorsal Root Ganglia Neurite Growth. J. Biomed. Mater. Res., Part A 2007, 83A, 636–645. 10.1002/jbm.a.31285. PubMed DOI
Park S. Y.; Kang B. S.; Hong S. Improved Neural Differentiation of Human Mesenchymal Stem Cells Interfaced With Carbon Nanotube Scaffolds. Nanomedicine (Lond) 2013, 8, 715–723. 10.2217/nnm.12.143. PubMed DOI
Hasanzadeh E.; Ebrahimi-Barough S.; Mirzaei E.; Azami M.; Tavangar S. M.; Mahmoodi N.; Basiri A.; Ai J. Preparation of Fibrin Gel Scaffolds Containing MWCNT/PU Nanofibers for Neural Tissue Engineering. J. Biomed. Mater. Res., Part A 2019, 107, 802–814. 10.1002/jbm.a.36596. PubMed DOI
Bosi S.; Rauti R.; Laishram J.; Turco A.; Lonardoni D.; Nieus T.; Prato M.; Scaini D.; Ballerini L. From 2D to 3D: Novel Nanostructured Scaffolds to Investigate Signalling in Reconstructed Neuronal Networks. Sci. Rep. 2015, 5, 9562.10.1038/srep09562. PubMed DOI PMC
Roberts M. J.; Leach M. K.; Bedewy M.; Meshot E. R.; Copic D.; Corey J. M.; Hart A. J. Growth of Primary Motor Neurons on Horizontally Aligned Carbon Nanotube Thin Films and Striped Patterns. J. Neural Eng. 2014, 11, 036013.10.1088/1741-2560/11/3/036013. PubMed DOI
Usmani S.; Franceschi Biagioni A.; Medelin M.; Scaini D.; Casani R.; Aurand E. R.; Padro D.; Egimendia A.; Ramos Cabrer P.; Scarselli M.; De Crescenzi M.; Prato M.; Ballerini L. Functional Rewiring Across Spinal Injuries via Biomimetic Nanofiber Scaffolds. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 25212–25218. 10.1073/pnas.2005708117. PubMed DOI PMC
Cellot G.; Lagonegro P.; Tarabella G.; Scaini D.; Fabbri F.; Iannotta S.; Prato M.; Salviati G.; Ballerini L. PEDOT: PSS Interfaces Support the Development of Neuronal Synaptic Networks with Reduced Neuroglia Response in Vitro. Front. Neurosci. 2016, 9, 521.10.3389/fnins.2015.00521. PubMed DOI PMC
Castagnola E.; Maggiolini E.; Ceseracciu L.; Ciarpella F.; Zucchini E.; De Faveri S.; Fadiga L.; Ricci D. pHEMA Encapsulated PEDOT-PSS-CNT Microsphere Microelectrodes for Recording Single Unit Activity in the Brain. Front. Neurosci. 2016, 10, 151.10.3389/fnins.2016.00151. PubMed DOI PMC
Samba R.; Fuchsberger K.; Matiychyn I.; Epple S.; Kiesel L.; Stett A.; Schuhmann W.; Stelzle M. Application of PEDOT-CNT Microelectrodes for Neurotransmitter Sensing. Electroanalysis 2014, 26, 548–555. 10.1002/elan.201300547. DOI
Gerwig R.; Fuchsberger K.; Schroeppel B.; Link G. S.; Heusel G.; Kraushaar U.; Schuhmann W.; Stett A.; Stelzle M. PEDOT-CNT Composite Microelectrodes for Recording and Electrostimulation Applications: Fabrication, Morphology, and Electrical Properties. Front. Neuroeng. 2012, 5, 8.10.3389/fneng.2012.00008. PubMed DOI PMC
Alegret N.; Dominguez-Alfaro A.; Gonzalez-Dominguez J. M.; Arnaiz B.; Cossio U.; Bosi S.; Vazquez E.; Ramos-Cabrer P.; Mecerreyes D.; Prato M. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS Appl. Mater. Interfaces 2018, 10, 43904–43914. 10.1021/acsami.8b16462. PubMed DOI
Dominguez-Alfaro A.; Alegret N.; Arnaiz B.; Gonzalez-Dominguez J. M.; Martin-Pacheco A.; Cossio U.; Porcarelli L.; Bosi S.; Vazquez E.; Mecerreyes D.; Prato M. Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomater. Sci. Eng. 2020, 6, 1269–1278. 10.1021/acsbiomaterials.9b01316. PubMed DOI
Dominguez-Alfaro A.; Alegret N.; Arnaiz B.; Salsamendi M.; Mecerreyes D.; Prato M. Toward Spontaneous Neuronal Differentiation of SH-SY5Y Cells Using Novel Three-Dimensional Electropolymerized Conductive Scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 57330–57342. 10.1021/acsami.0c16645. PubMed DOI
Patel P. R.; Popov P.; Caldwell C. M.; Welle E. J.; Egert D.; Pettibone J. R.; Roossien D. H.; Becker J. B.; Berke J. D.; Chestek C. A.; et al. High Density Carbon Fiber Arrays for Chronic Electrophysiology, Fast Scan Cyclic Voltammetry, and Correlative Anatomy. J. Neural Eng. 2020, 17, 056029.10.1088/1741-2552/abb1f6. PubMed DOI
Jiman A. A.; Ratze D. C.; Welle E. J.; Patel P. R.; Richie J. M.; Bottorff E. C.; Seymour J. P.; Chestek C. A.; Bruns T. M. Multi-Channel Intraneural Vagus Nerve Recordings with a Novel High-Density Carbon Fiber Microelectrode Array. Sci. Rep. 2020, 10, 15501.10.1038/s41598-020-72512-7. PubMed DOI PMC
Patel P. R.; Zhang H.; Robbins M. T.; Nofar J. B.; Marshall S. P.; Kobylarek M. J.; Kozai T. D.; Kotov N. A.; Chestek C. A. Chronic in Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays. J. Neural Eng. 2016, 13, 066002.10.1088/1741-2560/13/6/066002. PubMed DOI PMC
Patel P. R.; Na K.; Zhang H.; Kozai T. D.; Kotov N. A.; Yoon E.; Chestek C. A. Insertion of Linear 8.4 μm Diameter 16 Channel Carbon Fiber Electrode Arrays for Single Unit Recordings. J. Neural Eng. 2015, 12, 046009.10.1088/1741-2560/12/4/046009. PubMed DOI PMC
Zhao C.; Man T.; Cao Y.; Weiss P. S.; Monbouquette H. G.; Andrews A. M. Flexible and Implantable Polyimide Aptamer-Field-Effect Transistor Biosensors. ACS Sens. 2022, 7, 3644–3653. 10.1021/acssensors.2c01909. PubMed DOI PMC
Multichannel Systems. https://www.multichannelsystems.com/ (accessed December 26, 2023).
DiFrancesco M. L.; Colombo E.; Papaleo E. D.; Maya-Vetencourt J. F.; Manfredi G.; Lanzani G.; Benfenati F. A Hybrid P3HT-Graphene Interface for Efficient Photostimulation of Neurons. Carbon 2020, 162, 308–317. 10.1016/j.carbon.2020.02.043. DOI
Pampaloni N. P.; Lottner M.; Giugliano M.; Matruglio A.; D’Amico F.; Prato M.; Garrido J. A.; Ballerini L.; Scaini D. Single-Layer Graphene Modulates Neuronal Communication and Augments Membrane Ion Currents. Nat. Nanotechnol. 2018, 13, 755–764. 10.1038/s41565-018-0163-6. PubMed DOI
Rastogi S. K.; Garg R.; Scopelliti M. G.; Pinto B. I.; Hartung J. E.; Kim S.; Murphey C. G.; Johnson N.; San Roman D.; Bezanilla F.; et al. Remote Nongenetic Optical Modulation of Neuronal Activity Using Fuzzy Graphene. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 13339–13349. 10.1073/pnas.1919921117. PubMed DOI PMC
Matino L.; Mariano A.; Ausilio C.; Garg R.; Cohen-Karni T.; Santoro F. Modulation of Early Stage Neuronal Outgrowth through Out-of-Plane Graphene. Nano Lett. 2022, 22, 8633–8640. 10.1021/acs.nanolett.2c03171. PubMed DOI
Aurand E. R.; Usmani S.; Medelin M.; Scaini D.; Bosi S.; Rosselli F. B.; Donato S.; Tromba G.; Prato M.; Ballerini L. Nanostructures to Engineer 3D Neural-Interfaces: Directing Axonal Navigation toward Successful Bridging of Spinal Segments. Adv. Funct. Matl. 2018, 28, 1700550.10.1002/adfm.201700550. DOI
Kostarelos K.; Vincent M.; Hebert C.; Garrido J. A. Graphene in the Design and Engineering of Next-Generation Neural Interfaces. Adv. Matl. 2017, 29, 1700909.10.1002/adma.201700909. PubMed DOI
Kuzum D.; Takano H.; Shim E.; Reed J. C.; Juul H.; Richardson A. G.; De Vries J.; Bink H.; Dichter M. A.; Lucas T. H.; et al. Transparent and Flexible Low Noise Graphene Electrodes for Simultaneous Electrophysiology and Neuroimaging. Nat. Commun. 2014, 5, 5259.10.1038/ncomms6259. PubMed DOI PMC
Xu B.; Pei J.; Feng L.; Zhang X.-D. Graphene and Graphene-Related Materials as Brain Electrodes. J. Mater. Chem. B 2021, 9, 9485–9496. 10.1039/D1TB01795K. PubMed DOI
Lu Y.; Liu X.; Kuzum D. Graphene-Based Neurotechnologies for Advanced Neural Interfaces. Curr. Opin. Biomed. Eng. 2018, 6, 138–147. 10.1016/j.cobme.2018.06.001. DOI
Masvidal-Codina E.; Illa X.; Dasilva M.; Calia A. B.; Dragojević T.; Vidal-Rosas E. E.; Prats-Alfonso E.; Martínez-Aguilar J.; De la Cruz J. M.; Garcia-Cortadella R.; et al. High- Resolution Mapping of Infraslow Cortical Brain Activity Enabled by Graphene Microtransistors. Nat. Mater. 2019, 18, 280–288. 10.1038/s41563-018-0249-4. PubMed DOI
Calia A. B.; Masvidal-Codina E.; Smith T. M.; Schäfer N.; Rathore D.; Rodríguez-Lucas E.; Illa X.; Cruz J. M. D. l.; Corro E. D.; Prats-Alfonso E.; et al. Full-Bandwidth Electrophysiology of Seizures and Epileptiform Activity Enabled by Flexible Graphene Microtransistor Depth Neural Probes. Nat. Nanotechnol. 2022, 17, 301–309. 10.1038/s41565-021-01041-9. PubMed DOI
Garcia-Cortadella R.; Schafer N.; Cisneros-Fernandez J.; Ré L.; Illa X.; Schwesig G.; Moya A.; Santiago S.; Guirado G.; Villa R.; et al. Switchless Multiplexing of Graphene Active Sensor Arrays for Brain Mapping. Nano Lett. 2020, 20, 3528–3537. 10.1021/acs.nanolett.0c00467. PubMed DOI
Viana D.; Walston S. T.; Masvidal-Codina E.; Illa X.; Rodríguez-Meana B.; Valle J. d.; Hayward A.; Dodd A.; Loret T.; Prats-Alfonso E.; Oliva N. d. l.; Palma M.; Corro E. d.; Bernicola M. d. P.; Rodríguez-Lucas E.; Gener T.; Cruz J. M. d. l.; Torres-Miranda M.; Duvan F. T.; Ria N.; Sperling J.; Martí-Sánchez S.; Spadaro M. C.; Hébert C.; Savage S.; Arbiol J.; Guimerà-Brunet A.; Puig M. V.; Yvert B.; Navarro X.; Kostarelos K.; Garrido J. A. Nanoporous Graphene-Based Thin-Film Microelectrodes for in Vivo High-Resolution Neural Recording and Stimulation. Nat. Nanotechnol. 2024, 19, 514–523. 10.1038/s41565-023-01570-5. PubMed DOI PMC
Garcia-Cortadella R.; Schwesig G.; Jeschke C.; Illa X.; Gray A. L.; Savage S.; Stamatidou E.; Schiessl I.; Masvidal-Codina E.; Kostarelos K.; et al. Graphene Active Sensor Arrays for Long-Term and Wireless Mapping of Wide Frequency Band Epicortical Brain Activity. Nat. Commun. 2021, 12, 211.10.1038/s41467-020-20546-w. PubMed DOI PMC
Ouyang J. Application of Intrinsically Conducting Polymers in Flexible Electronics. SmartMat 2021, 2, 263–285. 10.1002/smm2.1059. DOI
Maziz A.; Özgür E.; Bergaud C.; Uzun L. Progress in Conducting Polymers for Biointerfacing and Biorecognition Applications. Sens. Actuators Rep. 2021, 3, 100035.10.1016/j.snr.2021.100035. DOI
Parenti F.; Tassinari F.; Libertini E.; Lanzi M.; Mucci A. π-Stacking Signature in NMR Solution Spectra of Thiophene-Based Conjugated Polymers. ACS Omega 2017, 2, 5775–5784. 10.1021/acsomega.7b00943. PubMed DOI PMC
Bianchi M.; De Salvo A.; Asplund M.; Carli S.; Di Lauro M.; Schulze-Bonhage A.; Stieglitz T.; Fadiga L.; Biscarini F. Poly(3, 4-ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and in Vivo Applications. Adv. Sci. 2022, 9, 2104701.10.1002/advs.202104701. PubMed DOI PMC
Zhao Z.; Spyropoulos G. D.; Cea C.; Gelinas J. N.; Khodagholy D. Ionic Communication for Implantable Bioelectronics. Sci. Adv. 2022, 8, eabm7851.10.1126/sciadv.abm7851. PubMed DOI PMC
Sheng H.; Wang X.; Kong N.; Xi W.; Yang H.; Wu X.; Wu K.; Li C.; Hu J.; Tang J.; et al. Neural Interfaces by Hydrogels. Extreme Mech. Lett. 2019, 30, 100510.10.1016/j.eml.2019.100510. DOI
Wang M.; Mi G.; Shi D.; Bassous N.; Hickey D.; Webster T. J. Nanotechnology and nanomaterials for improving neural interfaces. Adv. Funct. Mater. 2018, 28, 1700905.10.1002/adfm.201700905. DOI
Carrow J. K.; Gaharwar A. K. Bioinspired Polymeric Nanocomposites for Regenerative Medicine. Macromol. Chem. Phys. 2015, 216, 248–264. 10.1002/macp.201400427. DOI
Zheng N.; Fitzpatrick V.; Cheng R.; Shi L.; Kaplan D. L.; Yang C. Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. ACS Nano 2022, 16, 2292–2305. 10.1021/acsnano.1c08491. PubMed DOI
Kim S.; Kwon Y. W.; Seo H.; Chung W. G.; Kim E.; Park W.; Song H.; Lee D. H.; Lee J.; Lee S.; et al. Materials and Structural Designs for Neural Interfaces. ACS Appl. Electron. Mater. 2023, 5, 1926–1946. 10.1021/acsaelm.2c01608. DOI
Ledesma H. A.; Li X.; Carvalho-de-Souza J. L.; Wei W.; Bezanilla F.; Tian B. An Atlas of Nano-Enabled Neural Interfaces. Nat. Nanotechnol. 2019, 14, 645–657. 10.1038/s41565-019-0487-x. PubMed DOI PMC
Nakielski P.; Pawłowska S.; Rinoldi C.; Ziai Y.; De Sio L.; Urbanek O.; Zembrzycki K.; Pruchniewski M.; Lanzi M.; Salatelli E.; et al. Multifunctional Platform Based on Electrospun Nanofibers and Plasmonic Hydrogel: A Smart Nanostructured Pillow for Near-Infrared Light-Driven Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 54328–54342. 10.1021/acsami.0c13266. PubMed DOI
Rinoldi C.; Ziai Y.; Zargarian S. S.; Nakielski P.; Zembrzycki K.; Haghighat Bayan M. A.; Zakrzewska A. B.; Fiorelli R.; Lanzi M.; Kostrzewska-Ksiezyk A.; et al. In Vivo Chronic Brain Cortex Signal Recording Based on a Soft Conductive Hydrogel Biointerface. ACS Appl. Mater. Interfaces 2023, 15, 6283–6296. 10.1021/acsami.2c17025. PubMed DOI
Kumar R.; Aadil K. R.; Ranjan S.; Kumar V. B. Advances in Nanotechnology and Nanomaterials Based Strategies for Neural Tissue Engineering. J. Drug Delivery Sci. Technol. 2020, 57, 101617.10.1016/j.jddst.2020.101617. DOI
Ziai Y.; Zargarian S. S.; Rinoldi C.; Nakielski P.; Sola A.; Lanzi M.; Truong Y. B.; Pierini F. Conducting Polymer-Based Nanostructured Materials for Brain-Machine Interfaces. WIREs Nanomed. Nanobiotechnol. 2023, 15, e1895.10.1002/wnan.1895. PubMed DOI
Wang Z.; Zhang F.; Vijver M. G.; Peijnenburg W. J. Graphene Nanoplatelets and Reduced Graphene Oxide Elevate the Microalgal Cytotoxicity of Nano-Zirconium Oxide. Chemosphere 2021, 276, 130015.10.1016/j.chemosphere.2021.130015. PubMed DOI
Saleemi M. A.; Hosseini Fouladi M.; Yong P. V. C.; Chinna K.; Palanisamy N. K.; Wong E. H. Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chem. Res. Toxicol. 2021, 34, 24–46. 10.1021/acs.chemrestox.0c00172. PubMed DOI
Sung C.; Jeon W.; Nam K. S.; Kim Y.; Butt H.; Park S. Multimaterial and Multifunctional Neural Interfaces: From Surface-Type and Implantable Electrodes to Fiber-Based Devices. J. Mater. Chem. B 2020, 8, 6624–6666. 10.1039/D0TB00872A. PubMed DOI
Li S.; Ma L.; Zhou M.; Li Y.; Xia Y.; Fan X.; Cheng C.; Luo H. New Opportunities for Emerging 2D Materials in Bioelectronics and Biosensors. Curr. Opin. Biomed. Eng. 2020, 13, 32–41. 10.1016/j.cobme.2019.08.016. DOI
Chen F.; Tang Q.; Ma T.; Zhu B.; Wang L.; He C.; Luo X.; Cao S.; Ma L.; Cheng C. Structures, Properties, and Challenges of Emerging 2D Materials in Bioelectronics and Biosensors. InfoMat 2022, 4, e12299.10.1002/inf2.12299. DOI
Mariano A.; Bovio C. L.; Criscuolo V.; Santoro F. Bioinspired Micro- and Nano-Structured Neural Interfaces. Nanotechnology 2022, 33, 492501.10.1088/1361-6528/ac8881. PubMed DOI
Zhang Y.; Chen L.; Xie M.; Zhan Z.; Yang D.; Cheng P.; Duan H.; Ge Q.; Wang Z. Ultra-Fast Programmable Human-Machine Interface Enabled by 3D Printed Degradable Conductive Hydrogel. Mater. Today Phys. 2022, 27, 100794.10.1016/j.mtphys.2022.100794. DOI
Tao Y.; Wei C.; Liu J.; Deng C.; Cai S.; Xiong W. Nanostructured Electrically Conductive Hydrogels Obtained via Ultrafast Laser Processing and Self-Assembly. Nanoscale 2019, 11, 9176–9184. 10.1039/C9NR01230C. PubMed DOI
Bettucci O.; Matrone G. M.; Santoro F. Conductive Polymer-Based Bioelectronic Platforms Toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Adv. Mater. Technol. 2022, 7, 2100293.10.1002/admt.202100293. DOI
Qian S.; Lin H.-A.; Pan Q.; Zhang S.; Zhang Y.; Geng Z.; Wu Q.; He Y.; Zhu B. Chemically Revised Conducting Polymers with Inflammation Resistance for Intimate Bioelectronic Electrocoupling. Bioact. Mater. 2023, 26, 24–51. 10.1016/j.bioactmat.2023.02.010. PubMed DOI PMC
Shur M.; Fallegger F.; Pirondini E.; Roux A.; Bichat A.; Barraud Q.; Courtine G.; Lacour S. P. Soft Printable Electrode Coating for Neural Interfaces. ACS Appl. Bio Mater. 2020, 3, 4388–4397. 10.1021/acsabm.0c00401. PubMed DOI
Azemi E.; Lagenaur C. F.; Cui X. T. The Surface Immobilization of the Neural Adhesion Molecule L1 on Neural Probes and Its Effect on Neuronal Density and Gliosis at the Probe/Tissue Interface. Biomaterials 2011, 32, 681–692. 10.1016/j.biomaterials.2010.09.033. PubMed DOI PMC
Martinez M. V.; Abel S. B.; Rivero R.; Miras M. C.; Rivarola C. R.; Barbero C. A. Polymeric Nanocomposites Made of a Conductive Polymer and a Thermosensitive Hydrogel: Strong Effect of the Preparation Procedure on the Properties. Polymer 2015, 78, 94–103. 10.1016/j.polymer.2015.09.054. DOI
Hu X.; Feng L.; Xie A.; Wei W.; Wang S.; Zhang J.; Dong W. Synthesis and Characterization of a Novel Hydrogel: Salecan/Polyacrylamide Semi-IPN Hydrogel with a Desirable Pore Structure. J. Mater. Chem. B 2014, 2, 3646–3658. 10.1039/c3tb21711f. PubMed DOI
Rinoldi C.; Lanzi M.; Fiorelli R.; Nakielski P.; Zembrzycki K.; Kowalewski T.; Urbanek O.; Grippo V.; Jezierska-Woźniak K.; Maksymowicz W.; et al. Three- Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications. Biomacromolecules 2021, 22, 3084–3098. 10.1021/acs.biomac.1c00524. PubMed DOI PMC
Santhanam S.; Feig V. R.; McConnell K. W.; Song S.; Gardner E. E.; Patel J. J.; Shan D.; Bao Z.; George P. M. Controlling the Stem Cell Environment via Conducting Polymer Hydrogels to Enhance Therapeutic Potential. Adv. Mater. Technol. 2023, 8, 2201724.10.1002/admt.202201724. DOI
Rebelo A.; Liu Y.; Liu C.; Schäfer K.-H.; Saumer M.; Yang G. Poly(4-vinylaniline)/polyaniline Bilayer Functionalized Bacterial Cellulose Membranes as Bioelectronics Interfaces. Carbohydr. Polym. 2019, 204, 190–201. 10.1016/j.carbpol.2018.10.017. PubMed DOI
Dong M.; Shi B.; Liu D.; Liu J.-H.; Zhao D.; Yu Z.-H.; Shen X.-Q.; Gan J.-M.; Shi B.-L.; Qiu Y.; et al. Conductive Hydrogel for a Photothermal-Responsive Stretchable Artificial Nerve and Coalescing with a Damaged Peripheral Nerve. ACS Nano 2020, 14, 16565–16575. 10.1021/acsnano.0c05197. PubMed DOI
George P. M.; Lyckman A. W.; LaVan D. A.; Hegde A.; Leung Y.; Avasare R.; Testa C.; Alexander P. M.; Langer R.; Sur M. Fabrication and Biocompatibility of Polypyrrole Implants Suitable for Neural Prosthetics. Biomaterials 2005, 26, 3511–3519. 10.1016/j.biomaterials.2004.09.037. PubMed DOI
Tian F.; Yu J.; Wang W.; Zhao D.; Cao J.; Zhao Q.; Wang F.; Yang H.; Wu Z.; Xu J. Design of Adhesive Conducting PEDOT-MeOH: PSS/PDA Neural Interface via Electropolymerization for Ultrasmall Implantable Neural Microelectrodes. J. Colloid Interface Sci. 2023, 638, 339–348. 10.1016/j.jcis.2023.01.146. PubMed DOI
Liang Y.; Offenhäusser A.; Ingebrandt S.; Mayer D. PEDOT: PSS- BasedBioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv. Healthc. Mater. 2021, 10, 2100061.10.1002/adhm.202100061. PubMed DOI PMC
Li J.; Zeng H.; Zeng Z.; Zeng Y.; Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater. Sci. Eng. 2021, 7, 5363–5396. 10.1021/acsbiomaterials.1c00875. PubMed DOI
Hu X.; Zhou Q. Health and Ecosystem Risks of Graphene. Chem. Rev. 2013, 113, 3815–3835. 10.1021/cr300045n. PubMed DOI
Lanzi M.; Pierini F. Effect of Electron-Acceptor Content on the Efficiency of Regioregular Double-Cable Thiophene Copolymers in Single-Material Organic Solar Cells. ACS Omega 2019, 4, 19863–19874. 10.1021/acsomega.9b02790. PubMed DOI PMC
Zakrzewska A.; Zargarian S. S.; Rinoldi C.; Gradys A.; Jarza̧bek D.; Zanoni M.; Gualandi C.; Lanzi M.; Pierini F. Electrospun Poly(vinyl alcohol)-Based Conductive Semi-Interpenetrating Polymer Network Fibrous Hydrogel: A Toolbox for Optimal Cross-Linking. ACS Mater. Au 2023, 3, 464–482. 10.1021/acsmaterialsau.3c00025. PubMed DOI PMC
Kim Y.; Park C.; Im S.; Kim J. H. Design of Intrinsically Stretchable and Highly Conductive Polymers for Fully Stretchable Electrochromic Devices. Sci. Rep. 2020, 10, 16488.10.1038/s41598-020-73259-x. PubMed DOI PMC
Zinno C.; Cedrola I.; Giannotti A.; Riva E. R.; Micera S.. Development of a 3D Printing Strategy for Completely Polymeric Neural Interfaces Fabrication. In 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE: 2023; pp 1–4.
Bagheri B.; Zarrintaj P.; Surwase S. S.; Baheiraei N.; Saeb M. R.; Mozafari M.; Kim Y. C.; Park O. O. Self-Gelling Electroactive Hydrogels Based on Chitosan-Aniline Oligomers/Agarose for Neural Tissue Engineering with On-Demand Drug Release. Coll. Surf., B 2019, 184, 110549.10.1016/j.colsurfb.2019.110549. PubMed DOI
Kleber C.; Bruns M.; Lienkamp K.; Rühe J.; Asplund M. An Interpenetrating, Microstructurable and Covalently Attached Conducting Polymer Hydrogel for Neural Interfaces. Acta Biomater. 2017, 58, 365–375. 10.1016/j.actbio.2017.05.056. PubMed DOI
Bansal M.; Raos B.; Aqrawe Z.; Wu Z.; Svirskis D. An Interpenetrating and Patternable Conducting Polymer Hydrogel for Electrically Stimulated Release of Glutamate. Acta Biomater. 2022, 137, 124–135. 10.1016/j.actbio.2021.10.010. PubMed DOI
Zeng Q.; Huang Z. Challenges and Opportunities of Implantable Neural Interfaces: From Material, Electrochemical and Biological Perspectives. Adv. Funct. Mater. 2023, 33, 2301223.10.1002/adfm.202301223. DOI
Goding J.; Gilmour A.; Martens P.; Poole-Warren L.; Green R. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes. Adv. Healthc. Mater. 2017, 6, 1601177.10.1002/adhm.201601177. PubMed DOI
Yang M.; Chen P.; Qu X.; Zhang F.; Ning S.; Ma L.; Yang K.; Su Y.; Zang J.; Jiang W.; et al. Robust Neural Interfaces with Photopatternable, Bioadhesive, and Highly Conductive Hydrogels for Stable Chronic Neuromodulation. ACS Nano 2023, 17, 885–895. 10.1021/acsnano.2c04606. PubMed DOI
Huang X.; Chen C.; Ma X.; Zhu T.; Ma W.; Jin Q.; Du R.; Cai Y.; Zhang M.; Kong D.; et al. In Situ Forming Dual-Conductive Hydrogels Enable Conformal, Self-Adhesive and Antibacterial Epidermal Electrodes. Adv. Funct. Mater. 2023, 33, 2302846.10.1002/adfm.202302846. DOI
Anderson C. L.; Zhang T.; Qi M.; Chen Z.; Yang C.; Teat S. J.; Settineri N. S.; Dailing E. A.; Garzón-Ruiz A.; Navarro A.; et al. Exceptional Electron-Rich Heteroaromatic Pentacycle for Ultralow Band Gap Conjugated Polymers and Photothermal Therapy. J. Am. Chem. Soc. 2023, 145, 5474–5485. 10.1021/jacs.3c00036. PubMed DOI
Sun J.; Wu X.; Xiao J.; Zhang Y.; Ding J.; Jiang J.; Chen Z.; Liu X.; Wei D.; Zhou L.; et al. Hydrogel-Integrated Multimodal Response as a Wearable and Implantable Bidirectional Interface for Biosensor and Therapeutic Electrostimulation. ACS Appl. Mater. Interfaces 2023, 15, 5897–5909. 10.1021/acsami.2c20057. PubMed DOI
Ziai Y.; Petronella F.; Rinoldi C.; Nakielski P.; Zakrzewska A.; Kowalewski T. A.; Augustyniak W.; Li X.; Calogero A.; Sabała I.; et al. Chameleon-Inspired Multifunctional Plasmonic Nanoplatforms for Biosensing Applications. NPG Asia Mater. 2022, 14, 18.10.1038/s41427-022-00365-9. DOI
Renz A. F; Reichmuth A. M; Stauffer F.; Thompson-Steckel G.; Voros J. A Inspired Multifunctional Plasmonic Nanoplatforms for Biosensing Applications. J. Neural Eng. 2018, 15, 061001.10.1088/1741-2552/aae0c2. PubMed DOI
Joseph K.; Kirsch M.; Johnston M.; Münkel C.; Stieglitz T.; Haas C. A.; Hofmann U. G. Transcriptional Characterization of the Glial Response Due to Chronic Neural Implantation of Flexible Microprobes. Biomaterials 2021, 279, 121230.10.1016/j.biomaterials.2021.121230. PubMed DOI
Thompson C. H.; Evans B. M.; Zhao D. X.; Purcell E. K. Spatiotemporal Expression of RNA-Seq Identified Proteins at the Electrode Interface. Acta Biomater. 2023, 164, 209–222. 10.1016/j.actbio.2023.04.028. PubMed DOI
Whitsitt Q. A.; Patel B.; Hunt B.; Purcell E. K. A Spatial Transcriptomics Study of the Brain-Electrode Interface in Rat Motor Cortex. bioRxiv 2021, 471147.10.1101/2021.12.03.471147. PubMed DOI PMC
Thompson C. H.; Saxena A.; Heelan N.; Salatino J.; Purcell E. K. Spatiotemporal Patterns of Gene Expression around Implanted Silicon Electrode Arrays. J. Neural Eng. 2021, 18, 045005.10.1088/1741-2552/abf2e6. PubMed DOI PMC
Luan L.; Yin R.; Zhu H.; Xie C. Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity. Annu. Rev. Biomed. Eng. 2023, 25, 185–205. 10.1146/annurev-bioeng-090622-050507. PubMed DOI PMC
Thanawala S.; Palyvoda O.; Georgiev D. G.; Khan S. P.; Al-Homoudi I. A.; Newaz G.; Auner G. A Neural Cell Culture Study on Thin Film Electrode Materials. J. Mater. Sci. Mater. Med. 2007, 18, 1745–1752. 10.1007/s10856-007-3054-1. PubMed DOI
Liu S.; Zhao Y.; Hao W.; Zhang X.-D.; Ming D. Micro- and Nanotechnology for Neural Electrode-Tissue Interfaces. Biosens. Bioelectron. 2020, 170, 112645.10.1016/j.bios.2020.112645. PubMed DOI
Parak W. J.; George M.; Gaub H. E.; Böhm S.; Lorke A. The Field-Effect-Addressable Potentiometric Sensor/Stimulator (FAPS) - A New Concept for a Surface Potential Sensor and Stimulator with Spatial Resolution. Sens. Actuators, B 1999, 58, 497–504. 10.1016/S0925-4005(99)00129-X. DOI
Kirchner C.; George M.; Stein B.; Parak W. J.; Gaub H. E.; Seitz M. Corrosion Protection and Long-Term Chemical Functionalization of Gallium Arsenide in Aqueous Environment. Adv. Funct. Mater. 2002, 12, 266–276. 10.1002/1616-3028(20020418)12:4<266::AID-ADFM266>3.0.CO;2-U. DOI
Parak W. J.; George M.; Kudera M.; Gaub H. E.; Behrends J. C. Effects of Semiconductor Substrate and Glia-Free Culture on the Development of Voltage Dependent Currents in Rat Striatal Neurones. Eur. Biophys. J. 2001, 29, 607–620. 10.1007/s002490000109. PubMed DOI
Slaughter G. E.; Bieberich E.; Wnek G. E.; Wynne K. J.; Guiseppi-Elie A. Improving Neuron-to-Electrode Surface Attachment via Alkanethiol Self-Assembly: An Alternating Current Impedance Study. Langmuir 2004, 20, 7189–7200. 10.1021/la049192s. PubMed DOI
Parashar K.; Prajapati D.; McIntyre R.; Kandasubramanian B. Advancements in Biological Neural Interfaces Using Conducting Polymers: A Review. Ind. Eng. Chem. Res. 2020, 59, 9707–9718. 10.1021/acs.iecr.0c00174. DOI
Leal J.; Jedrusik N.; Shaner S.; Boehler C.; Asplund M. SIROF Stabilized PEDOT/PSS Allows Biocompatible and Reversible Direct Current Stimulation Capable of Driving Electrotaxis in Cells. Biomaterials 2021, 275, 120949.10.1016/j.biomaterials.2021.120949. PubMed DOI
Vomero M.; Ciarpella F.; Kirsch M.; Fadiga L.; Stieglitz T.; Asplund M.. Bioelectronics Meets the Brain: Establishing Biostability of Multi-Layered Polyimide-Based Intracortical Implants. Cell Press 2021, In Review.10.2139/ssrn.3832145 DOI
Boehler C.; Kleber C.; Martini N.; Xie Y.; Dryg I.; Stieglitz T.; Hofmann U.; Asplund M. Actively Controlled Release of Dexamethasone from Neural Microelectrodes in a Chronic in Vivo Study. Biomaterials 2017, 129, 176–187. 10.1016/j.biomaterials.2017.03.019. PubMed DOI
Vomero M.; Castagnola E.; Ciarpella F.; Maggiolini E.; Goshi N.; Zucchini E.; Carli S.; Fadiga L.; Kassegne S.; Ricci D. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity. Sci. Rep. 2017, 7, 40332.10.1038/srep40332. PubMed DOI PMC
Singh Y. S.; Sawarynski L. E.; Michael H. M.; Ferrell R. E.; Murphey-Corb M. A.; Swain G. M.; Patel B. A.; Andrews A. M. Boron- Doped Diamond Microelectrodes Reveal Reduced Serotonin Uptake Rates in Lymphocytes From Adult Rhesus Monkeys Carrying the Short Allele of the 5-HTTLPR. ACS Chem. Neurosci. 2010, 1, 49–64. 10.1021/cn900012y. PubMed DOI PMC
Luo X.; Weaver C. L.; Zhou D. D.; Greenberg R.; Cui X. T. Highly Stable Carbon Nanotube Doped Poly(3,4-ethylenedioxythiophene) for Chronic Neural Stimulation. Biomaterials 2011, 32, 5551–5557. 10.1016/j.biomaterials.2011.04.051. PubMed DOI PMC
Zhao S.; Liu X.; Xu Z.; Ren H.; Deng B.; Tang M.; Lu L.; Fu X.; Peng H.; Liu Z.; Duan X. Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes. Nano Lett. 2016, 16, 7731–7738. 10.1021/acs.nanolett.6b03829. PubMed DOI
Wadhwa R.; Lagenaur C. F.; Cui X. T. Electrochemically Controlled Release of Dexamethasone From Conducting Polymer Polypyrrole Coated Electrode. J. Controlled Release 2006, 110, 531–541. 10.1016/j.jconrel.2005.10.027. PubMed DOI
Boehler C.; Vieira D. M.; Egert U.; Asplund M. NanoPt—A Nanostructured Electrode Coating for Neural Recording and Microstimulation. ACS Appl. Mater. Interfaces 2020, 12, 14855–14865. 10.1021/acsami.9b22798. PubMed DOI
Rivera_Gil P.; Yang F.; Thomas H.; Li L.; Terfort A.; Parak W. J. Development of an Assay Based on Cell Counting with Quantum Dot Labels for Comparing Cell Adhesion Within Cocultures. Nano Today 2011, 6, 20–27. 10.1016/j.nantod.2010.12.006. DOI
Rupprecht P.; Lewis C. M.; Helmchen F.. Centripetal Integration of Past Events by Hippocampal Astrocytes. bioRxiv, August 17, 2022, 504030.10.1101/2022.08.16.504030. PubMed DOI PMC
Li D.; Agulhon C.; Schmidt E.; Oheim M.; Ropert N. New Tools for Investigating Astrocyte-to-Neuron Communication. Front. Cell. Neurosci. 2013, 7, 193.10.3389/fncel.2013.00193. PubMed DOI PMC
Chowdhury H. H.; Cerqueira S. R.; Sousa N.; Oliveira J. M.; Reis R. L.; Zorec R. The Uptake, Retention and Clearance of Drug-Loaded Dendrimer Nanoparticles in Astrocytes-Electrophysiological Quantification. Biomater. Sci. 2018, 6, 388–397. 10.1039/C7BM00886D. PubMed DOI
Zhang N.; Lin J.; Chew S. Y. Neural Cell Membrane-Coated Nanoparticles for Targeted and Enhanced Uptake by Central Nervous System Cells. ACS Appl. Mater. Interfaces 2021, 13, 55840–55850. 10.1021/acsami.1c16543. PubMed DOI
Gong J.-Y.; Holt M. G.; Hoet P. H.; Ghosh M. Neurotoxicity of Four Frequently Used Nanoparticles: A Systematic Review to Reveal the Missing Data. Arch. Toxicol. 2022, 96, 1141–1212. 10.1007/s00204-022-03233-1. PubMed DOI
Shin H. J.; Lee K. Y.; Kwon K.; Kwon O.-Y.; Kim D. W. Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review. J. Life Sci. 2021, 31, 849–855. 10.5352/JLS.2021.31.9.849. DOI
Porkoláb G.; Mészáros M.; Tóth A.; Szecskó A.; Harazin A.; Szegletes Z.; Ferenc G.; Blastyák A.; Mátés L.; Rákhely G.; et al. Combination of Alanine and Glutathione as Targeting Ligands of Nanoparticles Enhances Cargo Delivery into the Cells of the Neurovascular Unit. Pharmaceutics 2020, 12, 635.10.3390/pharmaceutics12070635. PubMed DOI PMC
Papa S.; Veneruso V.; Mauri E.; Cremonesi G.; Mingaj X.; Mariani A.; De Paola M.; Rossetti A.; Sacchetti A.; Rossi F.; et al. Functionalized Nanogel for Treating Activated Astrocytes in Spinal Cord Injury. J. Controlled Release 2021, 330, 218–228. 10.1016/j.jconrel.2020.12.006. PubMed DOI
Wald G. Molecular Basis of Visual Excitation. Science 1968, 162, 230–239. 10.1126/science.162.3850.230. PubMed DOI
Zabelskii D.; Dmitrieva N.; Volkov O.; Shevchenko V.; Kovalev K.; Balandin T.; Soloviov D.; Astashkin R.; Zinovev E.; Alekseev A.; et al. Structure-Based Insights into Evolution of Rhodopsins. Commun. Biol. 2021, 4, 821.10.1038/s42003-021-02326-4. PubMed DOI PMC
Gerrard E.; Mutt E.; Nagata T.; Koyanagi M.; Flock T.; Lesca E.; Schertler G. F.; Terakita A.; Deupi X.; Lucas R. J. Convergent Evolution of Tertiary Structure in Rhodopsin Visual Proteins from Vertebrates and Box Jellyfish. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6201–6206. 10.1073/pnas.1721333115. PubMed DOI PMC
Oesterhelt D.; Stoeckenius W. Rhodopsin-Like Protein from the Purple Membrane of Halobacterium halobium. Nat. New Biol. 1971, 233, 149–152. 10.1038/newbio233149a0. PubMed DOI
Nagel G.; Ollig D.; Fuhrmann M.; Kateriya S.; Musti A. M.; Bamberg E.; Hegemann P. Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae. Science 2002, 296, 2395–2398. 10.1126/science.1072068. PubMed DOI
Crandall K. A.; Hillis D. M. Rhodopsin Evolution in the Dark. Nature 1997, 387, 667–668. 10.1038/42628. PubMed DOI
Deisseroth K.; Hegemann P. The Form and Function of Channelrhodopsin. Science 2017, 357 (6356), aan5544.10.1126/science.aan5544. PubMed DOI PMC
Zhang F.; Vierock J.; Yizhar O.; Fenno L. E.; Tsunoda S.; Kianianmomeni A.; Prigge M.; Berndt A.; Cushman J.; Polle J.; Magnuson J.; Hegemann P.; Deisseroth K. The Microbial Opsin Family of Optogenetic Tools. Cell 2011, 147, 1446–1457. 10.1016/j.cell.2011.12.004. PubMed DOI PMC
Berndt A.; Lee S. Y.; Wietek J.; Ramakrishnan C.; Steinberg E. E.; Rashid A. J.; Kim H.; Park S.; Santoro A.; Frankland P. W.; Iyer S. M.; Pak S.; Ährlund-Richter S.; Delp S. L.; Malenka R. C.; Josselyn S. A.; Carlén M.; Hegemann P.; Deisseroth K. Structural Foundations of Optogenetics: Determinants of Channelrhodopsin Ion Selectivity. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 822–829. 10.1073/pnas.1523341113. PubMed DOI PMC
Boyden E. S.; Zhang F.; Bamberg E.; Nagel G.; Deisseroth K. Millisecond- Timescale, Genetically Targeted Optical Control of Neural Activity. Nat. Neurosci. 2005, 8, 1263–1268. 10.1038/nn1525. PubMed DOI
Emiliani V.; Entcheva E.; Hedrich R.; Hegemann P.; Konrad K. R.; Lüscher C.; Mahn M.; Pan Z.-H.; Sims R. R.; Vierock J.; Yizhar O. Optogenetics for Light Control of Biological Systems. Nat. Rev. Methods Primers 2022, 2, 55.10.1038/s43586-022-00136-4. PubMed DOI PMC
Joshi J.; Rubart M.; Zhu W. Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine. Front. Bioeng. Biotechnol. 2020, 7, 466.10.3389/fbioe.2019.00466. PubMed DOI PMC
Sahel J. A.; Boulanger-Scemama E.; Pagot C.; Arleo A.; Galluppi F.; Martel J. N.; Esposti S. D.; Delaux A.; de Saint Aubert J. B.; de Montleau C.; Gutman E.; Audo I.; Duebel J.; Picaud S.; Dalkara D.; Blouin L.; Taiel M.; Roska B. Partial Recovery of Visual Function in a Blind Patient After Optogenetic Therapy. Nat. Med. 2021, 27, 1223–1229. 10.1038/s41591-021-01351-4. PubMed DOI
Bamberg E.; Gärtner W.; Trauner D. Introduction: Optogenetics and Photopharmacology. Chem. Rev. 2018, 118, 10627–10628. 10.1021/acs.chemrev.8b00483. PubMed DOI
Klapper S. D.; Swiersy A.; Bamberg E.; Busskamp V. Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches. Front. Sys. Neurosci. 2016, 10, 74.10.3389/fnsys.2016.00074. PubMed DOI PMC
Adamantidis A.; Arber S.; Bains J. S.; Bamberg E.; Bonci A.; Buzsáki G.; Cardin J. A.; Costa R. M.; Dan Y.; Goda Y.; et al. Optogenetics: 10 years after ChR2 in Neurons—Views from the Community. Nat. Neurosci. 2015, 18, 1202–1212. 10.1038/nn.4106. PubMed DOI
Rost B. R.; Schneider-Warme F.; Schmitz D.; Hegemann P. Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 2017, 96, 572–603. 10.1016/j.neuron.2017.09.047. PubMed DOI
Chernov K. G.; Redchuk T. A.; Omelina E. S.; Verkhusha V. V. Near- Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes. Chem. Rev. 2017, 117, 6423–6446. 10.1021/acs.chemrev.6b00700. PubMed DOI
Hososhima S.; Yuasa H.; Ishizuka T.; Hoque M. R.; Yamashita T.; Yamanaka A.; Sugano E.; Tomita H.; Yawo H. Near-Infrared (NIR) Up-Conversion Optogenetics. Sci. Rep. 2015, 5, 16533.10.1038/srep16533. PubMed DOI PMC
Bi A.; Cui J.; Ma Y.-P.; Olshevskaya E.; Pu M.; Dizhoor A. M.; Pan Z.-H. Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration. Neuron 2006, 50, 23–33. 10.1016/j.neuron.2006.02.026. PubMed DOI PMC
Efimov A. I.; Hibberd T. J.; Wang Y.; Wu M.; Zhang K.; Ting K.; Madhvapathy S.; Lee M.-K.; Kim J.; Kang J.; et al. Remote Optogenetic Control of the Enteric Nervous System and Brain-Gut Axis in Freely-Behaving Mice Enabled by a Wireless, Battery-Free Optoelectronic Device. Biosens. Bioelectron. 2024, 258, 116298.10.1016/j.bios.2024.116298. PubMed DOI
Losi A.; Gardner K. H.; Möglich A. Blue-Light Receptors for Optogenetics. Chem. Rev. 2018, 118, 10659–10709. 10.1021/acs.chemrev.8b00163. PubMed DOI PMC
Verkhratsky A.; Nedergaard M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. 10.1152/physrev.00042.2016. PubMed DOI PMC
Lim D.; Semyanov A.; Genazzani A.; Verkhratsky A. Calcium Signaling in Neuroglia. Int. Rev. Cell Mol. Biol. 2021, 362, 1–53. 10.1016/bs.ircmb.2021.01.003. PubMed DOI
Airan R. D.; Thompson K. R.; Fenno L. E.; Bernstein H.; Deisseroth K. Temporally Precise in Vivo Control of Intracellular Signalling. Nature 2009, 458, 1025–1029. 10.1038/nature07926. PubMed DOI
Iwai Y.; Ozawa K.; Yahagi K.; Mishima T.; Akther S.; Vo C. T.; Lee A. B.; Tanaka M.; Itohara S.; Hirase H. Transient Astrocytic GQ Signaling Underlies Remote Memory Enhancement. Front. Neural Circuits 2021, 15, 658343.10.3389/fncir.2021.658343. PubMed DOI PMC
Figueiredo M.; Lane S.; Tang F.; Liu B.; Hewinson J.; Marina N.; Kasymov V.; Souslova E.; Chudakov D.; Gourine A.; et al. Optogenetic Experimentation on Astrocytes. Exp. Physiol. 2011, 96, 40–50. 10.1113/expphysiol.2010.052597. PubMed DOI
Lohr C. Role of P2Y Receptors in Astrocyte Physiology and Pathophysiology. Neuropharmacology 2023, 223, 109311.10.1016/j.neuropharm.2022.109311. PubMed DOI
Oliveira J. F.; Sardinha V. M.; Guerra-Gomes S.; Araque A.; Sousa N. Do Stars Govern Our Actions? Astrocyte Involvement in Rodent Behavior. Trends Neurosci. 2015, 38, 535–549. 10.1016/j.tins.2015.07.006. PubMed DOI
Henneberger C.; Papouin T.; Oliet S. H.; Rusakov D. A. Long- Term Potentiation Depends on Release of d-Serine from Astrocytes. Nature 2010, 463, 232–236. 10.1038/nature08673. PubMed DOI PMC
Lohr C.; Beiersdorfer A.; Fischer T.; Hirnet D.; Rotermund N.; Sauer J.; Schulz K.; Gee C. E. Using Genetically Encoded Calcium Indicators to Study Astrocyte Physiology: A Field Guide. Front. Cell. Neurosci. 2021, 15, 690147.10.3389/fncel.2021.690147. PubMed DOI PMC
Semyanov A.; Henneberger C.; Agarwal A. Making Sense of Astrocytic Calcium Signals—from Acquisition to Interpretation. Nat. Rev. Neurosci. 2020, 21, 551–564. 10.1038/s41583-020-0361-8. PubMed DOI
Li P.; Rial D.; Canas P. M.; Yoo J.-H.; Li W.; Zhou X.; Wang Y.; van Westen G. J.; Payen M.-P.; Augusto E.; et al. Optogenetic Activation of Intracellular Adenosine A2A Receptor Signaling in the Hippocampus Is Sufficient to Trigger CREB Phosphorylation and Impair Memory. Mol. Psychiatry 2015, 20, 1339–1349. 10.1038/mp.2014.182. PubMed DOI PMC
Nikolaev V. O.; Bunemann M.; Hein L.; Hannawacker A.; Lohse M. J. Novel Single Chain cAMP Sensors for Receptor-Induced Signal Propagation. J. Biol. Chem. 2004, 279, 37215–37218. 10.1074/jbc.C400302200. PubMed DOI
Odaka H.; Arai S.; Inoue T.; Kitaguchi T. Genetically-Encoded Yellow Fluorescent cAMP Indicator with an Expanded Dynamic Range for Dual-Color Imaging. PLoS One 2014, 9, e100252.10.1371/journal.pone.0100252. PubMed DOI PMC
Stierl M.; Stumpf P.; Udwari D.; Gueta R.; Hagedorn R.; Losi A.; Gärtner W.; Petereit L.; Efetova M.; Schwarzel M.; et al. Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa. J. Biol. Chem. 2011, 286, 1181–1188. 10.1074/jbc.M110.185496. PubMed DOI PMC
Yang S.; Constantin O. M.; Sachidanandan D.; Hofmann H.; Kunz T. C.; Kozjak-Pavlovic V.; Oertner T. G.; Nagel G.; Kittel R. J.; Gee C. E.; et al. PACmn for Improved Optogenetic Control of Intracellular cAMP. BMC Biol. 2021, 19, 227.10.1186/s12915-021-01151-9. PubMed DOI PMC
Oe Y.; Wang X.; Patriarchi T.; Konno A.; Ozawa K.; Yahagi K.; Hirai H.; Tsuboi T.; Kitaguchi T.; Tian L.; et al. Distinct Temporal Integration of Noradrenaline Signaling by Astrocytic Second Messengers During Vigilance. Nat. Commun. 2020, 11, 471.10.1038/s41467-020-14378-x. PubMed DOI PMC
Zhou Z.; Okamoto K.; Onodera J.; Hiragi T.; Andoh M.; Ikawa M.; Tanaka K. F.; Ikegaya Y.; Koyama R. Astrocytic cAMP Modulates Memory via Synaptic Plasticity. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2016584118.10.1073/pnas.2016584118. PubMed DOI PMC
Zhuo J.; Weidrick C. E.; Liu Y.; Moffitt M. A.; Jansen E. D.; Chiel H. J.; Jenkins M. W. Selective Infrared Neural Inhibition Can Be Reproduced by Resistive Heating. Neuromodulation: Technol. Neural Interface 2023, 26, 1757–1771. 10.1016/j.neurom.2022.12.004. PubMed DOI PMC
Szallasi A.; Nilsson S.; Farkas-Szallasi T.; Blumberg P. M.; Hökfelt T.; Lundberg J. M. Vanilloid (Capsaicin) Receptors in the Rat: Distribution in the Brain, Regional Differences in the Spinal Cord, Axonal Transport to the Periphery, and Depletion by Systemic Vanilloid Treatment. Brain Res. 1995, 703, 175–183. 10.1016/0006-8993(95)01094-7. PubMed DOI
Chen R.; Romero G.; Christiansen M. G.; Mohr A.; Anikeeva P. Wireless Magnetothermal Deep Brain Stimulation. Science 2015, 347, 1477–1480. 10.1126/science.1261821. PubMed DOI
Takaishi M.; Uchida K.; Suzuki Y.; Matsui H.; Shimada T.; Fujita F.; Tominaga M. Reciprocal Effects of Capsaicin and Menthol on Thermosensation through Regulated Activities of TRPV1 and TRPM8. J. Physiol. Sci. 2016, 66, 143–155. 10.1007/s12576-015-0427-y. PubMed DOI PMC
Bernstein J. G.; Garrity P. A.; Boyden E. S. Optogenetics and Thermogenetics: Technologies for Controlling the Activity of Targeted Cells within Intact Neural Circuits. Curr. Opin. Neurobiol. 2012, 22, 61–71. 10.1016/j.conb.2011.10.023. PubMed DOI PMC
Huang H.; Delikanli S.; Zeng H.; Ferkey D. M.; Pralle A. Remote Control of Ion Channels and Neurons Through Magnetic-Field Heating of Nanoparticles. Nat. Nanotechnol. 2010, 5, 602–606. 10.1038/nnano.2010.125. PubMed DOI
Munshi R.; Qadri S. M.; Zhang Q.; Rubio I. C.; Pino P. d.; Pralle A. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife 2017, 6, e27069.10.7554/eLife.27069. PubMed DOI PMC
Coste B.; Mathur J.; Schmidt M.; Earley T. J.; Ranade S.; Petrus M. J.; Dubin A. E.; Patapoutian A. Piezo1 and Piezo2 are Essential Components of Distinct Mechanically Activated Cation Channels. Science 2010, 330, 55–60. 10.1126/science.1193270. PubMed DOI PMC
Kefauver J.; Ward A.; Patapoutian A. Discoveries in Structure and Physiology of Mechanically Activated Ion Channels. Nature 2020, 587, 567–576. 10.1038/s41586-020-2933-1. PubMed DOI PMC
Haswell E. S.; Phillips R.; Rees D. C. Mechanosensitive Channels: What Can They Do and How Do They Do It?. Structure 2011, 19, 1356–1369. 10.1016/j.str.2011.09.005. PubMed DOI PMC
Cadoni S.; Demené C.; Alcala I.; Provansal M.; Nguyen D.; Nelidova D.; Labernède G.; Lubetzki J.; Goulet R.; Burban E.; et al. Ectopic Expression of a Mechanosensitive Channel Confers Spatiotemporal Resolution to Ultrasound Stimulations of Neurons for Visual Restoration. Nat. Nanotechnol. 2023, 18, 667–676. 10.1038/s41565-023-01359-6. PubMed DOI PMC
Kireev D.; Shokoohimehr P.; Ernst M.; Montes V. R.; Srikantharajah K.; Maybeck V.; Wolfrum B.; Offenhäusser A. Fabrication of Ultrathin and Flexible Graphene-Based Devices for in Vivo Neuroprosthetics. MRS Adv. 2018, 3, 1621–1627. 10.1557/adv.2018.94. DOI
Fu X.; Li G.; Niu Y.; Xu J.; Wang P.; Zhou Z.; Ye Z.; Liu X.; Xu Z.; Yang Z.; et al. Carbon-Based Fiber Materials as Implantable Depth Neural Electrodes. Front. Neurosci. 2021, 15, 771980.10.3389/fnins.2021.771980. PubMed DOI PMC
Lu L.; Fu X.; Liew Y.; Zhang Y.; Zhao S.; Xu Z.; Zhao J.; Li D.; Li Q.; Stanley G. B.; et al. Soft and MRI Compatible Neural Electrodes from Carbon Nanotube Fibers. Nano Lett. 2019, 19, 1577–1586. 10.1021/acs.nanolett.8b04456. PubMed DOI
Zhang Y.; Yang D.; Nie J.; Dai J.; Wu H.; Zheng J. C.; Zhang F.; Fang Y. Transcranial Nongenetic Neuromodulation via Bioinspired Vesicle-Enabled Precise NIR-II Optical Stimulation. Adv. Mater. 2023, 35, 2208601.10.1002/adma.202208601. PubMed DOI
Nie J.; Zhang Y.; Wang B.; Wu H.; Chang Z.; Ren Q.; Zheng J. C.; Zhao D.; Fang Y. Transcranial NIR Neuromodulation via Multifunctional Nano-Optical Electrodes for Relieving Depressive Symptoms. Adv. Funct. Mater. 2024, 34, 2470262.10.1002/adfm.202405832. DOI
Ren Q.; Wu H.; Zhang Y.; Dai J.; Chang Z.; Nie J.; Wang B.; Fang Y. Neuroprotection for Epilepsy Therapy via Rationally Designed Multifunctional Nanotransducer. ACS Nano 2024, 18, 16853–16866. 10.1021/acsnano.4c02546. PubMed DOI
Parak W. J.; Hofmann U. G.; Gaub H. E.; Owicki J. C. Lateral Resolution of Light Addressable Potentiometric Sensors: An Experimental and Theoretical Investigation. Sens. Actuators, A 1997, 63, 47–57. 10.1016/S0924-4247(97)80428-1. DOI
George M.; Parak W. J.; Gerhardt I.; Moritz W.; Kaesen F.; Geiger H.; Eisele I.; Gaub H. E. Investigation of the Spatial Resolution of the Light-Addressable Potentiometric Sensor (LAPS). Sens. Actuators, A 2000, 86, 187–196. 10.1016/S0924-4247(00)00455-6. DOI
Parak W. J.; George M.; Domke J.; Radmacher M.; Gaub H. E.; Behrends J. C.; Denyer M. C. Can the Light-Addressable Potentiometric Sensor (LAPS) Detect Extracellular Potentials of Cardiac Myocytes?. IEEE Trans. Biomed. Eng. 2000, 47, 1106–1113. 10.1109/10.855939. PubMed DOI
Stein B.; George M.; Gaub H. E.; Behrends J. C.; Parak W. J. Spatially Resolved Monitoring of the Cellular Metabolic Activity with a Semiconductor-Based Biosensor. Biosens. Bioelectron. 2003, 18, 31–41. 10.1016/S0956-5663(02)00109-4. PubMed DOI
Stein B.; George M.; Parak W. J.; Gaub H. E.; et al. Extracellular Measurements of Averaged Ionic Currents with the Light-Addressable Potentiometric Sensor (LAPS). Sens. Actuators, B 2004, 98, 299–304. 10.1016/j.snb.2003.10.034. DOI
Stoll C.; Kudera S.; Parak W. J.; Lisdat F. Quantum Dots on Gold: Electrodes For Photoswitchable Cytochrome c Electrochemistry. Small 2006, 2, 741–743. 10.1002/smll.200500441. PubMed DOI
Brongersma M. L.; Halas N. J.; Nordlander P. Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015, 10, 25–34. 10.1038/nnano.2014.311. PubMed DOI
Zhao S.; Caruso F.; Dähne L.; Decher G.; Geest B. G. D.; Fan J.; Feliu N.; Gogotsi Y.; Hammond P. T.; Hersam M. C.; Khademhosseini A.; Kotov N.; Leporatti S.; Li Y.; Lisdat F.; Liz-Marzán L. M.; Moya S.; Mulvaney P.; Rogach A. L.; Roy S.; Shchukin D. G.; Skirtach A. G.; Stevens M. M.; Sukhorukov G. B.; Weiss P. S.; Yue Z.; Zhu D.; Parak W. J. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Möhwald. ACS Nano 2019, 13, 6151–6169. 10.1021/acsnano.9b03326. PubMed DOI
Pappas T. C.; Wickramanyake W. M. S.; Jan E.; Motamedi M.; Brodwick M.; Kotov N. A. Nanoscale Engineering of a Cellular Interface with Semiconductor Nanoparticle Films for Photoelectric Stimulation of Neurons. Nano Lett. 2007, 7, 513–519. 10.1021/nl062513v. PubMed DOI
Lugo K.; Miao X.; Rieke F.; Lin L. Y. Remote Switching of Cellular Activity and Cell Signaling Using Light in Conjunction with Quantum Dots. Biomed. Opt. Express 2012, 3, 447–454. 10.1364/BOE.3.000447. PubMed DOI PMC
Derfus A. M.; Chan W. C. W.; Bhatia S. N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4, 11–18. 10.1021/nl0347334. PubMed DOI PMC
Kirchner C.; Liedl T.; Kudera S.; Pellegrino T.; Muñoz Javier A.; Gaub H. E.; Stölzle S.; Fertig N.; Parak W. J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Lett. 2005, 5, 331–338. 10.1021/nl047996m. PubMed DOI
Brunetti V.; Chibli H.; Fiammengo R.; Galeone A.; Malvindi M. A.; Vecchio G.; Cingolani R.; Nadeau J. L.; Pompa P. P. InP/ZnS as a Safer Alternative to CdSe/ZnS Core/Shell Quantum Dots: In Vitro and in Vivo Toxicity Assessment. Nanoscale 2013, 5, 307–317. 10.1039/C2NR33024E. PubMed DOI
Bahmani Jalali H.; Mohammadi Aria M.; Dikbas U. M.; Sadeghi S.; Ganesh Kumar B.; Sahin M.; Kavakli I. H.; Ow-Yang C. W.; Nizamoglu S. Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots. ACS Nano 2018, 12, 8104–8114. 10.1021/acsnano.8b02976. PubMed DOI PMC
Bahmani Jalali H.; Karatum O.; Melikov R.; Dikbas U. M.; Sadeghi S.; Yildiz E.; Dogru I. B.; Ozgun Eren G.; Ergun C.; Sahin A.; et al. Biocompatible Quantum Funnels for Neural Photostimulation. Nano Lett. 2019, 19, 5975–5981. 10.1021/acs.nanolett.9b01697. PubMed DOI PMC
Bareket L.; Waiskopf N.; Rand D.; Lubin G.; David-Pur M.; Ben-Dov J.; Roy S.; Eleftheriou C.; Sernagor E.; Cheshnovsky O.; et al. Semiconductor Nanorod-Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas. Nano Lett. 2014, 14, 6685–6692. 10.1021/nl5034304. PubMed DOI PMC
Kim T.; Kim H. J.; Choi W.; Lee Y. M.; Pyo J. H.; Lee J.; Kim J.; Kim J.; Kim J.-H.; Kim C.; et al. Deep Brain Stimulation by Blood-Brain-Barrier-Crossing Piezoelectric Nanoparticles Generating Current and Nitric Oxide under Focused Ultrasound. Nat. Biomed. Eng. 2023, 7, 149–163. 10.1038/s41551-022-00965-4. PubMed DOI
Fan C.-H.; Tsai H.-C.; Tsai Y.-S.; Wang H.-C.; Lin Y.-C.; Chiang P.-H.; Wu N.; Chou M.-H.; Ho Y.-J.; Lin Z.-H.; et al. Selective Activation of Cells by Piezoelectric Molybdenum Disulfide Nanosheets with Focused Ultrasound. ACS Nano 2023, 17, 9140–9154. 10.1021/acsnano.2c12438. PubMed DOI
Cassidy P. J.; Radda G. K. Molecular Imaging Perspectives. J. R. Soc. Interface 2005, 2, 133–144. 10.1098/rsif.2005.0040. PubMed DOI PMC
Reinhardt C. J.; Chan J. Development of Photoacoustic Probes for in Vivo Molecular Imaging. Biochemistry 2018, 57, 194–199. 10.1021/acs.biochem.7b00888. PubMed DOI PMC
Meneghetti M.; Kaur J.; Sui K.; Sørensen J. F.; Berg R. W.; Markos C. Soft Monolithic Infrared Neural Interface for Simultaneous Neurostimulation and Electrophysiology. Light Sci. Appl. 2023, 12, 127.10.1038/s41377-023-01164-9. PubMed DOI PMC
Coventry B. S.; Lawlor G. L.; Bagnati C. B.; Krogmeier C.; Bartlett E. L. Characterization and Closed-Loop Control of Infrared Thalamocortical Stimulation Produces Spatially Constrained Single-Unit Responses. PNAS Nexus 2024, 3, pgae082.10.1093/pnasnexus/pgae082. PubMed DOI PMC
Yu N.; Huang L.; Zhou Y.; Xue T.; Chen Z.; Han G. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics. Adv. Healthc. Mater. 2019, 8, 1801132.10.1002/adhm.201801132. PubMed DOI
Mager T.; Lopez de la Morena D.; Senn V.; Schlotte J.; D'Errico A.; Feldbauer K.; Wrobel C.; Jung S.; Bodensiek K.; Rankovic V.; et al. High Frequency Neural Spiking and Auditory Signaling by Ultrafast Red-Shifted Optogenetics. Nat. Commun. 2018, 9, 1750.10.1038/s41467-018-04146-3. PubMed DOI PMC
Klapoetke N. C.; Murata Y.; Kim S. S.; Pulver S. R.; Birdsey-Benson A.; Cho Y. K.; Morimoto T. K.; Chuong A. S.; Carpenter E. J.; Tian Z.; et al. Independent Optical Excitation of Distinct Neural Populations. Nat. Methods 2014, 11, 338–346. 10.1038/nmeth.2836. PubMed DOI PMC
Prakash R.; Yizhar O.; Grewe B.; Ramakrishnan C.; Wang N.; Goshen I.; Packer A. M.; Peterka D. S.; Yuste R.; Schnitzer M. J.; et al. Two-Photon Optogenetic Toolbox for Fast Inhibition, Excitation and Bistable Modulation. Nat. Methods 2012, 9, 1171–1179. 10.1038/nmeth.2215. PubMed DOI PMC
Schmidt E.; Oheim M. Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes. Biophys. J. 2020, 119, 2153–2165. 10.1016/j.bpj.2020.10.027. PubMed DOI PMC
Picot A.; Dominguez S.; Liu C.; Chen I.-W.; Tanese D.; Ronzitti E.; Berto P.; Papagiakoumou E.; Oron D.; Tessier G.; et al. Temperature Rise Under Two-Photon Optogenetic Brain Stimulation. Cell Rep. 2018, 24, 1243–1253. 10.1016/j.celrep.2018.06.119. PubMed DOI
Hemmer E.; Benayas A.; Légaré F.; Vetrone F. Exploiting the Biological Windows: Current Perspectives on Fluorescent Bioprobes Emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184. 10.1039/C5NH00073D. PubMed DOI
Kim D.; Lee N.; Park Y. I.; Hyeon T. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles. Bioconjugate Chem. 2017, 28, 115–123. 10.1021/acs.bioconjchem.6b00654. PubMed DOI
Tao Z.; Hong G.; Shinji C.; Chen C.; Diao S.; Antaris A. L.; Zhang B.; Zou Y.; Dai H. Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000 nm. Angew. Chem., Int. Ed. 2013, 52, 13002–13006. 10.1002/anie.201307346. PubMed DOI
Huang K.; Dou Q.; Loh X. J. Nanomaterial Mediated Optogenetics: Opportunities and Challenges. RSC Adv. 2016, 6, 60896–60906. 10.1039/C6RA11289G. DOI
Sardoiwala M. N.; Srivastava A. K.; Karmakar S.; Roy Choudhury S. Nanostructure Endows Neurotherapeutic Potential in Optogenetics: Current Development and Future Prospects. ACS Chem. Neurosci. 2019, 10, 3375–3385. 10.1021/acschemneuro.9b00246. PubMed DOI
Haase M.; Schäfer H. Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829. 10.1002/anie.201005159. PubMed DOI
Chen G.; Ågren H.; Ohulchanskyy T. Y.; Prasad P. N. Light Upconverting Core-Shell Nanostructures: Nanophotonic Control for Emerging Applications. Chem. Soc. Rev. 2015, 44, 1680–1713. 10.1039/C4CS00170B. PubMed DOI
Wiesholler L. M.; Frenzel F.; Grauel B.; Würth C.; Resch-Genger U.; Hirsch T. Yb, Nd, Er-Doped Upconversion Nanoparticles: 980 nm versus 808 nm Excitation. Nanoscale 2019, 11, 13440–13449. 10.1039/C9NR03127H. PubMed DOI
Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. 10.1021/cr020357g. PubMed DOI
Wu X.; Chen G.; Shen J.; Li Z.; Zhang Y.; Han G. Upconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging. Bioconjugate Chem. 2015, 26, 166–175. 10.1021/bc5003967. PubMed DOI PMC
Xu C. T.; Zhan Q.; Liu H.; Somesfalean G.; Qian J.; He S.; Andersson-Engels S. Upconverting Nanoparticles for Pre-Clinical Diffuse Optical Imaging, Microscopy and Sensing: Current Trends and Future Challenges. Laser Photonics Rev. 2013, 7, 663–697. 10.1002/lpor.201200052. DOI
Wang H. Q.; Batentschuk M.; Osvet A.; Pinna L.; Brabec C. J. Rare-Earth Ion Doped Up-Conversion Materials for Photovoltaic Applications. Adv. Mater. 2011, 23, 2675–2680. 10.1002/adma.201100511. PubMed DOI
Gnach A.; Bednarkiewicz A. Lanthanide-Doped Up-Converting Nanoparticles: Merits and Challenges. Nano Today 2012, 7, 532–563. 10.1016/j.nantod.2012.10.006. DOI
Wang F.; Liu X. Recent Advances in the Chemistry of Lanthanide-Doped Upconversion Nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. 10.1039/b809132n. PubMed DOI
Goldschmidt J. C.; Fischer S. Upconversion for Photovoltaics - A Review of Materials, Devices and Concepts for Performance Enhancement. Adv. Opt. Mater. 2015, 3, 510–535. 10.1002/adom.201500024. DOI
Zheng W.; Huang P.; Tu D.; Ma E.; Zhu H.; Chen X. Lanthanide-Doped Upconversion Nano-Bioprobes: Electronic Structures, Optical Properties, and Biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415. 10.1039/C4CS00178H. PubMed DOI
Zhou B.; Shi B.; Jin D.; Liu X. Controlling Upconversion Nanocrystals for Emerging Applications. Nat. Nanotechnol. 2015, 10, 924–936. 10.1038/nnano.2015.251. PubMed DOI
Gorris H. H.; Wolfbeis O. S. Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres. Angew. Chem., Int. Ed. 2013, 52, 3584–3600. 10.1002/anie.201208196. PubMed DOI
Resch-Genger U.; Gorris H. H. Perspectives and Challenges of Photon-Upconversion Nanoparticles-Part I: Routes to Brighter Particles and Quantitative Spectroscopic Studies. Anal. Bioanal. Chem. 2017, 409, 5855–5874. 10.1007/s00216-017-0499-z. PubMed DOI
Skripka A.; Marin R.; Benayas A.; Canton P.; Hemmer E.; Vetrone F. Covering the Optical Spectrum through Collective Rare-Earth Doping of NaGdF4 Nanoparticles: 806 and 980 nm Excitation Routes. Phys. Chem. Chem. Phys. 2017, 19, 11825–11834. 10.1039/C7CP01167A. PubMed DOI
Cortelletti P.; Skripka A.; Facciotti C.; Pedroni M.; Caputo G.; Pinna N.; Quintanilla M.; Benayas A.; Vetrone F.; Speghini A. Tuning the Sensitivity of Lanthanide-Activated NIR Nanothermometers in the Biological Windows. Nanoscale 2018, 10, 2568–2576. 10.1039/C7NR06141B. PubMed DOI
Rocha U.; Jacinto da Silva C.; Ferreira Silva W.; Guedes I.; Benayas A.; Martínez Maestro L.; Acosta Elias M.; Bovero E.; van Veggel F. C. J. M.; García Solé J. A.; Jaque D. Subtissue Thermal Sensing Based on Neodymium-Doped LaF3 Nanoparticles. ACS Nano 2013, 7, 1188–1199. 10.1021/nn304373q. PubMed DOI
Wang Y.-F.; Liu G.-Y.; Sun L.-D.; Xiao J.-W.; Zhou J.-C.; Yan C.-H. Nd3+-Sensitized Upconversion Nanophosphors: Efficient in Vivo Bioimaging Probes with Minimized Heating Effect. ACS Nano 2013, 7, 7200–7206. 10.1021/nn402601d. PubMed DOI
Liu T.-M.; Conde J.; Lipiński T.; Bednarkiewicz A.; Huang C.-C. Revisiting the Classification of NIR-Absorbing/Emitting Nanomaterials for in Vivo Bioapplications. NPG Asia Mater. 2016, 8, e295.10.1038/am.2016.106. DOI
Pliss A.; Ohulchanskyy T. Y.; Chen G.; Damasco J.; Bass C. E.; Prasad P. N. Subcellular Optogenetics Enacted by Targeted Nanotransformers of Near-Infrared Light. ACS Photonics 2017, 4, 806–814. 10.1021/acsphotonics.6b00475. DOI
Chen S.; Weitemier A. Z.; Zeng X.; He L.; Wang X.; Tao Y.; Huang A. J. Y.; Hashimotodani Y.; Kano M.; Iwasaki H.; Parajuli L. K.; Okabe S.; Teh D. B. L.; All A. H.; Tsutsui-Kimura I.; Tanaka K. F.; Liu X.; McHugh T. J. Near-Infrared Deep Brain Stimulation via Upconversion Nanoparticle Mediated Optogenetics. Science 2018, 359, 679–684. 10.1126/science.aaq1144. PubMed DOI
Yi Z.; Luo Z.; Qin X.; Chen Q.; Liu X. Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation. Acc. Chem. Res. 2020, 53, 2692–2704. 10.1021/acs.accounts.0c00513. PubMed DOI
Liu X.; Yan C. H.; Capobianco J. A. Photon Upconversion Nanomaterials. Chem. Soc. Rev. 2015, 44, 1299–301. 10.1039/C5CS90009C. PubMed DOI
Ao Y.; Zeng K.; Yu B.; Miao Y.; Hung W.; Yu Z.; Xue Y.; Tan T. T. Y.; Xu T.; Zhen M.; et al. An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit. ACS Nano 2019, 13, 3373–3386. 10.1021/acsnano.8b09270. PubMed DOI
All A. H.; Zeng X.; Teh D. B. L.; Yi Z.; Prasad A.; Ishizuka T.; Thakor N.; Hiromu Y.; Liu X. Expanding the Toolbox of Upconversion Nanoparticles for in Vivo Optogenetics and Neuromodulation. Adv. Mater. 2019, 31, 1803474.10.1002/adma.201803474. PubMed DOI
Lin X.; Wang Y.; Chen X.; Yang R.; Wang Z.; Feng J.; Wang H.; Lai K. W. C.; He J.; Wang F.; Shi P. Multiplexed Optogenetic Stimulation of Neurons with Spectrum-Selective Upconversion Nanoparticles. Adv. Healthc. Mater. 2017, 6, 1700446.10.1002/adhm.201700446. PubMed DOI
Zheng B.; Wang H.; Pan H.; Liang C.; Ji W.; Zhao L.; Chen H.; Gong X.; Wu X.; Chang J. Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy. ACS Nano 2017, 11, 11898–11907. 10.1021/acsnano.7b06395. PubMed DOI
Hao Y.; Du T.; Pang G.; Li J.; Pan H.; Zhang Y.; Wang L.; Chang J.; Zhou E.-m.; Wang H. Spatiotemporal Regulation of Ubiquitin-Mediated Protein Degradation via Upconversion Optogenetic Nanosystem. Nano Res. 2020, 13, 3253–3260. 10.1007/s12274-020-2998-z. DOI
Zhang Y.; Wiesholler L. M.; Rabie H.; Jiang P.; Lai J.; Hirsch T.; Lee K.-B. Remote Control of Neural Stem Cell Fate Using NIR-Responsive Photoswitching Upconversion Nanoparticle Constructs. ACS Appl. Mater. Interfaces 2020, 12, 40031–40041. 10.1021/acsami.0c10145. PubMed DOI
Lin X.; Chen X.; Zhang W.; Sun T.; Fang P.; Liao Q.; Chen X.; He J.; Liu M.; Wang F.; et al. Core-Shell-Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition. Nano Lett. 2018, 18, 948–956. 10.1021/acs.nanolett.7b04339. PubMed DOI
Wu X.; Zhang Y.; Takle K.; Bilsel O.; Li Z.; Lee H.; Zhang Z.; Li D.; Fan W.; Duan C.; et al. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications. ACS Nano 2016, 10, 1060–1066. 10.1021/acsnano.5b06383. PubMed DOI PMC
Wang Y.; Lin X.; Chen X.; Chen X.; Xu Z.; Zhang W.; Liao Q.; Duan X.; Wang X.; Liu M.; Wang F.; He J.; Shi P. Tetherless Near-Infrared Control of Brain Activity in Behaving Animals Using Fully Implantable Upconversion Microdevices. Biomaterials 2017, 142, 136–148. 10.1016/j.biomaterials.2017.07.017. PubMed DOI
Zhao J.; Ellis-Davies G. C. R. Intracellular Photoswitchable Neuropharmacology Driven by Luminescence from Upconverting Nanoparticles. Chem. Commun. 2020, 56, 9445–9448. 10.1039/D0CC03956J. PubMed DOI PMC
Ma Y.; Bao J.; Zhang Y.; Li Z.; Zhou X.; Wan C.; Huang L.; Zhao Y.; Han G.; Xue T. Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae. Cell 2019, 177, 243–255. 10.1016/j.cell.2019.01.038. PubMed DOI
Wang Y.; Xie K.; Yue H.; Chen X.; Luo X.; Liao Q.; Liu M.; Wang F.; Shi P. Flexible and Fully Implantable Upconversion Device for Wireless Optogenetic Stimulation of the Spinal Cord in Behaving Animals. Nanoscale 2020, 12, 2406–2414. 10.1039/C9NR07583F. PubMed DOI
Feliu N.; Neher E.; Parak W. J. Toward an Optically Controlled Brain - Noninvasive Deep Brain Stimulation Can Be Achieved by Optical Triggers. Science 2018, 359, 633–634. 10.1126/science.aar7379. PubMed DOI
Feliu N.; Docter D.; Heine M.; del Pino P.; Ashraf S.; Kolosnjaj-Tabi J.; Macchiarini P.; Nielsen P.; Alloyeau D.; Gazeau F.; Stauber R. H.; Parak W. J. In Vivo Degeneration and the Fate of Inorganic Nanoparticles. Chem. Soc. Rev. 2016, 45, 2440–2457. 10.1039/C5CS00699F. PubMed DOI
Poon W.; Zhang Y.-N.; Ouyang B.; Kingston B. R.; Wu J. L. Y.; Wilhelm S.; Chan W. C. W. Elimination Pathways of Nanoparticles. ACS Nano 2019, 13, 5785–5798. 10.1021/acsnano.9b01383. PubMed DOI
Wilhelm S.; Tavares A. J.; Dai Q.; Ohta S.; Audet J.; Dvorak H. F.; Chan W. C. W. Analysis of Nanoparticle Delivery to Tumours. Nat. Rev. Mater. 2016, 1, 16014.10.1038/natrevmats.2016.14. DOI
Montenegro J.-M.; Grazu V.; Sukhanova A.; Agarwal S.; de la Fuente J. M.; Nabiev I.; Greiner A.; Parak W. J. Controlled Antibody/(Bio-) Conjugation of Inorganic Nanoparticles for Targeted Delivery. Adv. Drug Delivery Rev. 2013, 65, 677–688. 10.1016/j.addr.2012.12.003. PubMed DOI
Joshi T.; Mamat C.; Stephan H. Contemporary Synthesis of Ultrasmall (sub-10 nm) Upconverting Nanomaterials. ChemistryOpen 2020, 9, 703–712. 10.1002/open.202000073. PubMed DOI PMC
Zeng X.; Chen S.; Weitemier A.; Han S.; Blasiak A.; Prasad A.; Zheng K.; Yi Z.; Luo B.; Yang I. H.; Thakor N.; Chai C.; Lim K. L.; McHugh T. J.; All A. H.; Liu X. Visualization of Intra-neuronal Motor Protein Transport through Upconversion Microscopy. Angew. Chem., Int. Ed. Engl. 2019, 58 (27), 9262–9268. 10.1002/anie.201904208. PubMed DOI
Liu Y.; Lu Y.; Yang X.; Zheng X.; Wen S.; Wang F.; Vidal X.; Zhao J.; Liu D.; Zhou Z.; et al. Amplified Stimulated Emission in Upconversion Nanoparticles for Super-Resolution Nanoscopy. Nature 2017, 543, 229–233. 10.1038/nature21366. PubMed DOI
Oliveira H.; Bednarkiewicz A.; Falk A.; Fröhlich E.; Lisjak D.; Prina-Mello A.; Resch S.; Schimpel C.; Vrček I. V.; Wysokińska E.; et al. Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403). Adv. Healthc. Mater. 2019, 8, 1801233.10.1002/adhm.201801233. PubMed DOI
Gnach A.; Lipinski T.; Bednarkiewicz A.; Rybka J.; Capobianco J. A. Upconverting Nanoparticles: Assessing the Toxicity. Chem. Soc. Rev. 2015, 44, 1561–1584. 10.1039/C4CS00177J. PubMed DOI
Dukhno O.; Przybilla F.; Muhr V.; Buchner M.; Hirsch T.; Mély Y. Time-Dependent Luminescence Loss for Individual Upconversion Nanoparticles upon Dilution in Aqueous Solution. Nanoscale 2018, 10, 15904–15910. 10.1039/C8NR03892A. PubMed DOI
Andresen E.; Würth C.; Prinz C.; Michaelis M.; Resch-Genger U. Time-Resolved Luminescence Spectroscopy for Monitoring the Stability and Dissolution Behaviour of Upconverting Nanocrystals with Different Surface Coatings. Nanoscale 2020, 12, 12589–12601. 10.1039/D0NR02931A. PubMed DOI
Saleh M. I.; Rühle B.; Wang S.; Radnik J.; You Y.; Resch-Genger U. Assessing the Protective Effects of Different Surface Coatings on NaYF4: Yb3+, Er3+ Upconverting Nanoparticles in Buffer and DMEM. Sci. Rep. 2020, 10, 19318.10.1038/s41598-020-76116-z. PubMed DOI PMC
Pombo Garcia K.; Zarschler K.; Barbaro L.; Barreto J. A.; O’Malley W.; Spiccia L.; Stephan H.; Graham B. Zwitterionic-Coated “Stealth” Nanoparticles for Biomedical Applications: Recent Advances in Countering Biomolecular Corona Formation and Uptake by the Mononuclear Phagocyte System. Small 2014, 10, 2516–2529. 10.1002/smll.201303540. PubMed DOI
Wilhelm S.; Kaiser M.; Wuerth C.; Heiland J.; Carrillo-Carrion C.; Muhr V.; Wolfbeis O. S.; Parak W. J.; Resch-Genger U.; Hirsch T. Water Dispersible Upconverting Nanoparticles: Effects of Surface Modification on Their Luminescence and Colloidal Stability. Nanoscale 2015, 7, 1403–1410. 10.1039/C4NR05954A. PubMed DOI
Nsubuga A.; Zarschler K.; Sgarzi M.; Graham B.; Stephan H.; Joshi T. Towards Utilising Photocrosslinking of Polydiacetylenes for the Preparation of “Stealth” Upconverting Nanoparticles. Angew. Chem. 2018, 130, 16268–16272. 10.1002/ange.201811003. PubMed DOI
Märkl S.; Schroter A.; Hirsch T. Small and Bright Water-Protected Upconversion Nanoparticles with Long-Time Stability in Complex, Aqueous Media by Phospholipid Membrane Coating. Nano Lett. 2020, 20, 8620–8625. 10.1021/acs.nanolett.0c03327. PubMed DOI
Young A. T.; Cornwell N.; Daniele M. A. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. Adv. Funct. Mater. 2018, 28, 1700239.10.1002/adfm.201700239. PubMed DOI PMC
Qi Y.; Wei S.; Xin T.; Huang C.; Pu Y.; Ma J.; Zhang C.; Liu Y.; Lynch I.; Liu S. Passage of Exogeneous Fine Particles from the Lung into the Brain in Humans and Animals. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2117083119.10.1073/pnas.2117083119. PubMed DOI PMC
Gregori M.; Bertani D.; Cazzaniga E.; Orlando A.; Mauri M.; Bianchi A.; Re F.; Sesana S.; Minniti S.; Francolini M.; Cagnotto A.; Salmona M.; Nardo L.; Salerno D.; Mantegazza F.; Masserini M.; Simonutti R. Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier in Vitro. Macromol. Biosci. 2015, 15, 1687–97. 10.1002/mabi.201500172. PubMed DOI
Kreuter J.; Shamenkov D.; Petrov V.; Ramge P.; Cychutek K.; Koch-Brandt C.; Alyautdin R. Apolipoprotein-Mediated Transport of Nanoparticle-Bound Drugs across the Blood-Brain Barrier. J. Drug Targeting 2002, 10, 317–325. 10.1080/10611860290031877. PubMed DOI
Qiao R.; Jia Q.; Hüwel S.; Xia R.; Liu T.; Gao F.; Galla H.-J.; Gao M. Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood-Brain Barrier. ACS Nano 2012, 6, 3304–3310. 10.1021/nn300240p. PubMed DOI
Ulbrich K.; Knobloch T.; Kreuter J. Targeting the Insulin Receptor: Nanoparticles for Drug Delivery across the Blood-Brain Barrier (BBB). J. Drug Targeting 2011, 19, 125–132. 10.3109/10611861003734001. PubMed DOI
Werner C.; Sauer M.; Geis C. Super-Resolving Microscopy in Neuroscience. Chem. Rev. 2021, 121, 11971–12015. 10.1021/acs.chemrev.0c01174. PubMed DOI
Paviolo C.; Thompson A. C.; Yong J.; Brown W. G.; Stoddart P. R. Nanoparticle-Enhanced Infrared Neural Stimulation. J. Neural Eng. 2014, 11, 065002.10.1088/1741-2560/11/6/065002. PubMed DOI
Nakatsuji H.; Numata T.; Morone N.; Kaneko S.; Mori Y.; Imahori H.; Murakami T. Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surface-Engineered Plasmonic Nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 11725–11729. 10.1002/anie.201505534. PubMed DOI
Cheong J.; Yu H.; Lee C. Y.; Lee J.-u.; Choi H.-J.; Lee J.-H.; Lee H.; Cheon J. Fast Detection of SARS-CoV-2 RNA via the Integration of Plasmonic Thermocycling and Fluorescence Detection in a Portable Device. Nat. Biomed. Eng. 2020, 4, 1159–1167. 10.1038/s41551-020-00654-0. PubMed DOI PMC
Gao W.; Sun Y.; Cai M.; Zhao Y.; Cao W.; Liu Z.; Cui G.; Tang B. Copper Sulfide Nanoparticles as a Photothermal Switch for TRPV1 Signaling to Attenuate Atherosclerosis. Nat. Commun. 2018, 9, 231.10.1038/s41467-017-02657-z. PubMed DOI PMC
Kaplan L.; Chow B. W.; Gu C. Neuronal Regulation of the Blood-Brain Barrier and Neurovascular Coupling. Nat. Rev. Neurosci. 2020, 21, 416–432. 10.1038/s41583-020-0322-2. PubMed DOI PMC
Podgorski K.; Ranganathan G. Brain Heating Induced by Near-Infrared Lasers During Multiphoton Microscopy. J. Neurophysiol. 2016, 116, 1012–1023. 10.1152/jn.00275.2016. PubMed DOI PMC
Liu Y.; Bhattarai P.; Dai Z.; Chen X. Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. 10.1039/C8CS00618K. PubMed DOI PMC
Rodriguez-Fernandez J.; Perez-Juste J.; Mulvaney P.; Liz-Marzan L. M. Spatially- Directed Oxidation of Gold Nanoparticles by Au(III)-CTAB Complexes. J. Phys. Chem. B 2005, 109, 14257–14261. 10.1021/jp052516g. PubMed DOI
Prisner L.; Witthöft P.; Nguyen L. V. N.; Tsangas T.; Gefken T.; Klaus F.; Strelow C.; Kipp T.; Mews A. Monitoring the Death of Single BaF3 cells under Plasmonic Photothermal Heating Induced by Ultrasmall Gold Nanorods. J. Mater. Chem. B 2019, 7, 3582–3589. 10.1039/C8TB03135E. DOI
Urban P.; Kirchner S. R.; Muhlbauer C.; Lohmuller T.; Feldmann J. Reversible Control of Current Across Lipid Membranes by Local Heating. Sci. Rep. 2016, 6, 22686.10.1038/srep22686. PubMed DOI PMC
Wu X.; Jiang Y.; Rommelfanger N. J.; Yang F.; Zhou Q.; Yin R.; Liu J.; Cai S.; Ren W.; Shin A.; et al. Tether-Free Photothermal Deep-Brain Stimulation in Freely Behaving Mice via Wide-Field Illumination in the Near-Infrared-II Window. Nat. Biomed. Eng. 2022, 6, 754–770. 10.1038/s41551-022-00862-w. PubMed DOI PMC
Baffou G.; Quidant R. Thermo-Plasmonics: Using Metallic Nanostructures as Nano-Sources of Heat. Laser Photonics Rev. 2013, 7, 171–187. 10.1002/lpor.201200003. DOI
Boulais E.; Lachaine R.; Meunier M. Plasma Mediated Off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation. Nano Lett. 2012, 12, 4763–4769. 10.1021/nl302200w. PubMed DOI
Baffou G.; Rigneault H. Femtosecond-Pulsed Optical Heating of Gold Nanoparticles. Phys. Rev. B 2011, 84, 035415.10.1103/PhysRevB.84.035415. DOI
Cesare P.; Moriondo A.; Vellani V.; McNaughton P. A. Ion Channels Gated by Heat. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 7658–7663. 10.1073/pnas.96.14.7658. PubMed DOI PMC
Ebtehaj Z.; Malekmohammad M.; Hatef A.; Soltanolkotabi M. Direct and Plasmonic Nanoparticle-Mediated Infrared Neural Stimulation: Comprehensive Computational Modeling and Validation. Adv. Theor. Simul. 2021, 4, 2000214.10.1002/adts.202000214. DOI
Li P.; Gu M.; Xu H. Lysosomal Ion Channels as Decoders of Cellular Signals. Trends Biochem. Sci. 2019, 44, 110–124. 10.1016/j.tibs.2018.10.006. PubMed DOI PMC
Hermann J.; Bender M.; Schumacher D.; Woo M. S.; Shaposhnykov A.; Rosenkranz S. C.; Kuryshev V.; Meier C.; Guse A. H.; Friese M. A.; Freichel M.; Tsvilovskyy V. Contribution of NAADP to Glutamate-Evoked Changes in Ca2+ Homeostasis in Mouse Hippocampal Neurons. Front. Cell. Dev. Biol. 2020, 8, 496.10.3389/fcell.2020.00496. PubMed DOI PMC
Zhu D.; Feng L.; Feliu N.; Guse A. H.; Parak W. J. Stimulation of Local Cytosolic Calcium Release by Photothermal Heating for Studying Intra- and Inter-Cellular Calcium Waves. Adv. Mater. 2021, 33, 2008261.10.1002/adma.202008261. PubMed DOI PMC
Lee D.; Hong J. H. Physiological Application of Nanoparticles in Calcium-Related Proteins and Channels. Nanomedicine 2019, 14, 2479–2486. 10.2217/nnm-2019-0004. PubMed DOI
Li E. S.; Saha M. S. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021, 11, 343.10.3390/biom11030343. PubMed DOI PMC
Pinto B. I.; Bassetto C. A. Z.; Bezanilla F. Optocapacitance: Physical Basis and Its Application. Biophys. Rev. 2022, 14, 569–577. 10.1007/s12551-022-00943-9. PubMed DOI PMC
Jiang Y.; Carvalho-de-Souza J. L.; Wong R. C. S.; Luo Z.; Isheim D.; Zuo X.; Nicholls A. W.; Jung I. W.; Yue J.; Liu D.-J.; Wang Y.; De Andrade V.; Xiao X.; Navrazhnykh L.; Weiss D. E.; Wu X.; Seidman D. N.; Bezanilla F.; Tian B. Heterogeneous Silicon Mesostructures for Lipid-Supported Bioelectric Interfaces. Nat. Mater. 2016, 15, 1023.10.1038/nmat4673. PubMed DOI PMC
Jiang Y.; Li X.; Liu B.; Yi J.; Fang Y.; Shi F.; Gao X.; Sudzilovsky E.; Parameswaran R.; Koehler K.; et al. Rational Design of Silicon Structures for Optically Controlled Multiscale Biointerfaces. Nat. Biomed. Eng. 2018, 2, 508–521. 10.1038/s41551-018-0230-1. PubMed DOI PMC
Wang Y.; Garg R.; Cohen-Karni D.; Cohen-Karni T. Neural Modulation with Photothermally Active Nanomaterials. Nat. Rev. Bioeng. 2023, 1, 193–207. 10.1038/s44222-023-00022-y. PubMed DOI PMC
Wang Y.; Garg R.; Hartung J. E.; Goad A.; Patel D. A.; Vitale F.; Gold M. S.; Gogotsi Y.; Cohen-Karni T. Ti3C2Tx MXene Flakes for Optical Control of Neuronal Electrical Activity. ACS Nano 2021, 15, 14662–14671. 10.1021/acsnano.1c04431. PubMed DOI PMC
Xu J.; Jarocha L. E.; Zollitsch T.; Konowalczyk M.; Henbest K. B.; Richert S.; Golesworthy M. J.; Schmidt J.; Dejean V.; Sowood D. J. C.; Bassetto M.; Luo J.; Walton J. R.; Fleming J.; Wei Y.; Pitcher T. L.; Moise G.; Herrmann M.; Yin H.; Wu H.; Bartolke R.; Kasehagen S. J.; Horst S.; Dautaj G.; Murton P. D. F.; Gehrckens A. S.; Chelliah Y.; Takahashi J. S.; Koch K. W.; Weber S.; Solov’yov I. A.; Xie C.; Mackenzie S. R.; Timmel C. R.; Mouritsen H.; Hore P. J. Magnetic Sensitivity of Cryptochrome 4 from a Migratory Songbird. Nature 2021, 594, 535–540. 10.1038/s41586-021-03618-9. PubMed DOI
Clapham D. E.; Runnels L. W.; Strübing C. The TRP Ion Channel Family. Nat. Rev. Neurosci. 2001, 2, 387–396. 10.1038/35077544. PubMed DOI
Tominaga M.; Caterina M. J. Thermosensation and Pain. J. Neurobiol. 2004, 61, 3–12. 10.1002/neu.20079. PubMed DOI
Montell C. The TRP Superfamily of Cation Channels. Sci. Signaling 2005, 2005, re3.10.1126/stke.2722005re3. PubMed DOI
Yao J.; Liu B.; Qin F. Rapid Temperature Jump by Infrared Diode Laser Irradiation for Patch-Clamp Studies. Biophys. J. 2009, 96, 3611–3619. 10.1016/j.bpj.2009.02.016. PubMed DOI PMC
Albert E.; Bec J. M.; Desmadryl G.; Chekroud K.; Travo C.; Gaboyard S.; Bardin F.; Marc I.; Dumas M.; Lenaers G.; et al. TRPV4 Channels Mediate the Infrared Laser-Evoked Response in Sensory Neurons. J. Neurophysiol. 2012, 107, 3227–3234. 10.1152/jn.00424.2011. PubMed DOI
Storozhuk M. V.; Moroz O. F.; Zholos A. V. Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BioMed. Res. Int. 2019, 2019, 5806321.10.1155/2019/5806321. PubMed DOI PMC
Tóth A.; Boczán J.; Kedei N.; Lizanecz E.; Bagi Z.; Papp Z.; Édes I.; Csiba L.; Blumberg P. M. Expression and Distribution of Vanilloid Receptor 1 (TRPV1) in the Adult Rat Brain. Mol. Brain Res. 2005, 135, 162–168. 10.1016/j.molbrainres.2004.12.003. PubMed DOI
Cavanaugh D. J.; Chesler A. T.; Jackson A. C.; Sigal Y. M.; Yamanaka H.; Grant R.; O’Donnell D.; Nicoll R. A.; Shah N. M.; Julius D.; et al. Trpv1 Reporter Mice Reveal Highly Restricted Brain Distribution and Functional Expression in Arteriolar Smooth Muscle Cells. J. Neurosci. 2011, 31, 5067–5077. 10.1523/JNEUROSCI.6451-10.2011. PubMed DOI PMC
Munshi R.; Qadri S. M.; Pralle A. Transient Magnetothermal Neuronal Silencing Using the Chloride Channel Anoctamin 1 (TMEM16A). Front. Neurosci. 2018, 12, 560.10.3389/fnins.2018.00560. PubMed DOI PMC
Lee J. H.; Jang J. T.; Choi J. S.; Moon S. H.; Noh S. H.; Kim J. W.; Kim J. G.; Kim I. S.; Park K. I.; Cheon J. Exchange-Coupled Magnetic Nanoparticles for Efficient Heat Induction. Nat. Nanotechnol. 2011, 6, 418–422. 10.1038/nnano.2011.95. PubMed DOI
Chen R.; Christiansen M. G.; Anikeeva P. Maximizing Hysteretic Losses in Magnetic Ferrite Nanoparticles via Model-Driven Synthesis and Materials Optimization. ACS Nano 2013, 7, 8990–9000. 10.1021/nn4035266. PubMed DOI
Zhang Q.; Castellanos-Rubio I.; Munshi R.; Orue I.; Pelaz B.; Gries K. I.; Parak W. J.; del Pino P.; Pralle A. Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss. Chem. Mater. 2015, 27, 7380–7387. 10.1021/acs.chemmater.5b03261. PubMed DOI PMC
Meister M. Physical Limits to Magnetogenetics. eLife 2016, 5, e17210.10.7554/eLife.17210. PubMed DOI PMC
Davis H. C.; Kang S.; Lee J.-H.; Shin T.-H.; Putterman H.; Cheon J.; Shapiro M. G. Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field. Biophys. J. 2020, 118, 1502–1510. 10.1016/j.bpj.2020.01.028. PubMed DOI PMC
Riedinger A.; Guardia P.; Curcio A.; Garcia M. A.; Cingolani R.; Manna L.; Pellegrino T. Subnanometer Local Temperature Probing and Remotely Controlled Drug Release Based on Azo-Functionalized Iron Oxide Nanoparticles. Nano Lett. 2013, 13, 2399–2406. 10.1021/nl400188q. PubMed DOI
Bailey C. H.; Kandel E. R.; Harris K. M. Structural Components of Synaptic Plasticity and Memory Consolidation. Cold Spring Harbor Perspect. Biol. 2015, 7, a021758.10.1101/cshperspect.a021758. PubMed DOI PMC
Josselyn S. A.; Tonegawa S. Memory Engrams: Recalling the Past and Imagining the Future. Science 2020, 367, eaaw4325.10.1126/science.aaw4325. PubMed DOI PMC
Ashmore J. Cochlear Outer Hair Cell Motility. Physiol. Rev. 2008, 88, 173–210. 10.1152/physrev.00044.2006. PubMed DOI
Kim J.-w.; Lee J.-H.; Ma J.-H.; Chung E.; Choi H.; Bok J.; Cheon J. Magnetic Force Nanoprobe for Direct Observation of Audio Frequency Tonotopy of Hair Cells. Nano Lett. 2016, 16, 3885–3891. 10.1021/acs.nanolett.6b01392. PubMed DOI
Lee J.-H.; Kim J.-w.; Levy M.; Kao A.; Noh S.-h.; Bozovic D.; Cheon J. Magnetic Nanoparticles for Ultrafast Mechanical Control of Inner Ear Hair Cells. ACS Nano 2014, 8, 6590–6598. 10.1021/nn5020616. PubMed DOI
Jia Y.; Zhao Y.; Kusakizako T.; Wang Y.; Pan C.; Zhang Y.; Nureki O.; Hattori M.; Yan Z. TMC1 and TMC2 Proteins Are Pore-Forming Subunits of Mechanosensitive Ion Channels. Neuron 2020, 105, 310–321. 10.1016/j.neuron.2019.10.017. PubMed DOI
Wu J.; Lewis A. H.; Grandl J. Touch, Tension, and Transduction-the Function and Regulation of Piezo Ion Channels. Trends Biochem. Sci. 2017, 42, 57–71. 10.1016/j.tibs.2016.09.004. PubMed DOI PMC
Wheeler M. A.; Smith C. J.; Ottolini M.; Barker B. S.; Purohit A. M.; Grippo R. M.; Gaykema R. P.; Spano A. J.; Beenhakker M. P.; Kucenas S.; et al. Genetically Targeted Magnetic Control of the Nervous System. Nat. Neurosci. 2016, 19, 756–761. 10.1038/nn.4265. PubMed DOI PMC
Wang G.; Zhang P.; Mendu S. K.; Wang Y.; Zhang Y.; Kang X.; Desai B. N.; Zhu J. J. Revaluation of Magnetic Properties of Magneto. Nat. Neurosci. 2020, 23, 1047–1050. 10.1038/s41593-019-0473-5. PubMed DOI PMC
Kole K.; Zhang Y.; Jansen E. J.; Brouns T.; Bijlsma A.; Calcini N.; Yan X.; Lantyer A. d. S.; Celikel T. Assessing the Utility of Magneto to Control Neuronal Excitability in the Somatosensory Cortex. Nat. Neurosci. 2020, 23, 1044–1046. 10.1038/s41593-019-0474-4. PubMed DOI
Xu F.-X.; Zhou L.; Wang X.-T.; Jia F.; Ma K.-Y.; Wang N.; Lin L.; Xu F.-Q.; Shen Y. Magneto Is Ineffective in Controlling Electrical Properties of Cerebellar Purkinje Cells. Nat. Neurosci. 2020, 23, 1041–1043. 10.1038/s41593-019-0475-3. PubMed DOI
Gregurec D.; Senko A. W.; Chuvilin A.; Reddy P. D.; Sankararaman A.; Rosenfeld D.; Chiang P.-H.; Garcia F.; Tafel I.; Varnavides G.; et al. Magnetic Vortex Nanodiscs Enable Remote Magnetomechanical Neural Stimulation. ACS Nano 2020, 14, 8036–8045. 10.1021/acsnano.0c00562. PubMed DOI PMC
Shin W.; Jeong S.; Lee J.-u.; Jeong S. Y.; Shin J.; Kim H. H.; Cheon J.; Lee J.-H. Magnetogenetics with Piezo1Mechanosensitive Ion Channel for CRISPR Gene Editing. Nano Lett. 2022, 22, 7415–7422. 10.1021/acs.nanolett.2c02314. PubMed DOI
Lee J. U.; Shin W.; Lim Y.; Kim J.; Kim W. R.; Kim H.; Lee J. H.; Cheon J. Non-Contact Long-Range Magnetic Stimulation of Mechanosensitive Ion Channels in Freely Moving Animals. Nat. Mater. 2021, 20, 1029–1036. 10.1038/s41563-020-00896-y. PubMed DOI
Kozielski K. L.; Jahanshahi A.; Gilbert H. B.; Yu Y.; Erin Ö.; Francisco D.; Alosaimi F.; Temel Y.; Sitti M. Nonresonant Powering of Injectable Nanoelectrodes Enables Wireless Deep Brain Stimulation in Freely Moving Mice. Sci. Adv. 2021, 7, eabc4189.10.1126/sciadv.abc4189. PubMed DOI PMC
Choi S.-H.; Shin J.; Park C.; Lee J.-u.; Lee J.; Ambo Y.; Shin W.; Yu R.; Kim J.-Y.; Lah J. D.; Shin D.; Kim G.; Noh K.; Koh W.; Lee C. J.; Lee J.-H.; Kwak M.; Cheon J. In Vivo Magnetogenetics for Cell-Type-Specific Targeting and Modulation of Brain Circuits. Nat. Nanotechnol. 2024, 19, 1333–1343. 10.1038/s41565-024-01694-2. PubMed DOI
Jiang Y.; Huang Y.; Luo X.; Wu J.; Zong H.; Shi L.; Cheng R.; Zhu Y.; Jiang S.; Lan L.; Jia X.; Mei J.; Man H.-Y.; Cheng J.-X.; Yang C. Neural Stimulation in Vitro and in Vivo by Photoacoustic Nanotransducers. Matter 2021, 4, 654–674. 10.1016/j.matt.2020.11.019. DOI
Brinker M.; Dittrich G.; Richert C.; Lakner P.; Krekeler T.; Keller T. F.; Huber N.; Huber P. Giant Electrochemical Actuation in a Nanoporous Silicon-Polypyrrole Hybrid Material. Sci. Adv. 2020, 6, eaba1483.10.1126/sciadv.aba1483. PubMed DOI PMC
Jiang Y.; Lee H. J.; Lan L.; Tseng H. A.; Yang C.; Man H. Y.; Han X.; Cheng J. X. Optoacoustic Brain Stimulation at Submillimeter Spatial Precision. Nat. Commun. 2020, 11, 881.10.1038/s41467-020-14706-1. PubMed DOI PMC
Tyler W. J.; Lani S. W.; Hwang G. M. Ultrasonic Modulation of Neural Circuit Activity. Curr. Opin. Neurobiol. 2018, 50, 222–231. 10.1016/j.conb.2018.04.011. PubMed DOI
Tufail Y.; Yoshihiro A.; Pati S.; Li M. M.; Tyler W. J. Ultrasonic Neuromodulation by Brain Stimulation with Transcranial Ultrasound. Nat. Protoc. 2011, 6, 1453–1470. 10.1038/nprot.2011.371. PubMed DOI
Koshida N.; Nakamura T. Emerging Functions of Nanostructured Porous Silicon-With a Focus on the Emissive Properties of Photons, Electrons, and Ultrasound. Front. Chem. 2019, 7, 273.10.3389/fchem.2019.00273. PubMed DOI PMC
Brinker M.; Huber P. Wafer-Scale Electroactive Nanoporous Silicon: Large and Fully Reversible Electrochemo-Mechanical Actuation in Aqueous Electrolytes. Adv. Mater. 2022, 34, 2105923.10.1002/adma.202105923. PubMed DOI PMC
Nag O. K.; Muroski M. E.; Hastman D. A.; Almeida B.; Medintz I. L.; Huston A. L.; Delehanty J. B. Nanoparticle- Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS Nano 2020, 14, 2659–2677. 10.1021/acsnano.9b10163. PubMed DOI
Efros A. L.; Delehanty J. B.; Huston A. L.; Medintz I. L.; Barbic M.; Harris T. D. Evaluating the Potential of Using Quantum Dots for Monitoring Electrical Signals in Neurons. Nat. Nanotechnol. 2018, 13, 278–288. 10.1038/s41565-018-0107-1. PubMed DOI
Thorn K. Genetically Encoded Fluorescent Tags. Mol. Biol. Cell 2017, 28, 848–857. 10.1091/mbc.e16-07-0504. PubMed DOI PMC
Park K.; Weiss S. Design Rules for Membrane-Embedded Voltage-Sensing Nanoparticles. Biophys. J. 2017, 112, 703–713. 10.1016/j.bpj.2016.12.047. PubMed DOI PMC
Rowland C. E.; Susumu K.; Stewart M. H.; Oh E.; Mäkinen A. J.; O’Shaughnessy T. J.; Kushto G.; Wolak M. A.; Erickson J. S.; L Efros A.; Huston A. L.; Delehanty J. B. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes. Nano Lett. 2015, 15, 6848–6854. 10.1021/acs.nanolett.5b02725. PubMed DOI
Marshall J. D.; Schnitzer M. J. Optical Strategies for Sensing Neuronal Voltage Using Quantum Dots and Other Semiconductor Nanocrystals. ACS Nano 2013, 7, 4601–4609. 10.1021/nn401410k. PubMed DOI PMC
Nag O. K.; Stewart M. H.; Deschamps J. R.; Susumu K.; Oh E.; Tsytsarev V.; Tang Q.; Efros A. L.; Vaxenburg R.; Black B. J.; Chen Y.; O’Shaughnessy T. J.; North S. H.; Field L. D.; Dawson P. E.; Pancrazio J. J.; Medintz I. L.; Chen Y.; Erzurumlu R. S.; Huston A. L.; Delehanty J. B. Quantum Dot-Peptide-Fullerene Bioconjugates for Visualization of in Vitro and in Vivo Cellular Membrane Potential. ACS Nano 2017, 11, 5598–5613. 10.1021/acsnano.7b00954. PubMed DOI PMC
Chen G.; Zhang Y.; Peng Z.; Huang D.; Li C.; Wang Q. Glutathione-Capped Quantum Dots for Plasma Membrane Labeling and Membrane Potential Imaging. Nano Res. 2019, 12, 1321–1326. 10.1007/s12274-019-2283-1. DOI
Clapp A. R.; Pons T.; Medintz I. L.; Delehanty J. B.; Melinger J. S.; Tiefenbrunn T.; Dawson P. E.; Fisher B. R.; O’Rourke B.; Mattoussi H. Two-Photon Excitation of Quantum-Dot-Based Fluorescence Resonance Energy Transfer and Its Applications. Adv. Mater. 2007, 19, 1921–1926. 10.1002/adma.200602036. DOI
Resch-Genger U.; Grabolle M.; Cavaliere-Jaricot S.; Nitschke R.; Nann T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763.10.1038/nmeth.1248. PubMed DOI
Park K.; Deutsch Z.; Li J. J.; Oron D.; Weiss S. Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature. ACS Nano 2012, 6, 10013–10023. 10.1021/nn303719m. PubMed DOI PMC
Caglar M.; Pandya R.; Xiao J.; Foster S. K.; Divitini G.; Chen R. Y.; Greenham N. C.; Franze K.; Rao A.; Keyser U. F. All-Optical Detection of Neuronal Membrane Depolarization in Live Cells Using Colloidal Quantum Dots. Nano Lett. 2019, 19, 8539–8549. 10.1021/acs.nanolett.9b03026. PubMed DOI PMC
Bar-Elli O.; Steinitz D.; Yang G.; Tenne R.; Ludwig A.; Kuo Y.; Triller A.; Weiss S.; Oron D. Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect. ACS Photonics 2018, 5, 2860–2867. 10.1021/acsphotonics.8b00206. PubMed DOI PMC
Kuo Y.; Li J.; Michalet X.; Chizhik A.; Meir N.; Bar-Elli O.; Chan E.; Oron D.; Enderlein J.; Weiss S. Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology. ACS Photonics 2018, 5, 4788–4800. 10.1021/acsphotonics.8b00617. DOI
Park K.; Kuo Y.; Shvadchak V.; Ingargiola A.; Dai X.; Hsiung L.; Kim W.; Zhou Z. H.; Zou P.; Levine A. J.; et al. Membrane Insertion of—and Membrane Potential Sensing by—Semiconductor Voltage Nanosensors: Feasibility Demonstration. Sci. Adv. 2018, 4, e1601453.10.1126/sciadv.1601453. PubMed DOI PMC
Tsytsarev V.; Premachandra K.; Takeshita D.; Bahar S. Imaging Cortical Electrical Stimulation in Vivo: Fast Intrinsic Optical Signal versus Voltage-Sensitive Dyes. Opt. Lett. 2008, 33, 1032–1034. 10.1364/OL.33.001032. PubMed DOI
Europeans Chemicals Agency. REACH Registration data Substance Infocard Cadmium. https://echa.europa.eu/de/substance-information/-/substanceinfo/100.028.320 (accessed June 18, 2024).
Ludwig A.; Serna P.; Morgenstein L.; Yang G.; Bar-Elli O.; Ortiz G.; Miller E.; Oron D.; Grupi A.; Weiss S.; et al. Development of Lipid-Coated Semiconductor Nanosensors for Recording of Membrane Potential in Neurons. ACS Photonics 2020, 7, 1141–1152. 10.1021/acsphotonics.9b01558. DOI
Lütcke H.; Gerhard F.; Zenke F.; Gerstner W.; Helmchen F. Inference of Neuronal Network Spike Dynamics and Topology from Calcium Imaging Data. Front. Neural Circuits 2013, 7, 201.10.3389/fncir.2013.00201. PubMed DOI PMC
Ledochowitsch P.; Huang L.; Knoblich U.; Oliver M.; Lecoq J.; Reid C.; Li L.; Zeng H.; Koch C.; Waters J.. On the Correspondence of Electrical and Optical Physiology in in Vivo Population-Scale Two-Photon Calcium Imaging. bioRxiv, October 11, 2019, 800102.10.1101/800102. DOI
Oheim M.; Kirchhoff F.; Stühmer W. Calcium Microdomains in Regulated Exocytosis. Cell Calcium 2006, 40, 423–439. 10.1016/j.ceca.2006.08.007. PubMed DOI
Shuai J.; Parker I. Optical Single-Channel Recording by Imaging Ca2+ Flux through Individual Ion Channels: Theoretical Considerations and Limits to Resolution. Cell Calcium 2005, 37, 283–299. 10.1016/j.ceca.2004.10.008. PubMed DOI
Kohlhaas M.; Maack C. Calcium Release Microdomains and Mitochondria. Cardiovasc. Res. 2013, 98, 259–268. 10.1093/cvr/cvt032. PubMed DOI
Berridge M. J. Calcium Microdomains: Organization and Function. Cell Calcium 2006, 40, 405–412. 10.1016/j.ceca.2006.09.002. PubMed DOI
Becherer U.; Moser T.; Stühmer W.; Oheim M. Calcium Regulates Exocytosis at the Level of Single Vesicles. Nat. Neurosci. 2003, 6, 846–853. 10.1038/nn1087. PubMed DOI
Demuro A.; Parker I. Imaging Single-Channel Calcium Microdomains. Cell Calcium 2006, 40, 413–422. 10.1016/j.ceca.2006.08.006. PubMed DOI PMC
Zamaleeva A. I.; Collot M.; Bahembera E.; Tisseyre C.; Rostaing P.; Yakovlev A. V.; Oheim M.; De Waard M.; Mallet J.-M.; Feltz A. Cell-Penetrating Nanobiosensors for Pointillistic Intracellular Ca2+-Transient Detection. Nano Lett. 2014, 14, 2994–3001. 10.1021/nl500733g. PubMed DOI
Yakovlev A. V.; Zhang F.; Zulqurnain A.; Azhar-Zahoor A.; Luccardini C.; Gaillard S.; Mallet J. M.; Tauc P.; Brochon J. C.; Parak W. J.; Feltz A.; Oheim M. Wrapping Nanocrystals with an Amphiphilic Polymer Preloaded with Fixed Amounts of Fluorophore Generates FRET-Based Nanoprobes with a Controlled Donor/Acceptor Ratio. Langmuir 2009, 25, 3232–3239. 10.1021/la8038347. PubMed DOI
Zhang F.; Ali Z.; Amin F.; Feltz A.; Oheim M.; Parak W. J. Ion and pH Sensing with Colloidal Nanoparticles: Influence of Surface Charge on Sensing and Colloidal Properties. ChemPhysChem 2010, 11, 730–735. 10.1002/cphc.200900849. PubMed DOI
Prasuhn D. E.; Feltz A.; Blanco-Canosa J. B.; Susumu K.; Stewart M. H.; Mei B. C.; Yakovlev A. V.; Loukou C.; Mallet J. M.; Oheim M.; Dawson P. E.; Medintz I. L. Quantum Dot Peptide Biosensors for Monitoring Caspase 3 Proteolysis and Calcium Ions. ACS Nano 2010, 4, 7726–7726. 10.1021/nn102986a. PubMed DOI
Edwards F. A.; Konnerth A.; Sakmann B.; Takahashi T. A Thin Slice Preparation for Patch Clamp Recordings from Neurones of the Mammalian Central Nervous System. Pflugers Arch. 1989, 414, 600–612. 10.1007/BF00580998. PubMed DOI
Chow R. H.; von Rüden L.; Neher E. Delay in Vesicle Fusion Revealed by Electrochemical Monitoring of Single Secretory Events in Adrenal Chromaffin Cells. Nature 1992, 356, 60–63. 10.1038/356060a0. PubMed DOI
Alvarez de Toledo G.; Fernández-Chacón R.; Fernández J. M. Release of Secretory Products during Transient Vesicle Fusion. Nature 1993, 363, 554–558. 10.1038/363554a0. PubMed DOI
Travis E. R.; Wightman R. M. Spatio-Temporal Resolution of Exocytosis from Individual Cells. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 77–103. 10.1146/annurev.biophys.27.1.77. PubMed DOI
Huang M.; Delacruz J. B.; Ruelas J. C.; Rathore S. S.; Lindau M. Surface-Modified CMOS IC Electrochemical Sensor Array Targeting Single Chromaffin Cells for Highly Parallel Amperometry Measurements. Pflugers Arch. 2018, 470, 113–123. 10.1007/s00424-017-2067-y. PubMed DOI PMC
Movassaghi C. S.; Perrotta K. A.; Yang H.; Iyer R.; Cheng X.; Dagher M.; Fillol M. A.; Andrews A. M. Simultaneous Serotonin and Dopamine Monitoring Across Timescales by Rapid Pulse Voltammetry with Partial Least Squares Regression. Anal. Bioanal. Chem. 2021, 413, 6747–6767. 10.1007/s00216-021-03665-1. PubMed DOI PMC
Movassaghi C. S.; Alcañiz Fillol M.; Kishida K. T.; McCarty G.; Sombers L. A.; Wassum K. M.; Andrews A. M. Maximizing Electrochemical Information: A Perspective on Background-Inclusive Fast Voltammetry. Anal. Chem. 2024, 96, 6097–6105. 10.1021/acs.analchem.3c04938. PubMed DOI PMC
Madhurantakam S.; Karnam J. B.; Brabazon D.; Takai M.; Ahad I. U.; Balaguru Rayappan J. B.; Krishnan U. M. ″Nano″: An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem. Neurosci. 2020, 11, 4024–4047. 10.1021/acschemneuro.0c00355. PubMed DOI
Fuller C. W.; Padayatti P. S.; Abderrahim H.; Adamiak L.; Alagar N.; Ananthapadmanabhan N.; Baek J.; Chinni S.; Choi C.; Delaney K. J.; et al. Molecular Electronics Sensors on a Scalable Semiconductor Chip: A Platform for Single-Molecule Measurement of Binding Kinetics and Enzyme Activity. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2112812119.10.1073/pnas.2112812119. PubMed DOI PMC
Nakatsuka N.; Yang K.-A.; Abendroth J. M.; Cheung K. M.; Xu X.; Yang H.; Zhao C.; Zhu B.; Rim Y. S.; Yang Y.; Weiss P. S.; Stojanović M.; Andrews A. M. Aptamer-Field-Effect Transistors Overcome Debye Length Limitations for Small-Molecule Sensing. Science 2018, 362, 319–324. 10.1126/science.aao6750. PubMed DOI PMC
Yang K.; Mitchell N. M.; Banerjee S.; Cheng Z.; Taylor S.; Kostic A. M.; Wong I.; Sajjath S.; Zhang Y.; Stevens J.; Mohan S.; Landry D. W.; Worgall T. S.; Andrews A. M.; Stojanovic M. N. A Functional Group-Guided Approach to Aptamers for Small Molecules. Science 2023, 380, 942–948. 10.1126/science.abn9859. PubMed DOI PMC
Liao W.-S.; Cheunkar S.; Cao H. H.; Bednar H. R.; Weiss P. S.; Andrews A. M. Subtractive Patterning via Chemical Lift-Off Lithography. Science 2012, 337, 1517–1521. 10.1126/science.1221774. PubMed DOI
Zhao C.; Cheung K. M.; Huang I.-W.; Yang H.; Nakatsuka N.; Liu W.; Cao Y.; Man T.; Weiss P. S.; Monbouquette H. G.; Andrews A. M. Implantable Aptamer-Field-Effect Transistor Neuroprobes for in Vivo Neurotransmitter Monitoring. Sci. Adv. 2021, 7, eabj7422.10.1126/sciadv.abj7422. PubMed DOI PMC
Liu Q.; Zhao C.; Chen M.; Liu Y.; Zhao Z.; Wu F.; Li Z.; Weiss P. S.; Andrews A. M.; Zhou C. Flexible Multiplexed In2O3 Nanoribbon Aptamer-Field-Effect Transistors for Biosensing. iScience 2020, 23, 101469.10.1016/j.isci.2020.101469. PubMed DOI PMC
Wang B.; Zhao C.; Wang Z.; Yang K.-A.; Cheng X.; Liu W.; Yu W.; Lin S.; Zhao Y.; Cheung K. M.; et al. Wearable Aptamer-Field-Effect Transistor Sensing System for Noninvasive Cortisol Monitoring. Sci. Adv. 2022, 8, eabk0967.10.1126/sciadv.abk0967. PubMed DOI PMC
Cheung K. M.; Yang K.-A.; Nakatsuka N.; Zhao C.; Ye M.; Jung M. E.; Yang H.; Weiss P. S.; Stojanovic M. N.; Andrews A. M. Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors. ACS Sens. 2019, 4, 3308–3317. 10.1021/acssensors.9b01963. PubMed DOI PMC
Cheung K. M.; Abendroth J. M.; Nakatsuka N.; Zhu B.; Yang Y.; Andrews A. M.; Weiss P. S. Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. Nano Lett. 2020, 20, 5982–5990. 10.1021/acs.nanolett.0c01971. PubMed DOI PMC
Nakatsuka N.; Heard K. J.; Faillétaz A.; Momotenko D.; Vörös J.; Gage F. H.; Vadodaria K. C. Sensing Serotonin Secreted from Human Serotonergic Neurons Using Aptamer-Modified Nanopipettes. Mol. Psychiatry 2021, 26, 2753–2763. 10.1038/s41380-021-01066-5. PubMed DOI PMC
Patriarchi T.; Cho J. R.; Merten K.; Howe M. W.; Marley A.; Xiong W. H.; Folk R. W.; Broussard G. J.; Liang R.; Jang M. J.; Zhong H.; Dombeck D.; von Zastrow M.; Nimmerjahn A.; Gradinaru V.; Williams J. T.; Tian L. Ultrafast Neuronal Imaging of Dopamine Dynamics with Designed Genetically Encoded Sensors. Science 2018, 360, eaat4422.10.1126/science.aat4422. PubMed DOI PMC
Ackermann J.; Metternich J. T.; Herbertz S.; Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew. Chem., Int. Ed. 2022, 61, e202112372.10.1002/anie.202112372. PubMed DOI PMC
Kruss S.; Salem D. P.; Vuković L.; Lima B.; Vander Ende E.; Boyden E. S.; Strano M. S. High-Resolution Imaging of Cellular Dopamine Efflux Using a Fluorescent Nanosensor Array. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1789–1794. 10.1073/pnas.1613541114. PubMed DOI PMC
Beyene A. G.; Delevich K.; del Bonis-O’Donnell J. T.; Piekarski D. J.; Lin W. C.; Thomas A. W.; Yang S. J.; Kosillo P.; Yang D.; Prounis G. S.; Wilbrecht L.; Landry M. P. Imaging Striatal Dopamine Release Using a Nongenetically Encoded Near Infrared Fluorescent Catecholamine Nanosensor. Sci. Adv. 2019, 5, eaaw3108.10.1126/sciadv.aaw3108. PubMed DOI PMC
Elizarova S.; Chouaib A. A.; Shaib A.; Hill B.; Mann F.; Brose N.; Kruss S.; Daniel J. A. A Fluorescent Nanosensor Paint Detects Dopamine Release at Axonal Varicosities with High Spatiotemporal Resolution. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2202842119.10.1073/pnas.2202842119. PubMed DOI PMC
Xia J.; Yang H.; Mu M.; Micovic N.; Poskanzer K. E.; Monaghan J. R.; Clark H. A. Imaging in Vivo Acetylcholine Release in the Peripheral Nervous System with a Fluorescent Nanosensor. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2023807118.10.1073/pnas.2023807118. PubMed DOI PMC
Dresselhaus M. S.; Dresselhaus G.; Charlier J. C.; Hernández E. Electronic, Thermal and Mechanical Properties of Carbon Nanotubes. Philos. Trans. A 2004, 362, 2065–2098. 10.1098/rsta.2004.1430. PubMed DOI
O’Connell M. J.; Bachilo S. M.; Huffman C. B.; Moore V. C.; Strano M. S.; Haroz E. H.; Rialon K. L.; Boul P. J.; Noon W. H.; Kittrell C.; Ma J.; Hauge R. H.; Weisman R. B.; Smalley R. E. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science 2002, 297, 593–596. 10.1126/science.1072631. PubMed DOI
Coleman J. N. Liquid-Phase Exfoliation of Nanotubes and Graphene. Adv. Funct. Mater. 2009, 19, 3680–3695. 10.1002/adfm.200901640. DOI
Bisker G.; Dong J.; Park H. D.; Iverson N. M.; Ahn J.; Nelson J. T.; Landry M. P.; Kruss S.; Strano M. S. Protein-Targeted Corona Phase Molecular Recognition. Nat. Commun. 2016, 7, 10241.10.1038/ncomms10241. PubMed DOI PMC
Bisker G.; Bakh N. A.; Lee M. A.; Ahn J.; Park M.; O’Connell E. B.; Iverson N. M.; Strano M. S. Insulin Detection Using a Corona Phase Molecular Recognition Site on Single-Walled Carbon Nanotubes. ACS Sens. 2018, 3, 367–377. 10.1021/acssensors.7b00788. PubMed DOI
Zhang J.; Landry M. P.; Barone P. W.; Kim J. H.; Lin S.; Ulissi Z. W.; Lin D.; Mu B.; Boghossian A. A.; Hilmer A. J.; Rwei A.; Hinckley A. C.; Kruss S.; Shandell M. A.; Nair N.; Blake S.; Sen F.; Sen S.; Croy R. G.; Li D.; Yum K.; Ahn J. H.; Jin H.; Heller D. A.; Essigmann J. M.; Blankschtein D.; Strano M. S. Molecular Recognition Using Corona Phase Complexes Made of Synthetic Polymers Adsorbed on Carbon Nanotubes. Nat. Nanotechnol. 2013, 8, 959–968. 10.1038/nnano.2013.236. PubMed DOI PMC
Kruss S.; Landry M. P.; Vander Ende E.; Lima B. M.; Reuel N. F.; Zhang J.; Nelson J.; Mu B.; Hilmer A.; Strano M. Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors. J. Am. Chem. Soc. 2014, 136, 713–724. 10.1021/ja410433b. PubMed DOI
Jeong S.; Yang D.; Beyene A. G.; Del Bonis-O’Donnell J. T.; Gest A. M. M.; Navarro N.; Sun X.; Landry M. P. High-Throughput Evolution of Near-Infrared Serotonin Nanosensors. Sci. Adv. 2019, 5, eaay3771.10.1126/sciadv.aay3771. PubMed DOI PMC
Liu C.; Goel P.; Kaeser P. S. Spatial and Temporal Scales of Dopamine Transmission. Nat. Rev. Neurosci. 2021, 22, 345–358. 10.1038/s41583-021-00455-7. PubMed DOI PMC
Yang S. J.; Del Bonis-O’Donnell J. T.; Beyene A. G.; Landry M. P. Near-Infrared Catecholamine Nanosensors for High Spatiotemporal Dopamine Imaging. Nat. Protoc. 2021, 16, 3026–3048. 10.1038/s41596-021-00530-4. PubMed DOI PMC
Godin A. G.; Varela J. A.; Gao Z.; Danne N.; Dupuis J. P.; Lounis B.; Groc L.; Cognet L. Single-Nanotube Tracking Reveals the Nanoscale Organization of the Extracellular Space in the Live Brain. Nat. Nanotechnol. 2017, 12, 238–243. 10.1038/nnano.2016.248. PubMed DOI
McCann C. M.; Lichtman J. W. In Vivo Imaging of Presynaptic Terminals and Postsynaptic Sites in the Mouse Submandibular Ganglion. Dev. Neurobiol. 2008, 68, 760–770. 10.1002/dneu.20621. PubMed DOI PMC
Langer J.; Jimenez de Aberasturi D.; Aizpurua J.; Alvarez-Puebla R. A.; Auguié B.; Baumberg J. J.; Bazan G. C.; Bell S. E. J.; Boisen A.; Brolo A. G.; Choo J.; Cialla-May D.; Deckert V.; Fabris L.; Faulds K.; García de Abajo F. J.; Goodacre R.; Graham D.; Haes A. J.; Haynes C. L.; Huck C.; Itoh T.; Käll M.; Kneipp J.; Kotov N. A.; Kuang H.; Le Ru E. C.; Lee H. K.; Li J.-F.; Ling X. Y.; Maier S. A.; Mayerhöfer T.; Moskovits M.; Murakoshi K.; Nam J.-M.; Nie S.; Ozaki Y.; Pastoriza-Santos I.; Perez-Juste J.; Popp J.; Pucci A.; Reich S.; Ren B.; Schatz G. C.; Shegai T.; Schlücker S.; Tay L.-L.; Thomas K. G.; Tian Z.-Q.; Van Duyne R. P.; Vo-Dinh T.; Wang Y.; Willets K. A.; Xu C.; Xu H.; Xu Y.; Yamamoto Y. S.; Zhao B.; Liz-Marzán L. M. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. 10.1021/acsnano.9b04224. PubMed DOI PMC
Lee W.; Kang B. H.; Yang H.; Park M.; Kwak J. H.; Chung T.; Jeong Y.; Kim B. K.; Jeong K. H. Spread Spectrum SERS Allows Label-Free Detection of Attomolar Neurotransmitters. Nat. Commun. 2021, 12, 159.10.1038/s41467-020-20413-8. PubMed DOI PMC
Farah A. A.; Bravo-Vasquez J. P.; Alvarez-Puebla R. A.; Cho J. Y.; Fenniri H. Robust Au-PEG/PS Microbeads as Optically Stable Platforms for SERS. Small 2009, 5, 1283–1286. 10.1002/smll.200801398. PubMed DOI
López-Puente V.; Abalde-Cela S.; Angelomé P. C.; Alvarez-Puebla R. A.; Liz-Marzán L. M. Plasmonic Mesoporous Composites as Molecular Sieves for SERS Detection. J. Phys. Chem. Lett. 2013, 4, 2715–2720. 10.1021/jz4014085. DOI
Silwal A. P.; Yadav R.; Sprague J. E.; Lu H. P. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells. ACS Chem. Neurosci. 2017, 8, 1510–1518. 10.1021/acschemneuro.7b00048. PubMed DOI
Choi J. H.; Kim T. H.; El-Said W. A.; Lee J. H.; Yang L.; Conley B.; Choi J. W.; Lee K. B. In Situ Detection of Neurotransmitters from Stem Cell-Derived Neural Interface at the Single-Cell Level via Graphene-Hybrid SERS Nanobiosensing. Nano Lett. 2020, 20, 7670–7679. 10.1021/acs.nanolett.0c03205. PubMed DOI PMC
Wang W.; Zhao F.; Li M.; Zhang C.; Shao Y.; Tian Y. A SERS Optophysiological Probe for the Real-Time Mapping and Simultaneous Determination of the Carbonate Concentration and pH Value in a Live Mouse Brain. Angew. Chem., Int. Ed. 2019, 58, 5256–5260. 10.1002/anie.201814286. PubMed DOI
Reichel D.; Sagong B.; Teh J.; Zhang Y.; Wagner S.; Wang H.; Chung L. W.; Butte P.; Black K. L.; Yu J. S.; et al. Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma. ACS Nano 2020, 14, 8392–8408. 10.1021/acsnano.0c02509. PubMed DOI PMC
Guo X.; Deng G.; Liu J.; Zou P.; Du F.; Liu F.; Chen A. T.; Hu R.; Li M.; Zhang S.; et al. Thrombin-Responsive, Brain-Targeting Nanoparticles for Improved Stroke Therapy. ACS Nano 2018, 12, 8723–8732. 10.1021/acsnano.8b04787. PubMed DOI
Lunov O.; Syrovets T.; Loos C.; Beil J.; Delacher M.; Tron K.; Nienhaus G. U.; Musyanovych A.; Mailander V.; Landfester K.; et al. Differential Uptake of Functionalized Polystyrene Nanoparticles by Human Macrophages and a Monocytic Cell Line. ACS Nano 2011, 5, 1657–1669. 10.1021/nn2000756. PubMed DOI
Schottler S.; Becker G.; Winzen S.; Steinbach T.; Mohr K.; Landfester K.; Mailander V.; Wurm F. R. Protein Adsorption Is Required for Stealth Effect of Poly(ethylene glycol)- and Poly(phosphoester)-Coated Nanocarriers. Nat. Nanotechnol. 2016, 11, 372–377. 10.1038/nnano.2015.330. PubMed DOI
Suk J. S.; Xu Q.; Kim N.; Hanes J.; Ensign L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Delivery Rev. 2016, 99, 28–51. 10.1016/j.addr.2015.09.012. PubMed DOI PMC
Partikel K.; Korte R.; Stein N. C.; Mulac D.; Herrmann F. C.; Humpf H.-U.; Langer K. Effect of Nanoparticle Size and PEGylation on the Protein Corona of PLGA Nanoparticles. Eur. J. Pharm. Biopharm. 2019, 141, 70–80. 10.1016/j.ejpb.2019.05.006. PubMed DOI
Lipka M.; Semmler-Behnke M.; Sperling R. A.; Wenk A.; Takenaka S.; Schleh C.; Kissel T.; Parak W. J.; Kreyling W. G. Biodistribution of PEG-Modified Gold Nanoparticles Following Intratracheal Instillation and Intravenous Injection. Biomaterials 2010, 31, 6574–6581. 10.1016/j.biomaterials.2010.05.009. PubMed DOI
Sun C.; Ding Y.; Zhou L.; Shi D.; Sun L.; Webster T. J.; Shen Y. Noninvasive Nanoparticle Strategies for Brain Tumor Targeting. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2605–2621. 10.1016/j.nano.2017.07.009. PubMed DOI
Bony B. A.; Tarudji A. W.; Miller H. A.; Gowrikumar S.; Roy S.; Curtis E. T.; Gee C. C.; Vecchio A.; Dhawan P.; Kievit F. M. Claudin-1-Targeted Nanoparticles for Delivery to Aging-Induced Alterations in the Blood-Brain Barrier. ACS Nano 2021, 15, 18520–18531. 10.1021/acsnano.1c08432. PubMed DOI PMC
Lingineni K.; Belekar V.; Tangadpalliwar S. R.; Garg P. The Role of Multidrug Resistance Protein (MRP-1) as an Active Efflux Transporter on Blood-Brain Barrier (BBB) Permeability. Mol. Diversity 2017, 21, 355–365. 10.1007/s11030-016-9715-6. PubMed DOI
Pardridge W. M. Kinetics of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals 2022, 15, 3.10.3390/ph15010003. PubMed DOI PMC
Sandbhor P.; Goda J.; Mohanty B.; Chaudhari P.; Dutt S.; Banerjee R. Non-Invasive Transferrin Targeted Nanovesicles Sensitize Resistant Glioblastoma Multiforme Tumors and Improve Survival in Orthotopic Mouse Models. Nanoscale 2021, 14, 108–126. 10.1039/D1NR05460K. PubMed DOI
Wei Y.; Sun Y.; Wei J.; Qiu X.; Meng F.; Storm G.; Zhong Z. Selective Transferrin Coating as a Facile Strategy to Fabricate BBB-Permeable and Targeted Vesicles for Potent RNAi Therapy of Brain Metastatic Breast Cancer in Vivo. J. Controlled Release 2021, 337, 521–529. 10.1016/j.jconrel.2021.07.048. PubMed DOI
Al-Ahmady Z. S.; Dickie B. R.; Aldred I.; Jasim D. A.; Barrington J.; Haley M. J.; Lemarchand E.; Coutts G.; Kaur S.; Bates J.; Curran S.; Goddard R.; Walker M.; Parry-jones A.; Kostarelos K.; Allan S. M. Selective Brain Entry of Lipid Nanoparticles in Haemorrhagic Stroke Is Linked to Biphasic Blood-Brain Barrier Disruption. Theranostics 2022, 12, 4477–4497. 10.7150/thno.72167. PubMed DOI PMC
Sokolova V.; Nzou G.; van der Meer S. B.; Ruks T.; Heggen M.; Loza K.; Hagemann N.; Murke F.; Giebel B.; Hermann D. M.; Atala A. J.; Epple M. Ultrasmall Gold Nanoparticles (2 nm) Can Penetrate and Enter Cell Nuclei in an in Vitro 3D Brain Spheroid Model. Acta Biomater. 2020, 111, 349–362. 10.1016/j.actbio.2020.04.023. PubMed DOI
Sokolova V.; Mekky G.; van der Meer S. B.; Seeds M. C.; Atala A. J.; Epple M. Transport of Ultrasmall Gold Nanoparticles (2 nm) across the Blood-Brain Barrier in a Six-Cell Brain Spheroid Model. Sci. Rep. 2020, 10, 18033.10.1038/s41598-020-75125-2. PubMed DOI PMC
Koffie R. M.; Farrar C. T.; Saidi L.-J.; William C. M.; Hyman B. T.; Spires-Jones T. L. Nanoparticles Enhance Brain Delivery of Blood-Brain Barrier-Impermeable Probes for in Vivo Optical and Magnetic Resonance Imaging. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 18837–18842. 10.1073/pnas.1111405108. PubMed DOI PMC
Wohlfart S.; Khalansky A. S.; Gelperina S.; Begley D.; Kreuter J. Kinetics of Transport of Doxorubicin Bound to Nanoparticles across the Blood-Brain Barrier. J. Controlled Release 2011, 154, 103–107. 10.1016/j.jconrel.2011.05.010. PubMed DOI
Zhang Z.; Guan J.; Jiang Z.; Yang Y.; Liu J.; Hua W.; Mao Y.; Li C.; Lu W.; Qian J.; et al. Brain-Targeted Drug Delivery by Manipulating Protein Corona Functions. Nat. Commun. 2019, 10, 3561.10.1038/s41467-019-11593-z. PubMed DOI PMC
Rabanel J.-M.; Piec P.-A.; Landri S.; Patten S. A.; Ramassamy C. Transport of PEGylated-PLA Nanoparticles across a Blood Brain Barrier Model, Entry into Neuronal Cells and in Vivo Brain Bioavailability. J. Controlled Release 2020, 328, 679–695. 10.1016/j.jconrel.2020.09.042. PubMed DOI
Cox A.; Andreozzi P.; Dal Magro R.; Fiordaliso F.; Corbelli A.; Talamini L.; Chinello C.; Raimondo F.; Magni F.; Tringali M.; et al. Evolution of Nanoparticle Protein Corona across the Blood-Brain Barrier. ACS Nano 2018, 12, 7292–7300. 10.1021/acsnano.8b03500. PubMed DOI
Shin D. W.; Fan J.; Luu E.; Khalid W.; Xia Y.; Khadka N.; Bikson M.; Fu B. M. In Vivo Modulation of the Blood-Brain Barrier Permeability by Transcranial Direct Current Stimulation (tDCS). Ann. Biomed. Eng. 2020, 48, 1256–1270. 10.1007/s10439-020-02447-7. PubMed DOI PMC
Rapoport S. I. Osmotic Opening of the Blood-Brain Barrier: Principles, Mechanism, and Therapeutic Applications. Cell. Mol. Neurobiol. 2000, 20, 217–230. 10.1023/A:1007049806660. PubMed DOI PMC
Tabatabaei S. N.; Girouard H.; Carret A.-S.; Martel S. Remote c Ontrol of the Permeability of the Blood-Brain Barrier by Magnetic Heating of Nanoparticles: A Proof of Concept for Brain Drug Delivery. J. Controlled Release 2015, 206, 49–57. 10.1016/j.jconrel.2015.02.027. PubMed DOI
Johansson B.; Li C.-L.; Olsson Y.; Klatzo I. The Effect of Acute Arterial Hypertension on the Blood-Brain Barrier to Protein Tracers. Acta Neuropathol. 1970, 16, 117–124. 10.1007/BF00687666. PubMed DOI
Johansson B.; Linder L. Do Nitrous Oxide and Lidocaine Modify the Blood Brain Barrier in Acute Hypertension in the Rat?. Acta Anaesthesiol. Scand. 1980, 24, 65–68. 10.1111/j.1399-6576.1980.tb01507.x. PubMed DOI
Bär S.; Buchholz O.; Münkel C.; Schlett P.; Levan P.; von Elverfeldt D.; Hofmann U. G.. Thermal Threshold for Localized Blood-Brain-Barrier Disruption. arXiv, June 15, 2023, 2306.09214, ver. 110.48550/arXiv.2306.09214. PubMed DOI
Buchholz O.; Sajjamark K.; Franke J.; Wei H.; Behrends A.; Munkel C.; Gruttner C.; Levan P.; von Elverfeldt D.; Graeser M.; Buzug T.; Bar S.; Hofmann U. G. In Situ Theranostic Platform Uniting Highly Localized Magnetic Fluid Hyperthermia, Magnetic Particle Imaging, and Thermometry in 3D. Theranostics 2024, 14, 324–340. 10.7150/thno.86759. PubMed DOI PMC
Gunaydin L. A.; Grosenick L.; Finkelstein J. C.; Kauvar I. V.; Fenno L. E.; Adhikari A.; Lammel S.; Mirzabekov J. J.; Airan R. D.; Zalocusky K. A.; Tye K. M.; Anikeeva P.; Malenka R. C.; Deisseroth K. Natural Neural Projection Dynamics Underlying Social Behavior. Cell 2014, 157, 1535–1551. 10.1016/j.cell.2014.05.017. PubMed DOI PMC
Beier K. T.; Saunders A.; Oldenburg I. A.; Miyamichi K.; Akhtar N.; Luo L.; Whelan S. P.; Sabatini B.; Cepko C. L. Anterograde or Retrograde Transsynaptic Labeling of CNS Neurons with Vesicular Stomatitis Virus Vectors. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 15414–15419. 10.1073/pnas.1110854108. PubMed DOI PMC
Ojima K.; Shiraiwa K.; Soga K.; Doura T.; Takato M.; Komatsu K.; Yuzaki M.; Hamachi I.; Kiyonaka S. Ligand-Directed Two-Step Labeling to Quantify Neuronal Glutamate Receptor Trafficking. Nat. Commun. 2021, 12, 831.10.1038/s41467-021-21082-x. PubMed DOI PMC
Stefanick J. F.; Omstead D. T.; Kiziltepe T.; Bilgicer B. Dual-Receptor Targeted Strategy in Nanoparticle Design Achieves Tumor Cell Selectivity through Cooperativity. Nanoscale 2019, 11, 4414–4427. 10.1039/C8NR09431D. PubMed DOI
Pegard N. C.; Mardinly A. R.; Oldenburg I. A.; Sridharan S.; Waller L.; Adesnik H. Three-Dimensional Scanless Holographic Optogenetics with Temporal Focusing (3D-SHOT). Nat. Commun. 2017, 8, 1228.10.1038/s41467-017-01031-3. PubMed DOI PMC
Hubrecht R. C.; Carter E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754.10.3390/ani9100754. PubMed DOI PMC
Inoue M. Genetically Encoded Calcium Indicators to Probe Complex Brain Circuit Dynamics in Vivo. Neurosci. Res. 2021, 169, 2–8. 10.1016/j.neures.2020.05.013. PubMed DOI
Khadria A. Tools to Measure Membrane Potential of Neurons. Biomed. J. 2022, 45, 749.10.1016/j.bj.2022.05.007. PubMed DOI PMC
Kannan M.; Vasan G.; Pieribone V. A. Optimizing Strategies for Developing Genetically Encoded Voltage Indicators. Front. Cell. Neurosci. 2019, 13, 53.10.3389/fncel.2019.00053. PubMed DOI PMC
Looger L. L.; Griesbeck O. Genetically Encoded Neural Activity Indicators. Curr. Opin. Neurobiol. 2012, 22, 18–23. 10.1016/j.conb.2011.10.024. PubMed DOI
Sabatini B. L.; Tian L. Imaging Neurotransmitter and Neuromodulator Dynamics in Vivo with Genetically Encoded Indicators. Neuron 2020, 108, 17–32. 10.1016/j.neuron.2020.09.036. PubMed DOI
Gee C. E.; Ohmert I.; Wiegert J. S.; Oertner T. G.. Preparation of Slice Cultures from Rodent Hippocampus; Cold Spring Harbor Laboratory Press, 2017. PubMed
Stoppini L.; Buchs P.-A.; Muller D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 1991, 37, 173–182. 10.1016/0165-0270(91)90128-M. PubMed DOI
De Simoni A.; Griesinger C. B.; Edwards F. A. Development of Rat CA1 Neurones in Acute versus Organotypic Slices: Role of Experience in Synaptic Morphology and Activity. J. Physiol. 2003, 550, 135–147. 10.1113/jphysiol.2003.039099. PubMed DOI PMC
Berndt A.; Schoenenberger P.; Mattis J.; Tye K. M.; Deisseroth K.; Hegemann P.; Oertner T. G. High-Efficiency Channelrhodopsins for Fast Neuronal Stimulation at Low Light Levels. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 7595–7600. 10.1073/pnas.1017210108. PubMed DOI PMC
Wietek J.; Beltramo R.; Scanziani M.; Hegemann P.; Oertner T. G.; Wiegert J. S. An Improved Chloride-Conducting Channelrhodopsin for Light-Induced Inhibition of Neuronal Activity in Vivo. Sci. Rep. 2015, 5, 14807.10.1038/srep14807. PubMed DOI PMC
Ji J.; Moquin A.; Bertorelle F.; Chang P. KY.; Antoine R.; Luo J.; Mckinney R. A.; Maysinger D. Organotypic and Primary Neural Cultures as Models to Assess Effects of Different Gold Nanostructures on Glia and Neurons. Nanotoxicology 2019, 13, 285–304. 10.1080/17435390.2018.1543468. PubMed DOI
Wiegert J. S.; Gee C. E.; Oertner T. G.. Stimulating Neurons with Heterologously Expressed Light-Gated Ion Channels; Cold Spring Harbor Laboratory Press, 2017. PubMed
Holbro N.; Grunditz Å.; Oertner T. G. Differential Distribution of Endoplasmic Reticulum Controls Metabotropic Signaling and Plasticity at Hippocampal Synapses. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 15055–15060. 10.1073/pnas.0905110106. PubMed DOI PMC
Wiegert J. S.; Oertner T. G. Long-Term Depression Triggers the Selective Elimination of Weakly Integrated Synapses. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, E4510–E4519. 10.1073/pnas.1315926110. PubMed DOI PMC
Anisimova M.; van Bommel B.; Wang R.; Mikhaylova M.; Wiegert J. S.; Oertner T. G.; Gee C. E. Spike-Timing-Dependent Plasticity Rewards Synchrony Rather Than Causality. Cereb Cortex 2022, 33, 23–34. 10.1093/cercor/bhac050. PubMed DOI PMC
Bi G.-q. B.; Poo M.-m. Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. J. Neurosci. 1998, 18, 10464–10472. 10.1523/JNEUROSCI.18-24-10464.1998. PubMed DOI PMC
Perez-Alvarez A.; Fearey B. C.; O’Toole R. J.; Yang W.; Arganda-Carreras I.; Lamothe-Molina P. J.; Moeyaert B.; Mohr M. A.; Panzera L. C.; Schulze C.; Schreiter E. R.; Wiegert J. S.; Gee C. E.; Hoppa M. B.; Oertner T. G. Freeze-Frame Imaging of Synaptic Activity Using SynTagMA. Nat. Commun. 2020, 11, 2464.10.1038/s41467-020-16315-4. PubMed DOI PMC
Laprell L.; Schulze C.; Brehme M. L.; Oertner T. G. The Role of Microglia Membrane Potential in Chemotaxis. J. Neuroinflammation 2021, 18, 21.10.1186/s12974-020-02048-0. PubMed DOI PMC
Ravi V. M.; Will P.; Kueckelhaus J.; Sun N.; Joseph K.; Salié H.; Vollmer L.; Kuliesiute U.; von Ehr J.; Benotmane J. K.; et al. Spatially Resolved Multi-Omics Deciphers Bidirectional Tumor-Host Interdependence in Glioblastoma. Cancer Cell 2022, 40, 639–655. 10.1016/j.ccell.2022.05.009. PubMed DOI
Ravi V. M.; Will P.; Kueckelhaus J.; Sun N.; Joseph K.; Salié H.; Ehr J. v.; Vollmer L.; Benotmane J. K.; Neidert N.. Spatiotemporal Heterogeneity of Glioblastoma Is Dictated by Microenvironmental Interference. bioRxiv, February 17, 2021, 431475.
Nzou G.; Wicks R. T.; Wicks E. E.; Seale S. A.; Sane C. H.; Chen A.; Murphy S. V.; Jackson J. D.; Atala A. J. Human Cortex Spheroid with a Functional Blood Brain Barrier for High-Throughput Neurotoxicity Screening and Disease Modeling. Sci. Rep. 2018, 8, 7413.10.1038/s41598-018-25603-5. PubMed DOI PMC
Chatzinikolaidou M. Cell Spheroids: The New Frontiers in in Vitro Models for Cancer Drug Validation. Drug Discovery Today 2016, 21, 1553–1560. 10.1016/j.drudis.2016.06.024. PubMed DOI
Saraiva C.; Praca C.; Ferreira R.; Santos T.; Ferreira L.; Bernardino L. Nanoparticle-Mediated Brain Drug Delivery: Overcoming Blood-Brain Barrier to Treat Neurodegenerative Diseases. J. Controlled Release 2016, 235, 34–47. 10.1016/j.jconrel.2016.05.044. PubMed DOI
Pandey P. K.; Sharma A. K.; Gupta U. Blood Brain Barrier: An Overview on Strategies in Drug Delivery, Realistic in Vitro Modeling and in Vivo Live Tracking. Tissue Barriers 2016, 4, e1129476.10.1080/21688370.2015.1129476. PubMed DOI PMC
Nzou G.; Seeds M. C.; Wicks R. T.; Atala A. J. Fundamental Neurovascular Components for the Development of Complex and Dynamic in Vitro Brain Equivalent Models. J. Alzheimer’s Neurodegener. Dis. 2019, 5, 021.10.24966/AND-9608/100021. DOI
Bergmann S.; Lawler S. E.; Qu Y.; Fadzen C. M.; Wolfe J. M.; Regan M. S.; Pentelute B. L.; Agar N. Y. R.; Cho C. F. Blood-Brain-Barrier Organoids for Investigating the Permeability of CNS Therapeutics. Nat. Protoc. 2018, 13, 2827–2843. 10.1038/s41596-018-0066-x. PubMed DOI PMC
Helms H. C.; Abbott N. J.; Burek M.; Cecchelli R.; Couraud P. O.; Deli M. A.; Forster C.; Galla H. J.; Romero I. A.; Shusta E. V.; Stebbins M. J.; Vandenhaute E.; Weksler B.; Brodin B. In Vitro Models of the Blood-Brain Barrier: An Overview of Commonly Used Brain Endothelial Cell Culture Models and Guidelines for Their Use. J. Cereb. Blood Flow Metab. 2016, 36, 862–90. 10.1177/0271678X16630991. PubMed DOI PMC
Cho C. F.; Wolfe J. M.; Fadzen C. M.; Calligaris D.; Hornburg K.; Chiocca E. A.; Agar N. Y. R.; Pentelute B. L.; Lawler S. E. Models of the Blood-Brain Barrier: An Overview of Commonly Used Brain Endothelial Cell Culture Models and Guidelines for Their Use. Nat. Commun. 2017, 8, 15623.10.1038/ncomms15623. PubMed DOI PMC
Lu H.; Stenzel M. H. Multicellular Tumor Spheroids (MCTS) as a 3D in Vitro Evaluation Tool of Nanoparticles. Small 2018, 14, e1702858.10.1002/smll.201702858. PubMed DOI
Leite P. E. C.; Pereira M. R.; Harris G.; Pamies D.; Dos Santos L. M. G.; Granjeiro J. M.; Hogberg H. T.; Hartung T.; Smirnova L. Suitability of 3D Human Brain Spheroid Models to Distinguish Toxic Effects of Gold and Poly-Lactic Acid Nanoparticles to Assess Biocompatibility for Brain Drug Delivery. Part. Fibre Toxicol. 2019, 16, 22.10.1186/s12989-019-0307-3. PubMed DOI PMC
Nzou G.; Wicks R. T.; VanOstrand N. R.; Mekky G. A.; Seale S. A.; El-Taibany A.; Wicks E. E.; Nechtman C. M.; Marrotte E. J.; Makani V. S.; Murphy S. V.; Seeds M. C.; Jackson J. D.; Atala A. J. Multicellular 3D Neurovascular Unit Model for Assessing Hypoxia and Neuroinflammation Induced Blood-Brain Barrier Dysfunction. Sci. Rep. 2020, 10, 9766.10.1038/s41598-020-66487-8. PubMed DOI PMC
Chlebanowska P.; Tejchman A.; Sulkowski M.; Skrzypek K.; Majka M. Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 694.10.3390/ijms21030694. PubMed DOI PMC
Chhibber T.; Bagchi S.; Lahooti B.; Verma A.; Al-Ahmad A.; Paul M. K.; Pendyala G.; Jayant R. D. CNS Organoids: An Innovative Tool for Neurological Disease Modeling and Drug Neurotoxicity Screening. Drug Discovery Today 2020, 25, 456–465. 10.1016/j.drudis.2019.11.010. PubMed DOI PMC
Cheah P.-S.; Mason J. O.; Ling K. H. Challenges and Future Perspectives for 3D Cerebral Organoids as a Model for Complex Brain Disorders. Neurosci. Res. Notes 2019, 2, 1–6. 10.31117/neuroscirn.v2i1.28. DOI
Rakotoson I.; Delhomme B.; Djian P.; Deeg A.; Brunstein M.; Seebacher C.; Uhl R.; Ricard C.; Oheim M. Fast 3-D Imaging of Brain Organoids with a New Single-Objective Planar-Illumination Two-Photon Microscope. Front. Neuroanat. 2019, 13, 77.10.3389/fnana.2019.00077. PubMed DOI PMC
Abbott N. J. Inflammatory Mediators and Modulation of Blood-Brain Barrier Permeability. Cell. Mol. Neurobiol. 2000, 20, 131–147. 10.1023/A:1007074420772. PubMed DOI PMC
Ju F.; Ran Y.; Zhu L.; Cheng X.; Gao H.; Xi X.; Yang Z.; Zhang S. Increased BBB Permeability Enhances Activation of Microglia and Exacerbates Loss of Dendritic Spines After Transient Global Cerebral Ischemia. Front. Cell. Neurosci. 2018, 12, 236.10.3389/fncel.2018.00236. PubMed DOI PMC
Li T. L.; Liu Y.; Forro C.; Yang X.; Beker L.; Bao Z.; Cui B.; Paşca S. P. Stretchable Mesh Microelectronics for the Biointegration and Stimulation of Human Neural Organoids. Biomaterials 2022, 290, 121825.10.1016/j.biomaterials.2022.121825. PubMed DOI PMC
Huang Q.; Tang B.; Romero J. C.; Yang Y.; Elsayed S. K.; Pahapale G.; Lee T.-J.; Morales Pantoja I. E.; Han F.; Berlinicke C.; et al. Shell Microelectrode Arrays (MEAs) for Brain Organoids. Sci. Adv. 2022, 8, eabq5031.10.1126/sciadv.abq5031. PubMed DOI PMC
Le Floch P.; Li Q.; Lin Z.; Zhao S.; Liu R.; Tasnim K.; Jiang H.; Liu J. Stretchable Mesh Nanoelectronics for 3D Single-Cell Chronic Electrophysiology from Developing Brain Organoids. Adv. Mater. 2022, 34, 2106829.10.1002/adma.202106829. PubMed DOI PMC
Kalmykov A.; Huang C.; Bliley J.; Shiwarski D.; Tashman J.; Abdullah A.; Rastogi S. K.; Shukla S.; Mataev E.; Feinberg A. W.; et al. Organ-on-e-Chip: Three-Dimensional Self-Rolled Biosensor Array for Electrical Interrogations of Human Electrogenic Spheroids. Sci. Adv. 2019, 5, eaax0729.10.1126/sciadv.aax0729. PubMed DOI PMC
Darrigues E.; Nima Z. A.; Griffin R. J.; Anderson J. M.; Biris A. S.; Rodriguez A. 3D Cultures for Modeling Nanomaterial-Based Photothermal Therapy. Nanoscale Horiz. 2020, 5, 400–430. 10.1039/C9NH00628A. PubMed DOI
De Simone U.; Roccio M.; Gribaldo L.; Spinillo A.; Caloni F.; Coccini T. Human 3D Cultures as Models for Evaluating Magnetic Nanoparticle CNS Cytotoxicity after Short- and Repeated Long-Term Exposure. Int. J. Mol. Sci. 2018, 19, 1993.10.3390/ijms19071993. PubMed DOI PMC
Marino A.; Camponovo A.; Degl’Innocenti A.; Bartolucci M.; Tapeinos C.; Martinelli C.; De Pasquale D.; Santoro F.; Mollo V.; Arai S.; Suzuki M.; Harada Y.; Petretto A.; Ciofani G. Multifunctional Temozolomide-Loaded Lipid Superparamagnetic Nanovectors: Dual Targeting and Disintegration of Glioblastoma Spheroids by Synergic Chemotherapy and Hyperthermia Treatment. Nanoscale 2019, 11, 21227–21248. 10.1039/C9NR07976A. PubMed DOI PMC
Arvanitis C. D.; Ferraro G. B.; Jain R. K. The Blood-Brain Barrier and Blood-Tumour Barrier in Brain Tumours and Metastases. Nat. Rev. Cancer 2020, 20, 26–41. 10.1038/s41568-019-0205-x. PubMed DOI PMC
Khaitan D.; Reddy P. L.; Ningaraj N. Targeting Brain Tumors with Nanomedicines: Overcoming Blood Brain Barrier Challenges. Curr. Clin. Pharmacol. 2018, 13, 110–119. 10.2174/1574884713666180412150153. PubMed DOI
Tang W.; Fan W.; Lau J.; Deng L.; Shen Z.; Chen X. Emerging Blood-Brain-Barrier-Crossing Nanotechnology for Brain Cancer Theranostics. Chem. Soc. Rev. 2019, 48, 2967–3014. 10.1039/C8CS00805A. PubMed DOI
Jafari B.; Pourseif M. M.; Barar J.; Rafi M. A.; Omidi Y. Peptide-Mediated Drug Delivery across the Blood-Brain Barrier for Targeting Brain Tumors. Expert Opin. Drug Delivery 2019, 16, 583–605. 10.1080/17425247.2019.1614911. PubMed DOI
Noël X.; Bechara A. Bridging the Gap between the Lab and the Clinic: Psychopathology’s Grand Challenge. Front. Psychol. 2016, 7, 1752.10.3389/fpsyg.2016.01752. PubMed DOI PMC
Sirota A.; Montgomery S.; Fujisawa S.; Isomura Y.; Zugaro M.; Buzsáki G. Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm. Neuron 2008, 60, 683–697. 10.1016/j.neuron.2008.09.014. PubMed DOI PMC
Patrono E.; Hrůzova K.; Svoboda J.; Stuchlík A. The Role of Optogenetic Stimulations of Parvalbumin-Positive Interneurons in the Prefrontal Cortex and the Ventral Hippocampus on an Acute MK-801 Model of Schizophrenia-Like Cognitive Inflexibility. Schizophr. Res. 2023, 252, 198–205. 10.1016/j.schres.2022.12.047. PubMed DOI
Szczurowska E.; Ahuja N.; Jiruška P.; Kelemen E.; Stuchlík A. Impairment of Neural Coordination in Hippocampal Neuronal Ensembles after a Psychotomimetic Dose of Dizocilpine. Prog. Neuro-Psychopharmacol. 2018, 81, 275–283. 10.1016/j.pnpbp.2017.09.013. PubMed DOI
Brofiga M.; Pisano M.; Tedesco M.; Boccaccio A.; Massobrio P. Functional Inhibitory Connections Modulate the Electrophysiological Activity Patterns of Cortical-Hippocampal Ensembles. Cerebr. Cortex 2022, 32, 1866–1881. 10.1093/cercor/bhab318. PubMed DOI
Callegari F.; Brofiga M.; Poggio F.; Massobrio P. Stimulus-Evoked Activity Modulation of in Vitro Engineered Cortical and Hippocampal Networks. Micromachines 2022, 13, 1212.10.3390/mi13081212. PubMed DOI PMC
Brofiga M.; Massobrio P. Brain-on-a-Chip: Dream or Reality?. Front. Neurosci. 2022, 16, 837623.10.3389/fnins.2022.837623. PubMed DOI PMC
Amirifar L.; Shamloo A.; Nasiri R.; de Barros N. R.; Wang Z. Z.; Unluturk B. D.; Libanori A.; Ievglevskyi O.; Diltemiz S. E.; Sances S.; et al. Brain-on-a-Chip: Recent Advances in Design and Techniques for Microfluidic Models of the Brain in Health and Disease. Biomaterials 2022, 285, 121531.10.1016/j.biomaterials.2022.121531. PubMed DOI
Dai M.; Xiao G.; Shao M.; Zhang Y. S. The Synergy between Deep Learning and Organs-on-Chips for High-Throughput Drug Screening: A Review. Biosensors 2023, 13, 389.10.3390/bios13030389. PubMed DOI PMC
Kamudzandu M.; Köse-Dunn M.; Evans M. G.; Fricker R. A.; Roach P. A Micro-Fabricated in Vitro Complex Neuronal Circuit Platform. Biomed. Phys. Eng. Express 2019, 5, 045016.10.1088/2057-1976/ab2307. DOI
Nikolakopoulou P.; Rauti R.; Voulgaris D.; Shlomy I.; Maoz B. M.; Herland A. Recent Progress in Translational Engineered in Vitro Models of the Central Nervous System. Brain 2020, 143, 3181–3213. 10.1093/brain/awaa268. PubMed DOI PMC
Tessier-Lavigne M.; Goodman C. S. The Molecular Biology of Axon Guidance. Science 1996, 274, 1123–1133. 10.1126/science.274.5290.1123. PubMed DOI
Luo B.; Tiwari A. P.; Chen N.; Ramakrishna S.; Yang I. H. Development of an Axon-Guiding Aligned Nanofiber-Integrated Compartmentalized Microfluidic Neuron Culture System. ACS Appl. Bio Mater. 2021, 4, 8424–8432. 10.1021/acsabm.1c00960. PubMed DOI
Virlogeux A.; Moutaux E.; Christaller W.; Genoux A.; Bruyere J.; Fino E.; Charlot B.; Cazorla M.; Saudou F. Reconstituting Corticostriatal Network on-a-Chip Reveals the Contribution of the Presynaptic Compartment to Huntington’s Disease. Cell Rep. 2018, 22, 110–122. 10.1016/j.celrep.2017.12.013. PubMed DOI
Dauth S.; Maoz B. M.; Sheehy S. P.; Hemphill M. A.; Murty T.; Macedonia M. K.; Greer A. M.; Budnik B.; Parker K. K. Neurons Derived from Different Brain Regions Are Inherently Different in Vitro: A Novel Multiregional Brain-on-a-Chip. J. Neurophysiol. 2017, 117, 1320–1341. 10.1152/jn.00575.2016. PubMed DOI PMC
Taylor A. M.; Blurton-Jones M.; Rhee S. W.; Cribbs D. H.; Cotman C. W.; Jeon N. L. A Microfluidic Culture Platform for CNS Axonal Injury, Regeneration and Transport. Nat. Methods 2005, 2, 599–605. 10.1038/nmeth777. PubMed DOI PMC
Podbiel D.; Laermer F.; Zengerle R.; Hoffmann J. Fusing MEMS Technology with Lab-on-Chip: Nanoliter-Scale Silicon Microcavity Arrays for Digital DNA Quantification and Multiplex Testing. Microsyst. Nanoeng. 2020, 6, 82.10.1038/s41378-020-00187-1. PubMed DOI PMC
Zhao E. T.; Hull J. M.; Mintz Hemed N.; Uluşan H.; Bartram J.; Zhang A.; Wang P.; Pham A.; Ronchi S.; Huguenard J. R.; et al. A CMOS-Based Highly Scalable Flexible Neural Electrode Interface. Sci. Adv. 2023, 9, eadf9524.10.1126/sciadv.adf9524. PubMed DOI PMC
Fernandez-Cuesta I.; Llobera A.; Ramos-Payán M. Optofluidic Systems Enabling Detection in Real Samples: A Review. Anal. Chim. Acta 2022, 1192, 339307.10.1016/j.aca.2021.339307. PubMed DOI
Wang P.; Wu E. G.; Uluşan H.; Phillips A. J.; Hays M. R.; Kling A.; Zhao E. T.; Madugula S.; Vilkhu R. S.; Vasireddy P. K.; Hierlemann A.; Hong G.; Chichilnisky E. J.; Melosh N. A.. Direct-Print Three-Dimensional Electrodes for Large-Scale, High-Density, and Customizable Neural Interfaces. bioRxiv, June 2, 2023, 542925.10.1101/2023.05.30.542925. PubMed DOI PMC
Katt M. E.; Shusta E. V. In Vitro Models of the Blood-Brain Barrier: Building in Physiological Complexity. Curr. Opin. Chem. Eng. 2020, 30, 42–52. 10.1016/j.coche.2020.07.002. PubMed DOI PMC
Huber P.; Karim A.; Zvonkina I.; Lee S.-W.; Kim J.-W.; Roper D. K.; Li W. J.; Gang O.. Nanomedicine 1. In Soft Matter and Biomaterials on the Nanoscale, Vol. 4; World Scientific: 2020.
Kotov N. A.; Winter J. O.; Clements I. P.; Jan E.; Timko B. P.; Campidelli S.; Pathak S.; Mazzatenta A.; Lieber C. M.; Prato M.; Bellamkonda R. V.; Silva G. A.; Kam N. W. S.; Patolsky F.; Ballerini L. Nanomaterials for Neural Interfaces. Adv. Mater. 2009, 21, 3970–4004. 10.1002/adma.200801984. DOI
Wellman S. M.; Eles J. R.; Ludwig K. A.; Seymour J. P.; Michelson N. J.; McFadden W. E.; Vazquez A. L.; Kozai T. D. Y. A Materials Roadmap to Functional Neural Interface Design. Adv. Funct. Mater. 2018, 28, 1701269.10.1002/adfm.201701269. PubMed DOI PMC
Erlebacher J.; Aziz M. J.; Karma A.; Dimitrov N.; Sieradzki K. Evolution of Nanoporosity in Dealloying. Nature 2001, 410, 450–453. 10.1038/35068529. PubMed DOI
Seker E.; Berdichevsky Y.; Begley M. R.; Reed M. L.; Staley K. J.; Yarmush M. L. The Fabrication of Low-Impedance Nanoporous Gold Multiple-Electrode Arrays for Neural Electrophysiology Studies. Nanotechnology 2010, 21, 125504.10.1088/0957-4484/21/12/125504. PubMed DOI PMC
Daggumati P.; Matharu Z.; Wang L.; Seker E. Biofouling-Resilient Nanoporous Gold Electrodes for DNA Sensing. Anal. Chem. 2015, 87, 8618–8622. 10.1021/acs.analchem.5b02969. PubMed DOI
Patel J.; Radhakrishnan L.; Zhao B.; Uppalapati B.; Daniels R. C.; Ward K. R.; Collinson M. M. Electrochemical Properties of Nanostructured Porous Gold Electrodes in Biofouling Solutions. Anal. Chem. 2013, 85, 11610–11618. 10.1021/ac403013r. PubMed DOI
Chapman C. A. R.; Wang L.; Chen H.; Garrison J.; Lein P. J.; Seker E. Nanoporous Gold Biointerfaces: Modifying Nanostructure to Control Neural Cell Coverage and Enhance Electrophysiological Recording Performance. Adv. Funct. Mater. 2017, 27, 1604631.10.1002/adfm.201604631. PubMed DOI PMC
Sánchez G.; Dalchiele E.; Bologna Alles A. Electrical Characterization of Titanium Nitride Surfaces for Pacing Electrodes. J. Mater. Sci. 2006, 41, 3241–3247. 10.1007/s10853-005-5477-8. DOI
Abend A.; Steele C.; Schmidt S.; Frank R.; Jahnke H.-G.; Zink M. Neuronal and Glial Cell Co-Culture Organization and Impedance Spectroscopy on Nanocolumnar TiN Films for Lab-on-a-Chip Devices. Biomater. Sci. 2022, 10, 5719–5730. 10.1039/D2BM01066F. PubMed DOI
Kim Y. H.; Koo H.; Kim M. S.; Jung S.-D. Iridium Oxide on Indium-Tin Oxide Nanowires: An All Metal Oxide Heterostructured Multi-Electrode Array for Neuronal Interfacing. Sens. Actuators, B 2018, 273, 718–725. 10.1016/j.snb.2018.06.045. DOI
Chen C.; Ruan S.; Bai X.; Lin C.; Xie C.; Lee I.-S. Patterned Iridium Oxide Film as Neural Electrode Interface: Biocompatibility and Improved Neurite Outgrowth with Electrical Stimulation. Mater. Sci. Eng., C 2019, 103, 109865.10.1016/j.msec.2019.109865. PubMed DOI
Yamagiwa S.; Fujishiro A.; Sawahata H.; Numano R.; Ishida M.; Kawano T. Layer-by-Layer Assembled Nanorough Iridium-Oxide/Platinum-Black for Low-Voltage Microscale Electrode Neurostimulation. Sens. Actuators, B 2015, 206, 205–211. 10.1016/j.snb.2014.09.048. DOI
Kim Y. H.; Kim G. H.; Kim M. S.; Jung S. D. Iridium Oxide-Electrodeposited Nanoporous Gold Multielectrode Array with Enhanced Stimulus Efficacy. Nano Lett. 2016, 16, 7163–7168. 10.1021/acs.nanolett.6b03473. PubMed DOI
Ganji M.; Paulk A. C.; Yang J. C.; Vahidi N. W.; Lee S. H.; Liu R.; Hossain L.; Arneodo E. M.; Thunemann M.; Shigyo M.; Tanaka A.; Ryu S. B.; Lee S. W.; Tchoe Y.; Marsala M.; Devor A.; Cleary D. R.; Martin J. R.; Oh H.; Gilja V.; Gentner T. Q.; Fried S. I.; Halgren E.; Cash S. S.; Dayeh S. A. Selective Formation of Porous Pt Nanorods for Highly Electrochemically Efficient Neural Electrode Interfaces. Nano Lett. 2019, 19, 6244–6254. 10.1021/acs.nanolett.9b02296. PubMed DOI PMC
Seker E.; Berdichevsky Y.; Staley K. J.; Yarmush M. L. Microfabrication-Compatible Nanoporous Gold Foams as Biomaterials for Drug Delivery. Adv. Healthc. Mater. 2012, 1, 172–176. 10.1002/adhm.201200002. PubMed DOI PMC
Li Z.; Polat O.; Seker E. Voltage-Gated Closed-Loop Control of Small-Molecule Release from Alumina-Coated Nanoporous Gold Thin Film Electrodes. Adv. Funct. Mater. 2018, 28, 1801292.10.1002/adfm.201801292. DOI
Isaksson J.; Kjäll P.; Nilsson D.; Robinson N.; Berggren M.; Richter-Dahlfors A. Electronic Control of Ca2+ Signalling in Neuronal Cells Using an Organic Electronic Ion Pump. Nat. Mater. 2007, 6, 673–679. 10.1038/nmat1963. PubMed DOI
Tybrandt K.; Larsson K. C.; Kurup S.; Simon D. T.; Kjäll P.; Isaksson J.; Sandberg M.; Jager E. W.; Richter-Dahlfors A.; Berggren M. Translating Electronic Currents to Precise Acetylcholine-Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device. Adv. Mater. 2009, 21, 4442–4446. 10.1002/adma.200900187. DOI
Arbring Sjöström T.; Berggren M.; Gabrielsson E. O.; Janson P.; Poxson D. J.; Seitanidou M.; Simon D. T. Iontronics: A Decade of Iontronic Delivery Devices. Adv. Mater. Technol. 2018, 3, 1870018.10.1002/admt.201700360. DOI
Seitanidou M.; Sygletou M.; Savva K.; Berggren M.; Stratakis E.; Simon D. T. Graphene-Enabled Electrophoretic Ion Pump Delivery Devices. Adv. Mater. Interfaces 2022, 9, 2102507.10.1002/admi.202102507. DOI
Jakešová M.; Sjöström T. A.; Đerek V.; Poxson D.; Berggren M.; Głowacki E. D.; Simon D. T. Wireless Organic Electronic Ion Pumps Driven by Photovoltaics. npj Flexible Electron. 2019, 3, 14.10.1038/s41528-019-0060-6. DOI
Xue Y.; Markmann J.; Duan H.; Weissmuller J.; Huber P. Switchable Imbibition in Nanoporous Gold. Nat. Commun. 2014, 5, 4237.10.1038/ncomms5237. PubMed DOI PMC
Palanisamy B.; Goshi N.; Seker E. Chemically-Gated and Sustained Molecular Transport through Nanoporous Gold Thin Films in Biofouling Conditions. Nanomaterials (Basel) 2021, 11, 498.10.3390/nano11020498. PubMed DOI PMC
Coffer J.Porous Silicon and Tissue Engineering Scaffolds. In Handbook of Porous Silicon; Canham L., Ed.; Springer, 2018.
Tieu T.; Alba M.; Elnathan R.; Cifuentes-Rius A.; Voelcker N. H. Advances in Porous Silicon-Based Nanomaterials for Diagnostic and Therapeutic Applications. Adv. Ther. 2019, 2, 1800095.10.1002/adtp.201800095. DOI
Tzur-Balter A.; Shatsberg Z.; Beckerman M.; Segal E.; Artzi N. Mechanism of Erosion of Nanostructured Porous Silicon Drug Carriers in Neoplastic Tissues. Nat. Commun. 2015, 6, 6208.10.1038/ncomms7208. PubMed DOI PMC
Yuryev M.; Ferreira M. P.; Balasubramanian V.; Correia A. M.; Mäkilä E. M.; Jokinen V.; Andriichuk L.; Kemell M.; Salonen J. J.; Hirvonen J. T.; Santos H. A.; Rivera C. Active Diffusion of Nanoparticles of Maternal Origin within the Embryonic Brain. Nanomedicine (Lond) 2016, 11, 2471–2481. 10.2217/nnm-2016-0207. PubMed DOI
Prominski A.; Shi J.; Li P.; Yue J.; Lin Y.; Park J.; Tian B.; Rotenberg M. Y. Porosity-Based Heterojunctions Enable Leadless Optoelectronic Modulation of Tissues. Nat. Mater. 2022, 21, 647–655. 10.1038/s41563-022-01249-7. PubMed DOI
Thelen M.; Bochud N.; Brinker M.; Prada C.; Huber P. Laser-Excited Elastic Guided Waves Reveal the Complex Mechanics of Nanoporous Silicon. Nat. Commun. 2021, 12, 3597.10.1038/s41467-021-23398-0. PubMed DOI PMC
Canham L.Handbook of Porous Silicon. 2nd ed.; Springer, 2018.
Sailor M. J.Porous Silicon in Practice - Preparation, Characterization and Applications; Wiley-VCH: Weinheim, 2011; p 250.
Cencha L. G.; Dittrich G.; Huber P.; Berli C. L. A.; Urteaga R. Precursor Film Spreading during Liquid Imbibition in Nanoporous Photonic Crystals. Phys. Rev. Lett. 2020, 125, 234502.10.1103/PhysRevLett.125.234502. PubMed DOI
Coluccio M. L.; Onesto V.; Marinaro G.; Dell’Apa M.; De Vitis S.; Imbrogno A.; Tirinato L.; Perozziello G.; Di Fabrizio E.; Candeloro P.; Malara N.; Gentile F. Cell Theranostics on Mesoporous Silicon Substrates. Pharmaceutics 2020, 12, 481.10.3390/pharmaceutics12050481. PubMed DOI PMC
Huber P. Soft Matter in Hard Confinement: Phase Transition Thermodynamics, Structure, Texture, Diffusion and Flow in Nanoporous Media. J. Phys.: Condens. Matter 2015, 27, 103102.10.1088/0953-8984/27/10/103102. PubMed DOI
Huber P.; Karim A.; Zvonkina I.; Lee S.-W.; Kim J.-W.; Roper D. K.; Li W. J.; Gang O.. Soft Matter and Biomaterials on the Nanoscale, Vol. 1; World Scientific: 2020.
Park J. H.; Gu L.; von Maltzahn G.; Ruoslahti E.; Bhatia S. N.; Sailor M. J. Biodegradable Luminescent Porous Silicon Nanoparticles for in Vivo Applications. Nat. Mater. 2009, 8, 331–336. 10.1038/nmat2398. PubMed DOI PMC
Gu L.; Hall D. J.; Qin Z.; Anglin E.; Joo J.; Mooney D. J.; Howell S. B.; Sailor M. J. In Vivo Time-Gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles. Nat. Commun. 2013, 4, 2326.10.1038/ncomms3326. PubMed DOI PMC
Joo J.; Liu X.; Kotamraju V. R.; Ruoslahti E.; Nam Y.; Sailor M. J. Gated Luminescence Imaging of Silicon Nanoparticles. ACS Nano 2015, 9, 6233–6241. 10.1021/acsnano.5b01594. PubMed DOI PMC
Kang J.; Kim D.; Wang J.; Han Y.; Zuidema J. M.; Hariri A.; Park J. H.; Jokerst J. V.; Sailor M. J. Enhanced Performance of a Molecular Photoacoustic Imaging Agent by Encapsulation in Mesoporous Silicon Nanoparticles. Adv. Mater. 2018, 30, e1800512.10.1002/adma.201800512. PubMed DOI PMC
Rosenberg M.; Zilony N.; Shefi O.; Segal E. Designing Porous Silicon Films as Carriers of Nerve Growth Factor. J. Vis. Exp. 2019, 143, e58982.10.3791/58982-v. PubMed DOI
Zilony-Hanin N.; Rosenberg M.; Richman M.; Yehuda R.; Schori H.; Motiei M.; Rahimipour S.; Groisman A.; Segal E.; Shefi O. Neuroprotective Effect of Nerve Growth Factor Loaded in Porous Silicon Nanostructures in an Alzheimer’s Disease Model and Potential Delivery to the Brain. Small 2019, 15, e1904203.10.1002/smll.201904203. PubMed DOI
Balasubramanian V.; Domanskyi A.; Renko J. M.; Sarparanta M.; Wang C. F.; Correia A.; Makila E.; Alanen O. S.; Salonen J.; Airaksinen A. J.; Tuominen R.; Hirvonen J.; Airavaara M.; Santos H. A. Engineered Antibody-Functionalized Porous Silicon Nanoparticles for Therapeutic Targeting of Pro-Survival Pathway in Endogenous Neuroblasts after Stroke. Biomaterials 2020, 227, 119556.10.1016/j.biomaterials.2019.119556. PubMed DOI
Balasubramanian V. Brain Power. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2107022118.10.1073/pnas.2107022118. PubMed DOI PMC
Nagarajan N.; Stevens C. F. How Does the Speed of Thought Compare for Brains and Digital Computers?. Curr. Biol. 2008, 18, R756–R758. 10.1016/j.cub.2008.06.043. PubMed DOI
Zarrintaj P.; Saeb M. R.; Stadler F. J.; Yazdi M. K.; Nezhad M. N.; Mohebbi S.; Seidi F.; Ganjali M. R.; Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv. Biol. 2022, 6, 2000526.10.1002/adbi.202000526. PubMed DOI
Wu Q.; Liu J.; Wang X.; Feng L.; Wu J.; Zhu X.; Wen W.; Gong X. Organ-on-a-Chip: Recent Breakthroughs and Future Prospects. Biomed. Eng. OnLine 2020, 19, 9.10.1186/s12938-020-0752-0. PubMed DOI PMC
Shahrubudin N.; Lee T. C.; Ramlan R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. 10.1016/j.promfg.2019.06.089. DOI
Tack P.; Victor J.; Gemmel P.; Annemans L. 3D-Printing Techniques in a Medical Setting: A Systematic Literature Review. Biomed. Eng. OnLine 2016, 15, 115.10.1186/s12938-016-0236-4. PubMed DOI PMC
Huang Z.; Chi-Pong Tsui G.; Deng Y.; Tang C.-Y. Two-Photon Polymerization Nanolithography Technology for Fabrication of Stimulus-Responsive Micro/Nano-Structures for Biomedical Applications. Nanotechnol. Rev. 2020, 9, 1118–1136. 10.1515/ntrev-2020-0073. DOI
Harinarayana V.; Shin Y. Two-Photon Lithography for Three-Dimensional Fabrication in Micro/Nanoscale Regime: A Comprehensive Review. Opt. Laser Technol. 2021, 142, 107180.10.1016/j.optlastec.2021.107180. DOI
Bernardeschi I.; Ilyas M.; Beccai L. A Review on Active 3D Microstructures via Direct Laser Lithography. Adv. Intell. Syst. 2021, 3, 2100051.10.1002/aisy.202100051. DOI
Selimis A.; Mironov V.; Farsari M. Direct Laser Writing: Principles and Materials for Scaffold 3D Printing. Microelectron. Eng. 2015, 132, 83–89. 10.1016/j.mee.2014.10.001. DOI
Bausch C. S.; Koitmäe A.; Stava E.; Price A.; Resto P. J.; Huang Y.; Sonnenberg D.; Stark Y.; Heyn C.; Williams J. C.; Dent E. W.; Blick R. H. Guided Neuronal Growth on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes. Appl. Phys. Lett. 2013, 103, 173705.10.1063/1.4826885. DOI
Marino A.; Ciofani G.; Filippeschi C.; Pellegrino M.; Pellegrini M.; Orsini P.; Pasqualetti M.; Mattoli V.; Mazzolai B. Two-Photon Polymerization of Sub-Micrometric Patterned Surfaces: Investigation of Cell-Substrate Interactions and Improved Differentiation of Neuron-Like Cells. ACS Appl. Mater. Interfaces 2013, 5, 13012–13021. 10.1021/am403895k. PubMed DOI
Fan Y.; Cui F.; Hou S.; Xu Q.; Chen L.; Lee I.-S. Culture of Neural Cells on Silicon Wafers with Nano-Scale Surface Topograph. J. Neurosci. Methods 2002, 120, 17–23. 10.1016/S0165-0270(02)00181-4. PubMed DOI
Kaehr B.; Allen R.; Javier D. J.; Currie J.; Shear J. B. Guiding Neuronal Development with in Situ Microfabrication. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 16104–16108. 10.1073/pnas.0407204101. PubMed DOI PMC
Renault R.; Durand J.-B.; Viovy J.-L.; Villard C. Asymmetric Axonal Edge Guidance: A New Paradigm for Building Oriented Neuronal Networks. Lab Chip 2016, 16, 2188–2191. 10.1039/C6LC00479B. PubMed DOI
Li W.; Tang Q. Y.; Jadhav A. D.; Narang A.; Qian W. X.; Shi P.; Pang S. W. Large-Scale Topographical Screen for Investigation of Physical Neural-Guidance Cues. Sci. Rep. 2015, 5, 8644.10.1038/srep08644. PubMed DOI PMC
Tuft B. W.; Xu L.; White S. P.; Seline A. E.; Erwood A. M.; Hansen M. R.; Guymon C. A. Neural Pathfinding on Uni- and Multidirectional Photopolymerized Micropatterns. ACS Appl. Mater. Interfaces 2014, 6, 11265–11276. 10.1021/am501622a. PubMed DOI PMC
Tooker A.; Meng E.; Erickson J.; Tai Y.-C.; Pine J.. Development of Biocompatible Parylene Neurocages. In The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE, 2004; pp 2542–2545. PubMed
Goldner J. S.; Bruder J. M.; Li G.; Gazzola D.; Hoffman-Kim D. Neurite Bridging across Micropatterned Grooves. Biomaterials 2006, 27, 460–472. 10.1016/j.biomaterials.2005.06.035. PubMed DOI
Turunen S.; Käpylä E.; Lähteenmäki M.; Ylä-Outinen L.; Narkilahti S.; Kellomäki M. Direct Laser Writing of Microstructures for the Growth Guidance of Human Pluripotent Stem Cell Derived Neuronal Cells. Opt. Lasers Eng. 2014, 55, 197–204. 10.1016/j.optlaseng.2013.11.003. DOI
Amin H.; Dipalo M.; De Angelis F.; Berdondini L. Biofunctionalized 3D Nanopillar Arrays Fostering Cell Guidance and Promoting Synapse Stability and Neuronal Activity in Networks. ACS Appl. Mater. Interfaces 2018, 10, 15207–15215. 10.1021/acsami.8b00387. PubMed DOI PMC
Park M.; Oh E.; Seo J.; Kim M. H.; Cho H.; Choi J. Y.; Lee H.; Choi I. S. Control over Neurite Directionality and Neurite Elongation on Anisotropic Micropillar Arrays. Small 2016, 12, 1148–1152. 10.1002/smll.201501896. PubMed DOI
Micholt L.; Gärtner A.; Prodanov D.; Braeken D.; Dotti C. G.; Bartic C. Substrate Topography Determines Neuronal Polarization and Growth in Vitro. PLoS 2013, 8, e66170.10.1371/journal.pone.0066170. PubMed DOI PMC
Kwiat M.; Elnathan R.; Pevzner A.; Peretz A.; Barak B.; Peretz H.; Ducobni T.; Stein D.; Mittelman L.; Ashery U.; et al. Highly Ordered Large-Scale Neuronal Networks of Individual Cells-Toward Single Cell to 3D Nanowire Intracellular Interfaces. ACS Appl. Mater. Interfaces 2012, 4, 3542–3549. 10.1021/am300602e. PubMed DOI
Yu M.; Huang Y.; Ballweg J.; Shin H.; Huang M.; Savage D. E.; Lagally M. G.; Dent E. W.; Blick R. H.; Williams J. C. Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth. ACS Nano 2011, 5, 2447–2457. 10.1021/nn103618d. PubMed DOI PMC
Larramendy F.; Yoshida S.; Fekete Z.; Serien D.; Takeuchi S.; Paul O.. Stackable Octahedron-Based Photoresist Scaffold by Direct Laser Writing for Controlled Three-Dimensional Cell Networks. In 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS); IEEE, 2015; pp 642–645.
Fendler C.From 2D to 3D - Neurite Guiding Scaffolds for Designer Neuronal Networks; Ph.D. Dissertation, Universität Hamburg, 2019.
Ruggiero A.; Criscuolo V.; Grasselli S.; Bruno U.; Ausilio C.; Bovio C. L.; Bettucci O.; Santoro F. Two-Photon Polymerization Lithography Enabling the Fabrication of PEDOT: PSS 3D Structures for Bioelectronic Applications. Chem. Commun. 2022, 58, 9790–9793. 10.1039/D2CC03152C. PubMed DOI
Buchmann S.; Enrico A.; Holzreuter M. A.; Reid M.; Zeglio E.; Niklaus F.; Stemme G.; Herland A. Probabilistic Cell Seeding and Non-Autofluorescent 3D-Printed Structures as Scalable Approach for Multi-Level Co-Culture Modeling. Mater. Today Bio 2023, 21, 100706.10.1016/j.mtbio.2023.100706. PubMed DOI PMC
Jarosiewicz B.; Sarma A. A.; Bacher D.; Masse N. Y.; Simeral J. D.; Sorice B.; Oakley E. M.; Blabe C.; Pandarinath C.; Gilja V.; et al. Virtual Typing by People with Tetraplegia Using a Self-Calibrating Intracortical Brain-Computer Interface. Sci. Transl. Med. 2015, 7, 313ra179.10.1126/scitranslmed.aac7328. PubMed DOI PMC
Musk E. An Integrated Brain-Machine Interface Platform with Thousands of Channels. J. Med. Internet Res. 2019, 21, e16194.10.2196/16194. PubMed DOI PMC
Schwartz A. B. Cortical Neural Prosthetics. Annu. Rev. Neurosci. 2004, 27, 487–507. 10.1146/annurev.neuro.27.070203.144233. PubMed DOI
Shannon C. E. Communication in the Presence of Noise. Proc. IRE 1949, 37, 10–21. 10.1109/JRPROC.1949.232969. DOI
Wolpaw J. R.; Birbaumer N.; McFarland D. J.; Pfurtscheller G.; Vaughan T. M. Brain-Computer Interfaces for Communication and Control. Clin. Neurophysiol. 2002, 113, 767–791. 10.1016/S1388-2457(02)00057-3. PubMed DOI
Pfurtscheller G.; Flotzinger D.; Kalcher J. Brain-Computer Interface—a New Communication Device for Handicapped Persons. J. Microcomp. Appl. 1993, 16, 293–299. 10.1006/jmca.1993.1030. DOI
von Lühmann A.; Wabnitz H.; Sander T.; Müller K.-R. M3BA: A Mobile, Modular, Multimodal Biosignal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid BCI and Monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 1199–1210. 10.1109/TBME.2016.2594127. PubMed DOI
Almajidy R. K.; Mankodiya K.; Abtahi M.; Hofmann U. G. A Newcomer’s Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev. Biomed. Eng. 2020, 13, 292–308. 10.1109/RBME.2019.2944351. PubMed DOI
Almajidy R. K.; Mottaghi S.; Ajwad A. A.; Boudria Y.; Mankodiya K.; Besio W.; Hofmann U. G. A Case for Hybrid BCIs: Combining Optical and Electrical Modalities Improves Accuracy. Front. Human Neurosci. 2023, 17, 1162712.10.3389/fnhum.2023.1162712. PubMed DOI PMC
Graimann B.; Allison B. Z.; Pfurtscheller G.. Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction; Springer Science & Business Media, 2010.
Pfurtscheller G.; Aranibar A. Evaluation of Event-Related Desynchronization (ERD) Preceding and Following Voluntary Self-Paced Movement. Electroencephalography Clin. Neurophysiol. 1979, 46, 138–146. 10.1016/0013-4694(79)90063-4. PubMed DOI
Schalk G.; Wolpaw J. R.; McFarland D. J.; Pfurtscheller G. EEG-Based Communication: Presence of an Error Potential. Clin. Neurophysiol. 2000, 111, 2138–2144. 10.1016/S1388-2457(00)00457-0. PubMed DOI
Bin G.; Gao X.; Yan Z.; Hong B.; Gao S. An Online Multi-Channel SSVEP-Based Brain-Computer Interface Using a Canonical Correlation Analysis Method. J. Neural Eng. 2009, 6, 046002.10.1088/1741-2560/6/4/046002. PubMed DOI
Fernandez-Vargas J.; Pfaff H. U.; Rodriguez F. B.; Varona P. An Online Multi-Channel SSVEP-Based Brain-Computer Interface Using a Canonical Correlation Analysis Method. Front. Neural Circuits 2013, 7, 27.10.3389/fncir.2013.00027. PubMed DOI PMC
Kelly S. P.; Lalor E. C.; Reilly R. B.; Foxe J. J. Visual Spatial Attention Tracking Using High-Density SSVEP Data for Independent Brain-Computer Communication. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 172–178. 10.1109/TNSRE.2005.847369. PubMed DOI
Kwak N.-S.; Müller K.-R.; Lee S.-W. A Lower Limb Exoskeleton Control System Based on Steady State Visual Evoked Potentials. J. Neural Eng. 2015, 12, 056009.10.1088/1741-2560/12/5/056009. PubMed DOI
Yin E.; Zhou Z.; Jiang J.; Chen F.; Liu Y.; Hu D. A Novel Hybrid BCI Speller Based on the Incorporation of SSVEP into the P300 Paradigm. J. Neural Eng. 2013, 10, 026012.10.1088/1741-2560/10/2/026012. PubMed DOI
van den Broek S. P.; Reinders F.; Donderwinkel M.; Peters M. Volume Conduction Effects in EEG and MEG. Electroencephalography Clin. Neurophysiol. 1998, 106, 522–534. 10.1016/S0013-4694(97)00147-8. PubMed DOI
Plonsey R.; Barr R. C.. Bioelectricity: A Quantitative Approach; Springer Science & Business Media, 2007.
Plonsey R.Volume Conductor Fields. In Bioelectric Phenomena; McGraw-Hill Bioengineering Series, Vol. 202; McGraw-Hill Co: New York, 1969.
Weiskopf N.; Mathiak K.; Bock S. W.; Scharnowski F.; Veit R.; Grodd W.; Goebel R.; Birbaumer N. Principles of a Brain-Computer Interface (BCI) Based on Real-Time Functional Magnetic Resonance Imaging (fMRI). IEEE Trans. Biomedical Eng. 2004, 51, 966–970. 10.1109/TBME.2004.827063. PubMed DOI
Goebel R.; Linden D.. Neurofeedback with Real-Time Functional MRI. In MRI in Psychiatry; Springer, 2014; pp 35–46.
Schröer S.; Killmann I.; Frank B.; Völker M.; Fiederer L.; Ball T.; Burgard W.. An Autonomous Robotic Assistant for Drinking. In 2015 IEEE International Conference on Robotics and Automation (ICRA); IEEE, 2015; pp 6482–6487.
Ball T.; Nawrot M.; Pistohl T.; Aertsen A.; Schulze-Bonhage A.; Mehring C. Towards an Implantable Brain-Machine Interface Based on Epicortical Field Potentials. Biomed. Technol. 2004, 49, 756–759.
Nicolelis M. A.; Lebedev M. A. Principles of Neural Ensemble Physiology Underlying the Operation of Brain-Machine Interfaces. Nat. Rev. Neurosci. 2009, 10, 530–540. 10.1038/nrn2653. PubMed DOI
Thakor N. V. Translating the Brain-Machine Interface. Sci. Trans. Med. 2013, 5, 210ps17.10.1126/scitranslmed.3007303. PubMed DOI
Soekadar S. R.; Birbaumer N.; Slutzky M. W.; Cohen L. G. Brain-Machine Interfaces in Neurorehabilitation of Stroke. Neurobiol. Dis. 2015, 83, 172–179. 10.1016/j.nbd.2014.11.025. PubMed DOI
Nicolelis M. A. L.Methods for Neural Ensemble Recordings; CRC Press: Boca Raton, FL, USA, 1999. PubMed
Krüger J.; Caruana F.; Rizzolatti G. Seven Years of Recording from Monkey Cortex with a Chronically Implanted Multiple Microelectrode. Front. Neuroeng. 2010, 3, 6.10.3389/fneng.2010.00006. PubMed DOI PMC
Ferro M. D.; Melosh N. A. Electronic and Ionic Materials for Neurointerfaces. Adv. Funct. Mater. 2018, 28, 1704335.10.1002/adfm.201704335. DOI
Simeral J.; Kim S.-P.; Black M.; Donoghue J.; Hochberg L. Neural Control of Cursor Trajectory and Click by a Human with Tetraplegia 1000 Days after Implant of an Intracortical Microelectrode Array. J. Neural Eng. 2011, 8, 025027.10.1088/1741-2560/8/2/025027. PubMed DOI PMC
Salas M. A.; Bashford L.; Kellis S.; Jafari M.; Jo H.; Kramer D.; Shanfield K.; Pejsa K.; Lee B.; Liu C. Y.; et al. Proprioceptive and Cutaneous Sensations in Humans Elicited by Intracortical Microstimulation. eLife 2018, 7, e32904.10.7554/eLife.32904. PubMed DOI PMC
Mazurek K. A.; Schieber M. H. Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist 2021, 27, 129–142. 10.1177/1073858420936253. PubMed DOI PMC
Rincón Montes V.; Gehlen J.; Lück S.; Mokwa W.; Müller F.; Walter P.; Offenhäusser A. Toward a Bidirectional Communication between Retinal Cells and a Prosthetic Device-A Proof of Concept. Front. Neurosci. 2019, 13, 367.10.3389/fnins.2019.00367. PubMed DOI PMC
Menzel-Severing J.; Laube T.; Brockmann C.; Bornfeld N.; Mokwa W.; Mazinani B.; Walter P.; Roessler G. Implantation and Explantation of an Active Epiretinal Visual Prosthesis: 2-Year Follow-Up Data from the EPIRET3 Prospective Clinical Trial. Eye 2012, 26, 501–509. 10.1038/eye.2012.35. PubMed DOI PMC
Zrenner E. Will Retinal Implants Restore Vision?. Science 2002, 295, 1022–1025. 10.1126/science.1067996. PubMed DOI
Chen X.; Wang F.; Fernandez E.; Roelfsema P. R. Shape Perception via a High-Channel-Count Neuroprosthesis in Monkey Visual Cortex. Science 2020, 370, 1191–1196. 10.1126/science.abd7435. PubMed DOI
House W. F.; Urban J. Long Term Results of Electrode Implantation and Electronic Stimulation of the Cochlea in Man. Ann. Otology Rhinology Laryngology 1973, 82, 504–517. 10.1177/000348947308200408. PubMed DOI
Zeng F.-G.; Rebscher S.; Harrison W.; Sun X.; Feng H. Cochlear Implants: System Design, Integration, and Evaluation. IEEE Rev. Biomed. Eng. 2008, 1, 115–142. 10.1109/RBME.2008.2008250. PubMed DOI PMC
Wong K.; Kozin E. D.; Kanumuri V. V.; Vachicouras N.; Miller J.; Lacour S.; Brown M. C.; Lee D. J. Auditory Brainstem Implants: Recent Progress and Future Perspectives. Front. Neurosci. 2019, 13, 10.10.3389/fnins.2019.00010. PubMed DOI PMC
Ajiboye A. B.; Willett F. R.; Young D. R.; Memberg W. D.; Murphy B. A.; Miller J. P.; Walter B. L.; Sweet J. A.; Hoyen H. A.; Keith M. W.; et al. Restoration of Reaching and Grasping Movements Through Brain-Controlled Muscle Stimulation in a Person with Tetraplegia: A Proof-of-Concept Demonstration. Lancet 2017, 389, 1821–1830. 10.1016/S0140-6736(17)30601-3. PubMed DOI PMC
Pfurtscheller G.; Müller G. R.; Pfurtscheller J.; Gerner H. J.; Rupp R. ‘Thought’- Control of Functional Electrical Stimulation to Restore Hand Grasp in a Patient with Tetraplegia. Neurosci. Lett. 2003, 351, 33–36. 10.1016/S0304-3940(03)00947-9. PubMed DOI
Cogan S. F.; Ludwig K. A.; Welle C. G.; Takmakov P. Tissue Damage Thresholds During Therapeutic Electrical Stimulation. J. Neural Eng. 2016, 13, 021001.10.1088/1741-2560/13/2/021001. PubMed DOI PMC
Shannon R. V. A Model of Safe Levels for Electrical Stimulation. IEEE Trans. Biomed. Eng. 1992, 39, 424–426. 10.1109/10.126616. PubMed DOI
Pancrazio J. J.; Cogan S. F. Editorial for the Special Issue on Neural Electrodes: Design and Applications. Micromachines (Basel) 2019, 10, 466.10.3390/mi10070466. PubMed DOI PMC
Rousche P. J.; Normann R. A. A Method for Pneumatically Inserting an Array of Penetrating Electrodes into Cortical Tissue. Ann. Biomed. Eng. 1992, 20, 413–422. 10.1007/BF02368133. PubMed DOI
Jensen W.; Yoshida K.; Hofmann U. G. In-Vivo Implant Mechanics of Flexible, Silicon-Based ACREO Microelectrode Arrays in Rat Cerebral Cortex. IEEE Trans. Biomed. Eng. 2006, 53, 934–940. 10.1109/TBME.2006.872824. PubMed DOI
Pflüger P.; Pinnell R. C.; Martini N.; Hofmann U. G. Chronically Implanted Microelectrodes Cause c-fos Expression along Their Trajectory. Front. Neurosci. 2020, 13, 1367.10.3389/fnins.2019.01367. PubMed DOI PMC
Richter A.; Xie Y.; Schumacher A.; Löffler S.; Kirch R.; Al-Hasani J.; Rapoport D. H.; Kruse C.; Moser A.; Tronnier V.; et al. A Simple Implantation Method for Flexible, Multisite Microelectrodes into Rat Brains. Front. Neuroeng. 2013, 6, 6.10.3389/fneng.2013.00006. PubMed DOI PMC
Kozai T. D. Y.; Kipke D. R. Insertion Shuttle with Carboxyl Terminated Self-Assembled Monolayer Coatings for Implanting Flexible Polymer Neural Probes in the Brain. J. Neurosci. Methods 2009, 184, 199–205. 10.1016/j.jneumeth.2009.08.002. PubMed DOI PMC
Robinson J. T.; Pohlmeyer E.; Gather M. C.; Kemere C.; Kitching J. E.; Malliaras G. G.; Marblestone A.; Shepard K. L.; Stieglitz T.; Xie C. Developing Next-Generation Brain Sensing Technologies—A Review. IEEE Sens. J. 2019, 19, 10163–10175. 10.1109/JSEN.2019.2931159. PubMed DOI PMC
Ma Y.; Luo Z.; Steiger C.; Traverso G.; Adib F.. Enabling Deep-Tissue Networking for Miniature Medical Devices. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication; 2018; pp 417–431.
Schamel D.; Mark A. G.; Gibbs J. G.; Miksch C.; Morozov K. I.; Leshansky A. M.; Fischer P. Nanopropellers and Their Actuation in Complex Viscoelastic Media. ACS Nano 2014, 8, 8794–8801. 10.1021/nn502360t. PubMed DOI
Ren L.; Nama N.; McNeill J. M.; Soto F.; Yan Z.; Liu W.; Wang W.; Wang J.; Mallouk T. E. 3D Steerable, Acoustically Powered Microswimmers for Single-Particle Manipulation. Sci. Adv. 2019, 5, eaax3084.10.1126/sciadv.aax3084. PubMed DOI PMC
Martins N. R.; Angelica A.; Chakravarthy K.; Svidinenko Y.; Boehm F. J.; Opris I.; Lebedev M. A.; Swan M.; Garan S. A.; Rosenfeld J. V.; et al. Human Brain/Cloud Interface. Front. Neurosci. 2019, 13, 112.10.3389/fnins.2019.00112. PubMed DOI PMC
Alcântara C. C.; Landers F. C.; Kim S.; De Marco C.; Ahmed D.; Nelson B. J.; Pané S. Mechanically Interlocked 3D Multi-Material Micromachines. Nat. Commun. 2020, 11, 5957.10.1038/s41467-020-19725-6. PubMed DOI PMC
Agarwal K.; Jegadeesan R.; Guo Y.-X.; Thakor N. V. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Rev. Biomed. Eng. 2017, 10, 136–161. 10.1109/RBME.2017.2683520. PubMed DOI
Seo D.; Neely R. M.; Shen K.; Singhal U.; Alon E.; Rabaey J. M.; Carmena J. M.; Maharbiz M. M. Wireless Recording in the Peripheral Nervous System with Ultrasonic Neural Dust. Neuron 2016, 91, 529–539. 10.1016/j.neuron.2016.06.034. PubMed DOI
Seo D.; Carmena J. M.; Rabaey J. M.; Alon E.; Maharbiz M. M.. Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces. arXiv, July 8, 2013, 1307.2196, ver. 110.48550/arXiv.1307.2196. DOI
Gómez-Martínez R.; Vázquez P.; Duch M.; Muriano A.; Pinacho D.; Sanvicens N.; Sánchez-Baeza F.; Boya P.; de la Rosa E. J.; Esteve J.; Suárez T.; Plaza J. A. Intracellular Silicon Chips in Living Cells. Small 2010, 6, 499–502. 10.1002/smll.200901041. PubMed DOI
Marblestone A. H.; Zamft B. M.; Maguire Y. G.; Shapiro M. G.; Cybulski T. R.; Glaser J. I.; Amodei D.; Stranges P. B.; Kalhor R.; Dalrymple D. A.; et al. Physical Principles for Scalable Neural Recording. Front. Comput. Neurosci. 2013, 7, 137.10.3389/fncom.2013.00137. PubMed DOI PMC
Ham D.; Park H.; Hwang S.; Kim K. Neuromorphic Electronics Based on Copying and Pasting the Brain. Nat. Electron. 2021, 4, 635–644. 10.1038/s41928-021-00646-1. DOI
Gray C.; Maldonado P.; Wilson M.; McNaughton B. Tetrodes Markedly Improve the Reliability and Yield of Multiple Single-Unit Isolation from Multi-Unit Recordings in Cat Striate Cortex. J. Neurosci. Meth. 1995, 63, 43–54. 10.1016/0165-0270(95)00085-2. PubMed DOI
Buzsáki G.; Anastassiou C. A.; Koch C. The Origin of Extracellular Fields and Currents—EEG, ECoG, LFP and Spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. 10.1038/nrn3241. PubMed DOI PMC
Thio B. J.; Grill W. M. Relative Contributions of Different Neural Sources to the EEG. NeuroImage 2023, 275, 120179.10.1016/j.neuroimage.2023.120179. PubMed DOI PMC
Næss S.; Halnes G.; Hagen E.; Hagler D. J. Jr; Dale A. M.; Einevoll G. T.; Ness T. V. Biophysically Detailed Forward Modeling of the Neural Origin of EEG and MEG Signals. NeuroImage 2021, 225, 117467.10.1016/j.neuroimage.2020.117467. PubMed DOI
Hämäläinen M.; Hari R.; Ilmoniemi R. J.; Knuutila J.; Lounasmaa O. V. Magnetoencephalography— Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain. Rev. Mod. Phys. 1993, 65, 413.10.1103/RevModPhys.65.413. DOI
Pfurtscheller G.; Da Silva F. L. Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clin. Neurophysiol. 1999, 110, 1842–1857. 10.1016/S1388-2457(99)00141-8. PubMed DOI
Hill R. M.; Boto E.; Rea M.; Holmes N.; Leggett J.; Coles L. A.; Papastavrou M.; Everton S. K.; Hunt B. A.; Sims D.; et al. Multi-Channel Whole-Head OPM-MEG: Helmet Design and a Comparison with a Conventional System. NeuroImage 2020, 219, 116995.10.1016/j.neuroimage.2020.116995. PubMed DOI PMC
Rynes M. L.; Surinach D. A.; Linn S.; Laroque M.; Rajendran V.; Dominguez J.; Hadjistamoulou O.; Navabi Z. S.; Ghanbari L.; Johnson G. W.; et al. Miniaturized Head-Mounted Microscope for Whole-Cortex Mesoscale Imaging in Freely Behaving Mice. Nat. Methods 2021, 18, 417–425. 10.1038/s41592-021-01104-8. PubMed DOI PMC
Zong W.; Obenhaus H. A.; Skytøen E. R.; Eneqvist H.; de Jong N. L.; Vale R.; Jorge M. R.; Moser M.-B.; Moser E. I. Large-Scale Two-Photon Calcium Imaging in Freely Moving Mice. Cell 2022, 185, 1240–1256. 10.1016/j.cell.2022.02.017. PubMed DOI PMC
Tsien R. Y. New Calcium Indicators and Buffers with High Selectivity against Magnesium and Protons: Design, Synthesis and Properties of Prototype Structures. Biochemistry 1980, 19, 2396–2404. 10.1021/bi00552a018. PubMed DOI
Stosiek C.; Garaschuk O.; Holthoff K.; Konnerth A. In Vivo Two-Photon Calcium Imaging of Neuronal Networks. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7319–7324. 10.1073/pnas.1232232100. PubMed DOI PMC
Trevathan J. K.; Asp A. J.; Nicolai E. N.; Trevathan J.; Kremer N. A.; Kozai T. D. Y.; Cheng D.; Schachter M.; Nassi J. J.; Otte S. L.; et al. Calcium Imaging in Freely-Moving Mice During Electrical Stimulation of Deep Brain Structures. J. Neural Eng. 2021, 18, 026008.10.1088/1741-2552/abb7a4. PubMed DOI PMC
Harvey C. D.; Collman F.; Dombeck D. A.; Tank D. W. Intracellular Dynamics of Hippocampal Place Cells During Virtual Navigation. Nature 2009, 461, 941–946. 10.1038/nature08499. PubMed DOI PMC
Dombeck D. A.; Khabbaz A. N.; Collman F.; Adelman T. L.; Tank D. W. Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice. Neuron 2007, 56, 43–57. 10.1016/j.neuron.2007.08.003. PubMed DOI PMC
Thurley K.; Henke J.; Hermann J.; Ludwig B.; Tatarau C.; Wätzig A.; Herz A. V.; Grothe B.; Leibold C. Mongolian Gerbils Learn to Navigate in Complex Virtual Spaces. Behav. Brain Res. 2014, 266, 161–168. 10.1016/j.bbr.2014.03.007. PubMed DOI
Hill B. C.; Schubert E. D.; Nokes M. A.; Michelson R. P. Laser Interferometer Measurement of Changes in Crayfish Axon Diameter Concurrent with Action Potential. Science 1977, 196, 426–428. 10.1126/science.850785. PubMed DOI
Kim G.; Kosterin P.; Obaid A.; Salzberg B. A Mechanical Spike Accompanies the Action Potential in Mammalian Nerve Terminals. Biophys. J. 2007, 92, 3122–3129. 10.1529/biophysj.106.103754. PubMed DOI PMC
Akkin T.; Landowne D.; Sivaprakasam A. Detection of Neural Action Potentials Using Optical Coherence Tomography: Intensity and Phase Measurements with and without Dyes. Front. Neuroenerg. 2010, 2, 22.10.3389/fnene.2010.00022. PubMed DOI PMC
Ling T.; Boyle K. C.; Goetz G.; Zhou P.; Quan Y.; Alfonso F. S.; Huang T. W.; Palanker D. Full-Field Interferometric Imaging of Propagating Action Potentials. Light Sci. Appl. 2018, 7, 107.10.1038/s41377-018-0107-9. PubMed DOI PMC
Yang Y.; Liu X.-W.; Wang H.; Yu H.; Guan Y.; Wang S.; Tao N. I Maging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion. ACS Nano 2018, 12, 4186–4193. 10.1021/acsnano.8b00867. PubMed DOI PMC
Fitzgerald P. B.; Fountain S.; Daskalakis Z. J. A Comprehensive Review of the Effects of rTMS on Motor Cortical Excitability and Inhibition. Clin. Neurophysiol. 2006, 117, 2584–2596. 10.1016/j.clinph.2006.06.712. PubMed DOI
Krieg T. D.; Salinas F. S.; Narayana S.; Fox P. T.; Mogul D. J. PET-Based Confirmation of Orientation Sensitivity of TMS-Induced Cortical Activation in Humans. Brain Stimulation 2013, 6, 898–904. 10.1016/j.brs.2013.05.007. PubMed DOI PMC
Adair D.; Truong D.; Esmaeilpour Z.; Gebodh N.; Borges H.; Ho L.; Bremner J. D.; Badran B. W.; Napadow V.; Clark V. P.; et al. Electrical Stimulation of Cranial Nerves in Cognition and Disease. Brain Stimulation 2020, 13, 717–750. 10.1016/j.brs.2020.02.019. PubMed DOI PMC
Tufail Y.; Matyushov A.; Baldwin N.; Tauchmann M. L.; Georges J.; Yoshihiro A.; Tillery S. I. H.; Tyler W. J. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron 2010, 66, 681–694. 10.1016/j.neuron.2010.05.008. PubMed DOI
Wattiez N.; Constans C.; Deffieux T.; Daye P. M.; Tanter M.; Aubry J.-F.; Pouget P. Transcranial Ultrasonic Stimulation Modulates Single-Neuron Discharge in Macaques Performing an Antisaccade Task. Brain Stimulation 2017, 10, 1024–1031. 10.1016/j.brs.2017.07.007. PubMed DOI
Kubanek J.; Shukla P.; Das A.; Baccus S. A.; Goodman M. B. Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. J. Neurosci. 2018, 38, 3081–3091. 10.1523/JNEUROSCI.1458-17.2018. PubMed DOI PMC
Lee J.; Ko K.; Shin H.; Oh S.-J.; Lee C. J.; Chou N.; Choi N.; Oh M. T.; Lee B. C.; Jun S. C.; et al. A MEMS Ultrasound Stimulation System for Modulation of Neural Circuits with High Spatial Resolution in Vitro. Microsyst. Nanoeng. 2019, 5, 28.10.1038/s41378-019-0070-5. PubMed DOI PMC
Wells J.; Kao C.; Mariappan K.; Albea J.; Jansen E. D.; Konrad P.; Mahadevan-Jansen A. Optical Stimulation of Neural Tissue in Vivo. Opt. Lett. 2005, 30, 504–506. 10.1364/OL.30.000504. PubMed DOI
Wells J.; Konrad P.; Kao C.; Jansen E. D.; Mahadevan-Jansen A. Pulsed Laser versus Electrical Energy for Peripheral Nerve Stimulation. J. Neurosci. Methods 2007, 163, 326–337. 10.1016/j.jneumeth.2007.03.016. PubMed DOI PMC
Richter C. P.; Matic A. I.; Wells J. D.; Jansen E. D.; Walsh J. T. Neural Stimulation with Optical Radiation. Laser Photonics Rev. 2011, 5, 68–80. 10.1002/lpor.200900044. PubMed DOI PMC
Schlett P.; Wegner C.; Krueger T. B.; Hofmann U. G.. Towards Safe Infrared Nerve Stimulation: A Systematic Experimental Approach. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE, 2019; pp 5909–5912. PubMed
Shapiro M. G.; Homma K.; Villarreal S.; Richter C.-P.; Bezanilla F. Infrared Light Excites Cells by Changing Their Electrical Capacitance. Nat. Commun. 2012, 3, 736.10.1038/ncomms1742. PubMed DOI PMC
Fribance S.; Wang J.; Roppolo J. R.; de Groat W. C.; Tai C. Axonal Model for Temperature Stimulation. J. Comput. Neurosci. 2016, 41, 185–192. 10.1007/s10827-016-0612-x. PubMed DOI PMC
Fiebig R. Revival of the Magnetoelectric Effect. J. Phys. D 2005, 38, R123–R152. 10.1088/0022-3727/38/8/R01. DOI
Eerenstein W.; Mathur N.; Scott J. F. Multiferroic and Magnetoelectric Materials. Nature 2006, 442, 759–765. 10.1038/nature05023. PubMed DOI
Yu Z.; Chen J. C.; He Y.; Alrashdan F. T.; Avants B. W.; Singer A.; Robinson J. T.; Yang K.. Multisite Bio-Stimulating Implants Magnetoelectrically Powered and Individually Programmed by a Single Transmitter. In 2021 IEEE Custom Integrated Circuits Conference (CICC); IEEE: 2021; pp 1–2.
Chen J. C.; Kan P.; Yu Z.; Alrashdan F.; Garcia R.; Singer A.; Lai C. E.; Avants B.; Crosby S.; Li Z.; et al. A Wireless Millimetric Magnetoelectric Implant for the Endovascular Stimulation of Peripheral Nerves. Nat. Biomed. Eng. 2022, 6, 706–716. 10.1038/s41551-022-00873-7. PubMed DOI PMC
Singer A.; Dutta S.; Lewis E.; Chen Z.; Chen J. C.; Verma N.; Avants B.; Feldman A. K.; O’Malley J.; Beierlein M.; et al. Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies. Neuron 2020, 107, 631–643. e510.1016/j.neuron.2020.05.019. PubMed DOI PMC
Yue K.; Guduru R.; Hong J.; Liang P.; Nair M.; Khizroev S. Magneto-Electric Nano-Particles for Non-Invasive Brain Stimulation. PLoS One 2012, 7, e44040.10.1371/journal.pone.0044040. PubMed DOI PMC
Kaushik A.; Jayant R. D.; Sagar V.; Nair M. The Potential of Magneto-Electric Nanocarriers for Drug Delivery. Expert Opin. Drug Delivery 2014, 11, 1635–1646. 10.1517/17425247.2014.933803. PubMed DOI PMC
Guduru R.; Liang P.; Hong J.; Rodzinski A.; Hadjikhani A.; Horstmyer J.; Levister E.; Khizroev S. Magnetoelectric ’Spin’on Stimulating the Brain. Nanomedicine 2015, 10, 2051–2061. 10.2217/nnm.15.52. PubMed DOI PMC
Wang Y.; Guo L. Nanomaterial-Enabled Neural Stimulation. Front. Neurosci. 2016, 10, 69.10.3389/fnins.2016.00069. PubMed DOI PMC
Guduru R.; Liang P.; Yousef M.; Horstmyer J.; Khizroev S. Mapping the Brain’s electric fields with Magnetoelectric Nanoparticles. Bioelectron. Med. 2018, 4, 10.10.1186/s42234-018-0012-9. PubMed DOI PMC
Gleich B.; Weizenecker J. Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature 2005, 435, 1214–1217. 10.1038/nature03808. PubMed DOI
Weizenecker J.; Gleich B.; Rahmer J.; Dahnke H.; Borgert J. Three-Dimensional Real-Time in Vivo Magnetic Particle Imaging. Phys. Med. Biol. 2009, 54, L1.10.1088/0031-9155/54/5/L01. PubMed DOI
Stehning C.; Gleich B.; Rahmer J. Simultaneous Magnetic Particle Imaging (MPI) and Temperature Mapping Using Multi-Color MPI. Int. J. Magn. Part. Imaging 2016, 2, 1612001.10.18416/ijmpi.2016.1612001. DOI
Wells J.; Paysen H.; Kosch O.; Trahms L.; Wiekhorst F. Temperature Dependence in Magnetic Particle Imaging. AIP Adv. 2018, 8, 056703.10.1063/1.5004506. DOI
Christiansen M. G.; Senko A. W.; Anikeeva P. Magnetic Strategies for Nervous System Control. Annu. Rev. Neurosci. 2019, 42, 271–293. 10.1146/annurev-neuro-070918-050241. PubMed DOI PMC
Anikeeva P. O.; Chen R.; Christiansen M. G.. Independent Magnetically-Multiplexed Heating of Portions of a Target. US 9,681,979, 2017.
Hensley D.; Tay Z. W.; Dhavalikar R.; Zheng B.; Goodwill P.; Rinaldi C.; Conolly S. Combining Magnetic Particle Imaging and Magnetic Fluid Hyperthermia in a Theranostic Platform. Phys. Med. Biol. 2017, 62, 3483.10.1088/1361-6560/aa5601. PubMed DOI PMC
Shoffstall A. J.; Paiz J. E.; Miller D. M.; Rial G. M.; Willis M. T.; Menendez D. M.; Hostler S. R.; Capadona J. R. Potential for Thermal Damage to the Blood-Brain Barrier During Craniotomy: Implications for Intracortical Recording Microelectrodes. J. Neural Eng. 2018, 15, 034001.10.1088/1741-2552/aa9f32. PubMed DOI PMC
Schlett P.; Mottaghi S.; Buchholz O.; Hofmann U. G. First Steps towards Localized Opening of the Blood-Brain-Barrier by IR Laser Illumination through the Rodent Skull. Curr. Dir. Biomed. Eng. 2019, 5, 211–214. 10.1515/cdbme-2019-0054. DOI
Desai S. A.; Rolston J. D.; Guo L.; Potter S. M. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black. Front. Neuroeng. 2010, 3, 5.10.3389/fneng.2010.00005. PubMed DOI PMC
Kozai T. D.; Alba N. A.; Zhang H.; Kotov N. A.; Gaunt R. A.; Cui X. T.. Nanostructured Coatings for Improved Charge Delivery to Neurons. In Nanotechnology and Neuroscience: Nano-Electronic, Photonic and Mechanical Neuronal Interfacing; Springer, 2014; pp 71–134.
Janders M.; Egert U.; Stelzle M.; Nisch W. In Novel Thin Film Titanium Nitride Micro-Electrodes with Excellent Charge Transfer Capability for Cell Stimulation and Sensing Applications; Proceedings of the 18th Annual Conference of the IEEE Engineering in Medicine and Biology Society; Amsterdam, Boom H.; Robinson C.; Rutten W.; Neuman M.; Wijkstra H., Ed.; IEEE: Amsterdam, 1996.
Łapkowski M.; Proń A. Electrochemical Oxidation of Poly(3, 4-ethylenedioxythiophene)—“In Situ” Conductivity and Spectroscopic Investigations. Synth. Met. 2000, 110, 79–83. 10.1016/S0379-6779(99)00271-4. DOI
Ludwig K. A.; Uram J. D.; Yang J. Y.; Martin D. C.; Kipke D. R. Chronic Neural Recordings Using Silicon Microelectrode Arrays Electrochemically Deposited with a Poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 2006, 3, 59–70. 10.1088/1741-2560/3/1/007. PubMed DOI
Green R.; Matteucci P.; Hassarati R.; Giraud B.; Dodds C.; Chen S.; Byrnes-Preston P.; Suaning G.; Poole-Warren L.; Lovell N. Performance of Conducting Polymer Electrodes for Stimulating Neuroprosthetics. J. Neural Eng. 2013, 10, 016009.10.1088/1741-2560/10/1/016009. PubMed DOI
Castagnola E.; Carli S.; Vomero M.; Scarpellini A.; Prato M.; Goshi N.; Fadiga L.; Kassegne S.; Ricci D. Multilayer Poly(3, 4-ethylenedioxythiophene)-dexamethasone and Poly(3, 4-ethylenedioxythiophene)-Polystyrene Sulfonate-Carbon Nanotubes Coatings on Glassy Carbon Microelectrode Arrays for Controlled Drug Release. Biointerphases 2017, 12, 031002.10.1116/1.4993140. PubMed DOI
Ferlauto L.; D’Angelo A. N.; Vagni P.; Airaghi Leccardi M. J. I.; Mor F. M.; Cuttaz E. A.; Heuschkel M. O.; Stoppini L.; Ghezzi D. Development and Characterization of PEDOT: PSS/Alginate Soft Microelectrodes for Application in Neuroprosthetics. Front. Neurosci. 2018, 12, 648.10.3389/fnins.2018.00648. PubMed DOI PMC
Stocking K. C.; Vazquez A. L.; Kozai T. Intracortical Neural Stimulation with Untethered, Ultrasmall Carbon Fiber Electrodes Mediated by the Photoelectric Effect. IEEE Trans. Biomed. Eng. 2019, 66, 2402–2412. 10.1109/TBME.2018.2889832. PubMed DOI
Choi S.; Han S. I.; Kim D.; Hyeon T.; Kim D. H. High-Performance Stretchable Conductive Nanocomposites: Materials, Processes, and Device Applications. Chem. Soc. Rev. 2019, 48, 1566–1595. 10.1039/C8CS00706C. PubMed DOI
Cho K. W.; Sunwoo S. H.; Hong Y. J.; Koo J. H.; Kim J. H.; Baik S.; Hyeon T.; Kim D. H. Soft Bioelectronics Based on Nanomaterials. Chem. Rev. 2022, 122, 5068–5143. 10.1021/acs.chemrev.1c00531. PubMed DOI
Choi S.; Han S. I.; Jung D.; Hwang H. J.; Lim C.; Bae S.; Park O. K.; Tschabrunn C. M.; Lee M.; Bae S. Y.; Yu J. W.; Ryu J. H.; Lee S. W.; Park K.; Kang P. M.; Lee W. B.; Nezafat R.; Hyeon T.; Kim D. H. Highly Conductive, Stretchable and Biocompatible Ag-Au Core-Sheath Nanowire Composite for Wearable and Implantable Bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056. 10.1038/s41565-018-0226-8. PubMed DOI
Leber A.; Dong C.; Laperrousaz S.; Banerjee H.; Abdelaziz M. E. M. K.; Bartolomei N.; Schyrr B.; Temelkuran B.; Sorin F. Highly Integrated Multi-Material Fibers for Soft Robotics. Adv. Sci. 2023, 10, 2204016.10.1002/advs.202204016. PubMed DOI PMC
Jung D.; Lim C.; Shim H. J.; Kim Y.; Park C.; Jung J.; Han S. I.; Sunwoo S.-H.; Cho K. W.; Cha G. D.; Kim D. C.; Koo J. H.; Kim J. H.; Hyeon T.; Kim D.-H. Highly Conductive and Elastic Nanomembrane for Skin Electronics. Science 2021, 373, 1022–1026. 10.1126/science.abh4357. PubMed DOI
Zhu B.; Wang H.; Liu Y.; Qi D.; Liu Z.; Wang H.; Yu J.; Sherburne M.; Wang Z.; Chen X. Skin-Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Adv. Mater. 2016, 28, 1559–1566. 10.1002/adma.201504754. PubMed DOI
Liu Y.; Liu Z.; Zhu B.; Yu J.; He K.; Leow W. R.; Wang M.; Chandran B. K.; Qi D.; Wang H.; Chen G.; Xu C.; Chen X. Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Adv. Mater. 2017, 29, 1701780.10.1002/adma.201701780. PubMed DOI
Wan C.; Chen G.; Fu Y.; Wang M.; Matsuhisa N.; Pan S.; Pan L.; Yang H.; Wan Q.; Zhu L.; Chen X. An Artificial Sensory Neuron with Tactile Perceptual Learning. Adv. Mater. 2018, 30, e1801291.10.1002/adma.201801291. PubMed DOI
He K.; Liu Y.; Wang M.; Chen G.; Jiang Y.; Yu J.; Wan C.; Qi D.; Xiao M.; Leow W. R.; Yang H.; Antonietti M.; Chen X. An Artificial Somatic Reflex Arc. Adv. Mater. 2020, 32, e1905399.10.1002/adma.201905399. PubMed DOI
He K.; Liu Y.; Yu J.; Guo X.; Wang M.; Zhang L.; Wan C.; Wang T.; Zhou C.; Chen X. Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano 2022, 16, 9691–9700. 10.1021/acsnano.2c03100. PubMed DOI
Tee B. C.-K.; Chortos A.; Berndt A.; Nguyen A. K.; Tom A.; McGuire A.; Lin Z. C.; Tien K.; Bae W.-G.; Wang H.; Mei P.; Chou H.-H.; Cui B.; Deisseroth K.; Ng T. N.; Bao Z. A Skin-Inspired Organic Digital Mechanoreceptor. Science 2015, 350, 313–316. 10.1126/science.aaa9306. PubMed DOI
Kim Y.; Chortos A.; Xu W.; Liu Y.; Oh J. Y.; Son D.; Kang J.; Foudeh A. M.; Zhu C.; Lee Y.; Niu S.; Liu J.; Pfattner R.; Bao Z.; Lee T.-W. A Bioinspired Flexible Organic Artificial Afferent Nerve. Science 2018, 360, 998–1003. 10.1126/science.aao0098. PubMed DOI
Zhang M.; Tang Z.; Liu X.; Van der Spiegel J. Electronic Neural Interfaces. Nat. Electron. 2020, 3, 191–200. 10.1038/s41928-020-0390-3. DOI
Sabandal J. M.; Berry J. A.; Davis R. L. Dopamine-Based Mechanism for Transient Forgetting. Nature 2021, 591, 426–430. 10.1038/s41586-020-03154-y. PubMed DOI PMC
Keene S. T.; Lubrano C.; Kazemzadeh S.; Melianas A.; Tuchman Y.; Polino G.; Scognamiglio P.; Cina L.; Salleo A.; van de Burgt Y.; Santoro F. A Biohybrid Synapse with Neurotransmitter-Mediated Plasticity. Nat. Mater. 2020, 19, 969–973. 10.1038/s41563-020-0703-y. PubMed DOI
Li J.; Liu Y.; Yuan L.; Zhang B.; Bishop E. S.; Wang K.; Tang J.; Zheng Y. Q.; Xu W.; Niu S.; Beker L.; Li T. L.; Chen G.; Diyaolu M.; Thomas A. L.; Mottini V.; Tok J. B.; Dunn J. C. Y.; Cui B.; Pasca S. P.; Cui Y.; Habtezion A.; Chen X.; Bao Z. A Tissue-Like Neurotransmitter Sensor for the Brain and Gut. Nature 2022, 606, 94–101. 10.1038/s41586-022-04615-2. PubMed DOI PMC
Wang T.; Wang M.; Wang J.; Yang L.; Ren X.; Song G.; Chen S.; Yuan Y.; Liu R.; Pan L.; Li Z.; Leow W. R.; Luo Y.; Ji S.; Cui Z.; He K.; Zhang F.; Lv F.; Tian Y.; Cai K.; Yang B.; Niu J.; Zou H.; Liu S.; Xu G.; Fan X.; Hu B.; Loh X. J.; Wang L.; Chen X. A Chemically Mediated Artificial Neuron. Nat. Electron. 2022, 5, 586–595. 10.1038/s41928-022-00803-0. DOI
Park Y.; Franz C. K.; Ryu H.; Luan H.; Cotton K. Y.; Kim J. U.; Chung T. S.; Zhao S.; Vazquez-Guardado A.; Yang D. S.; Li K.; Avila R.; Phillips J. K.; Quezada M. J.; Jang H.; Kwak S. S.; Won S. M.; Kwon K.; Jeong H.; Bandodkar A. J.; Han M.; Zhao H.; Osher G. R.; Wang H.; Lee K.; Zhang Y.; Huang Y.; Finan J. D.; Rogers J. A. Three-Dimensional, Multifunctional Neural Interfaces for Cortical Spheroids and Engineered Assembloids. Sci. Adv. 2021, 7, eabf9153.10.1126/sciadv.abf9153. PubMed DOI PMC
Norton J. J. S.; Lee D. S.; Lee J. W.; Lee W.; Kwon O.; Won P.; Jung S.-Y.; Cheng H.; Jeong J.-W.; Akce A.; Umunna S.; Na I.; Kwon Y. H.; Wang X.-Q.; Liu Z.; Paik U.; Huang Y.; Bretl T.; Yeo W.-H.; Rogers J. A. Soft, Curved Electrode Systems Capable of Integration on the Auricle as a Persistent Brain-Computer Interface. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3920–3925. 10.1073/pnas.1424875112. PubMed DOI PMC
Yu K. J.; Kuzum D.; Hwang S.-W.; Kim B. H.; Juul H.; Kim N. H.; Won S. M.; Chiang K.; Trumpis M.; Richardson A. G.; Cheng H.; Fang H.; Thompson M.; Bink H.; Talos D.; Seo K. J.; Lee H. N.; Kang S.-K.; Kim J.-H.; Lee J. Y.; Huang Y.; Jensen F. E.; Dichter M. A.; Lucas T. H.; Viventi J.; Litt B.; Rogers J. A. Bioresorbable Silicon Electronics for Transient Spatiotemporal Mapping of Electrical Activity from the Cerebral Cortex. Nat. Mater. 2016, 15, 782–791. 10.1038/nmat4624. PubMed DOI PMC
Viventi J.; Kim D.-H.; Vigeland L.; Frechette E. S.; Blanco J. A.; Kim Y.-S.; Avrin A. E.; Tiruvadi V. R.; Hwang S.-W.; Vanleer A. C.; Wulsin Drausin F.; Davis K.; Gelber C. E.; Palmer L.; Spiegel J. V. d.; Wu J.; Xiao J.; Huang Y.; Contreras D.; Rogers J. A.; Litt B. Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity in Vivo. Nat. Neurosci. 2011, 14, 1599–1605. 10.1038/nn.2973. PubMed DOI PMC
Park D.-W.; Schendel A. A.; Mikael S.; Brodnick S. K.; Richner T. J.; Ness J. P.; Hayat M. R.; Atry F.; Frye S. T.; Pashaie R.; et al. Graphene-Based Carbon-Layered Electrode Array Technology for Neural Imaging and Optogenetic Applications. Nat. Commun. 2014, 5, 5258.10.1038/ncomms6258. PubMed DOI PMC
Hamill O. P.; Marty A.; Neher E.; Sakmann B.; Sigworth F. J. Improved Patch-Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches. European Journal of Physiology, Plügers Archiv. 1981, 391, 85–100. 10.1007/BF00656997. PubMed DOI
Behrends J. C.; Fertig N.. Planar Patch Clamping. In Patch-Clamp Analysis: Advanced Techniques, Walz W., Ed. Humana Press: Totowa, NJ, 2007; pp 411–433.
Fertig N.; Blick R. H.; Behrends J. C. Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip. Biophys. J. 2002, 82, 3056–3062. 10.1016/S0006-3495(02)75646-4. PubMed DOI PMC
Fertig N.; Klau M.; George M.; Blick R. H.; Behrends J. C. Activity of Single Ion Channel Proteins Detected with a Planar Microstructure. Appl. Phys. Lett. 2002, 81, 4865–4867. 10.1063/1.1531228. DOI
Pamir E.; George M.; Fertig N.; Benoit M. Planar Patch-Clamp Force Microscopy on Living Cells. Ultramicroscopy 2008, 108, 552–557. 10.1016/j.ultramic.2007.08.013. PubMed DOI
Obergrussberger A.; Stolzle-Feix S.; Becker N.; Bruggemann A.; Fertig N.; Möller C. Novel Screening Techniques for Ion Channel Targeting Drugs. Channels 2015, 9, 367–375. 10.1080/19336950.2015.1079675. PubMed DOI PMC
Obergrussberger A.; Bruggemann A.; Goetze T. A.; Rapedius M.; Haarmann C.; Rinke I.; Becker N.; Oka T.; Ohtsuki A.; Stengel T.; Vogel M.; Steindl J.; Mueller M.; Stiehler J.; George M.; Fertig N. Automated Patch Clamp Meets High-Throughput Screening: 384 Cells Recorded in Parallel on a Planar Patch Clamp Module. J. Lab. Autom. 2016, 21, 779–793. 10.1177/2211068215623209. PubMed DOI
Cohen M. S.; Bookheimer S. Y. Localization of Brain Function Using Magnetic Resonance Imaging. Trends Neurosci. 1994, 17, 268–277. 10.1016/0166-2236(94)90055-8. PubMed DOI
Ogawa S.; Lee T.-M. Magnetic Resonance Imaging of Blood Vessels at High Fields: In Vivo and in Vitro Measurements and Image Simulation. Magn. Res. Med. 1990, 16, 9–18. 10.1002/mrm.1910160103. PubMed DOI
Buxton R. B.Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques; Cambridge University Press, 2009.
Heeger D. J.; Ress D. What Does fMRI Tell Us about Neuronal Activity?. Nat. Rev. Neurosci. 2002, 3, 142–151. 10.1038/nrn730. PubMed DOI
Bookheimer S. Functional MRI of Language: New Approaches to Understanding the Cortical Organization of Semantic Processing. Annu. Rev. Neurosci. 2002, 25, 151–188. 10.1146/annurev.neuro.25.112701.142946. PubMed DOI
Ogawa S.; Tank D. W.; Menon R.; Ellermann J. M.; Kim S. G.; Merkle H.; Ugurbil K. Intrinsic Signal Changes Accompanying Sensory Stimulation: Functional Brain Mapping with Magnetic Resonance Imaging. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 5951–5955. 10.1073/pnas.89.13.5951. PubMed DOI PMC
Glover G. H. Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clinics 2011, 22, 133–139. 10.1016/j.nec.2010.11.001. PubMed DOI PMC
Logothetis N. K. What We Can Do and What We Cannot Do with fMRI. Nature 2008, 453, 869–878. 10.1038/nature06976. PubMed DOI
Cohen M. S.; Weisskoff R. M. Ultra-Fast Imaging. Magn. Res. Imag. 1991, 9, 1–37. 10.1016/0730-725X(91)90094-3. PubMed DOI
Bollmann S.; Barth M. New Acquisition Techniques and Their Prospects for the Achievable Resolution of fMRI. Prog. Neurobiol. 2021, 207, 101936.10.1016/j.pneurobio.2020.101936. PubMed DOI PMC
Gore J. C. Principles and Practice of Functional MRI of the Human Brain. J. Clin. Invest. 2003, 112, 4–9. 10.1172/JCI200319010. PubMed DOI PMC
Huettel S. A. Event-Related fMRI in Cognition. Neuroimage 2012, 62, 1152–1156. 10.1016/j.neuroimage.2011.08.113. PubMed DOI PMC
Buckner R. L.; Koutstaal W.; Schacter D. L.; Rosen B. R. Functional MRI Evidence for a Role of Frontal and Inferior Temporal Cortex in Amodal Components of Priming. Brain 2000, 123, 620–640. 10.1093/brain/123.3.620. PubMed DOI
D’Esposito M.; Zarahn E.; Aguirre G. K. Event-Related Functional MRI: Implications for Cognitive Psychology. Psychol Bull. 1999, 125, 155.10.1037/0033-2909.125.1.155. PubMed DOI
Moerel M.; Yacoub E.; Gulban O. F.; Lage-Castellanos A.; De Martino F. Using High Spatial Resolution fMRI to Understand Representation in the Auditory Network. Prog. Neurobiol. 2021, 207, 101887.10.1016/j.pneurobio.2020.101887. PubMed DOI PMC
Toi P. T.; Jang H. J.; Min K.; Kim S.-P.; Lee S.-K.; Lee J.; Kwag J.; Park J.-Y. In Vivo Direct Imaging of Neuronal Activity at High Temporospatial Resolution. Science 2022, 378, 160–168. 10.1126/science.abh4340. PubMed DOI
Cohen J. D.; Daw N.; Engelhardt B.; Hasson U.; Li K.; Niv Y.; Norman K. A.; Pillow J.; Ramadge P. J.; Turk-Browne N. B.; et al. Computational Approaches to fMRI Analysis. Nat. Neurosci. 2017, 20, 304–313. 10.1038/nn.4499. PubMed DOI PMC
Thomas A. W.; Heekeren H. R.; Müller K.-R.; Samek W. Analyzing Neuroimaging Data Through Recurrent Deep Learning Models. Front. Neurosci. 2019, 13, 1321.10.3389/fnins.2019.01321. PubMed DOI PMC
Kriegeskorte N.; Mur M.; Bandettini P. A. Representational Similarity Analysis-Connecting the Branches of Systems Neuroscience. Front. Sys. Neurosci. 2008, 2, 4.10.3389/neuro.06.004.2008. PubMed DOI PMC
Maloney R. T. The Basis of Orientation Decoding in Human Primary Visual Cortex: Fine-or Coarse-Scale Biases?. J. Neurophysiol. 2015, 113, 1–3. 10.1152/jn.00196.2014. PubMed DOI
Schuck N. W.; Niv Y. Sequential Replay of Nonspatial Task States in the Human Hippocampus. Science 2019, 364, eaaw5181.10.1126/science.aaw5181. PubMed DOI PMC
Wittkuhn L.; Schuck N. W. Dynamics of fMRI Patterns Reflect Sub-Second Activation Sequences and Reveal Replay in Human Visual Cortex. Nat. Commun. 2021, 12, 1795.10.1038/s41467-021-21970-2. PubMed DOI PMC
Tang J.; LeBel A.; Jain S.; Huth A. G. Semantic Reconstruction of Continuous Language from Non-Invasive Brain Recordings. Nat. Neurosci. 2023, 26, 858.10.1038/s41593-023-01304-9. PubMed DOI PMC
Biswal B.; Zerrin Yetkin F.; Haughton V. M.; Hyde J. S. Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI. Magn. Res. Med. 1995, 34, 537–541. 10.1002/mrm.1910340409. PubMed DOI
Bernstein-Eliav M.; Tavor I. The Prediction of Brain Activity from Connectivity: Advances and Applications. Neuroscientist 2024, 30, 367.10.1177/10738584221130974. PubMed DOI PMC
Liu Y.; Nour M. M.; Schuck N. W.; Behrens T. E.; Dolan R. J. Decoding Cognition from Spontaneous Neural Activity. Nat. Rev. Neurosci. 2022, 23, 204–214. 10.1038/s41583-022-00570-z. PubMed DOI
Logothetis N. K.; Pauls J.; Augath M.; Trinath T.; Oeltermann A. Neurophysiological Investigation of the Basis of the fMRI Signal. Nature 2001, 412, 150–157. 10.1038/35084005. PubMed DOI
Attwell D.; Buchan A. M.; Charpak S.; Lauritzen M.; MacVicar B. A.; Newman E. A. Glial and Neuronal Control of Brain Blood Flow. Nature 2010, 468, 232–243. 10.1038/nature09613. PubMed DOI PMC
Tian P.; Teng I. C.; May L. D.; Kurz R.; Lu K.; Scadeng M.; Hillman E. M.; De Crespigny A. J.; D’Arceuil H. E.; Mandeville J. B.; et al. Cortical Depth-Specific Microvascular Dilation Underlies Laminar Differences in Blood Oxygenation Level-Dependent Functional MRI Signal. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15246–15251. 10.1073/pnas.1006735107. PubMed DOI PMC
Kok P.; Bains L. J.; van Mourik T.; Norris D. G.; de Lange F. P. Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback. Curr. Biol. 2016, 26, 371–376. 10.1016/j.cub.2015.12.038. PubMed DOI
Nunes D.; Gil R.; Shemesh N. A Rapid-Onset Diffusion Functional MRI Signal Reflects Neuromorphological Coupling Dynamics. Neuroimage 2021, 231, 117862.10.1016/j.neuroimage.2021.117862. PubMed DOI
Jung W. B.; Jiang H.; Lee S.; Kim S.-G. Dissection of Brain-Wide Resting-State and Functional Somatosensory Circuits by fMRI with Optogenetic Silencing. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2113313119.10.1073/pnas.2113313119. PubMed DOI PMC
Lee J. H.; Liu Q.; Dadgar-Kiani E. SOlving Brain Circuit Function and Dysfunction with Computational Modeling and Optogenetic fMRI. Science 2022, 378, 493–499. 10.1126/science.abq3868. PubMed DOI PMC
Angelovski G.; Fouskova P.; Mamedov I.; Canals S.; Toth E.; Logothetis N. K. Smart Magnetic Resonance Imaging Agents That Sense Extracellular Calcium Fluctuations. ChemBioChem. 2008, 9, 1729–1734. 10.1002/cbic.200800165. PubMed DOI
Miller A. D.; Ozbakir H. F.; Mukherjee A. Calcium-Responsive Contrast Agents for Functional Magnetic Resonance Imaging. Chem. Phys. Rev. 2021, 2, 021301.10.1063/5.0041394. PubMed DOI PMC
Sorger B.; Goebel R. Real-Time fMRI for Brain-Computer Interfacing. Handbook of Clinical Neurology 2020, 168, 289–302. 10.1016/B978-0-444-63934-9.00021-4. PubMed DOI
Shibata K.; Watanabe T.; Sasaki Y.; Kawato M. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 2011, 334, 1413–1415. 10.1126/science.1212003. PubMed DOI PMC
Georgiadis M.; Schroeter A.; Gao Z.; Guizar-Sicairos M.; Liebi M.; Leuze C.; McNab J. A.; Balolia A.; Veraart J.; Ades-Aron B.; Kim S.; Shepherd T.; Lee C. H.; Walczak P.; Chodankar S.; DiGiacomo P.; David G.; Augath M.; Zerbi V.; Sommer S.; Rajkovic I.; Weiss T.; Bunk O.; Yang L.; Zhang J.; Novikov D. S.; Zeineh M.; Fieremans E.; Rudin M. Nanostructure-Specific X-ray Tomography Reveals Myelin Levels, Integrity and Axon Orientations in Mouse and Human Nervous Tissue. Nat. Commun. 2021, 12, 2941.10.1038/s41467-021-22719-7. PubMed DOI PMC
Georgiadis M.; Guizar-Sicairos M.; Zwahlen A.; Trüssel A. J.; Bunk O.; Müller R.; Schneider P. 3D Scanning SAXS: A Novel Method for the Assessment of Bone Ultrastructure Orientation. Bone 2015, 71, 42–52. 10.1016/j.bone.2014.10.002. PubMed DOI
Maiti S.; Frielinghaus H.; Gräßel D.; Dulle M.; Axer M.; Förster S. Distribution and Orientation of Nerve Fibers and Myelin Assembly in a Brain Section Retrieved by Small-Angle Neutron Scattering. Sci. Rep. 2021, 11, 17306.10.1038/s41598-021-92995-2. PubMed DOI PMC
BRAIN 2.0 Neuroethics: Enabling and Enhancing Neuroscience Advances for Society. https://braininitiative.nih.gov/vision/nih-brain-initiative-reports/brain-20-neuroethics-enabling-and-enhancing-neuroscience (accessed December 22, 2023). PubMed
Ienca M.; Kressig R. W.; Jotterand F.; Elger B. Proactive Ethical Design for Neuroengineering, Assistive and Rehabilitation Technologies: The Cybathlon Lesson. J. NeuroEng. Rehabil. 2017, 14, 115.10.1186/s12984-017-0325-z. PubMed DOI PMC
Dainow B.; Brey P.. Ethics by Design and Ethics of Use Approaches for Artificial Intelligence. European Commission 2021.
IEEE Neuroethics Framework. https://brain.ieee.org/publications/ieee-neuroethics-framework/ (accessed January 25, 2024).
Brain Waves Module 1: Neuroscience, Society and Policy; The Royal Society: London, UK, 2011.
Robinson J. T.; Rommelfanger K. S.; Anikeeva P. O.; Etienne A.; French J.; Gelinas J.; Grover P.; Picard R. Building a Culture of Responsible Neurotech: Neuroethics as Socio-Technical Challenges. Neuron 2022, 110, 2057–2062. 10.1016/j.neuron.2022.05.005. PubMed DOI
Valeriani D.; Santoro F.; Ienca M. The Present and Future of Neural Interfaces. Front. Neurorob. 2022, 16, 953968.10.3389/fnbot.2022.953968. PubMed DOI PMC
Ienca M.; Fins J. J.; Jox R. J.; Jotterand F.; Voeneky S.; Andorno R.; Ball T.; Castelluccia C.; Chavarriaga R.; Chneiweiss H.; et al. Towards a Governance Framework for Brain Data. Neuroethics 2022, 15, 20.10.1007/s12152-022-09498-8. DOI
UNIDIR Brain-Computer Interfaces Webinar Series, Part 1: Existing and Near-Term Uses of BCIs. https://unidir.org/event/brain-computer-interfaces-webinar-series-part-1-existing-and-near-term-uses-of-bcis/ (accessed January 25, 2024).
Geneva Science and Diplomacy Aniticipator (GESDA). The GESDA 2023 Science Breakthrough Radar. (accessed January 25, 2024).
Gallego J. A.; Makin T. R.; McDougle S. D. Going beyond Primary Motor Cortex to Improve Brain-Computer Interfaces. Trends Neurosci. 2022, 45, 176–183. 10.1016/j.tins.2021.12.006. PubMed DOI
GCSP Geneva CEntre for Security Policy Homepage. https://www.gcsp.ch/ (accessed January 25, 2024).
CLAIRE Confederation of Laboratories for Artificial Intelligence Research in Europe Homepage. https://claire-ai.org/ (accessed January 25, 2024).
BrainMind. https://brainmind.org/ (accessed January 25, 2024).
Women’s Brain Project. https://www.womensbrainproject.com/ (accessed January 25, 2024).
McCulloch W. S.; Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133. 10.1007/BF02478259. PubMed DOI
Rosenblatt F.The Perceptron, a Perceiving and Recognizing Automaton Project Para; Cornell Aeronautical Laboratory, 1957.
LeCun Y.; Bengio Y.; Hinton G. Deep Learning. Nature 2015, 521, 436–444. 10.1038/nature14539. PubMed DOI
Krizhevsky A.; Sutskever I.; Hinton G. E. Imagenet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. 10.1145/3065386. DOI
Hubel D. H.; Wiesel T. N. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat’s Visual Cortex. J. Physiol. 1962, 160, 106.10.1113/jphysiol.1962.sp006837. PubMed DOI PMC
Felleman D. J.; Van Essen D. C. Distributed Hierarchical Processing in the Primate Cerebral Cortex. Cerebral Cortex (New York, NY: 1991) 1991, 1, 1–47. 10.1093/cercor/1.1.1. PubMed DOI
Saxe A.; Nelli S.; Summerfield C. If Deep Learning Is the Answer, What Is the Question?. Nat. Rev. Neurosci. 2021, 22, 55–67. 10.1038/s41583-020-00395-8. PubMed DOI
Schapiro A. C.; Turk-Browne N. B.; Botvinick M. M.; Norman K. A. Complementary Learning Systems Within the Hippocampus: A Neural Network Modelling Approach to Reconciling Episodic Memory with Statistical Learning. Philos. Trans. Soc. B 2017, 372, 20160049.10.1098/rstb.2016.0049. PubMed DOI PMC
Flesch T.; Juechems K.; Dumbalska T.; Saxe A.; Summerfield C. Orthogonal Representations for Robust Context-Dependent Task Performance in Brains and Neural Networks. Neuron 2022, 110, 1258–1270. 10.1016/j.neuron.2022.01.005. PubMed DOI PMC
Löwe A. T.; Touzo L.; Muhle-Karbe P. S.; Saxe A. M.; Summerfield C.; Schuck N. W.. Regularised Neural Networks Mimic Human Insight. arXiv, July 15, 2023, 2302.11351, ver. 2.10.48550/arXiv.2302.11351. DOI
Edelsbrunner H.; Harer J.. Persistent Homology—A Survey. In Contemporary Mathematics, Vol. 453; Goodman J. E., Pach J., Pollack R., Eds.; American Mathematical Society: Providence, RI, USA, 2008.
Vaswani A.; Shazeer N.; Parmar N.; Uszkoreit J.; Jones L.; Gomez A. N.; Kaiser Ł.; Polosukhin I. Attention Is All You Need. NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems 2017, 30, 6000–6010.
Neuralink. https://neuralink.com/ (accessed January 25, 2024).