Structure-based insights into evolution of rhodopsins
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34193947
PubMed Central
PMC8245419
DOI
10.1038/s42003-021-02326-4
PII: 10.1038/s42003-021-02326-4
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- iontový transport MeSH
- proteinové domény MeSH
- protonové pumpy chemie MeSH
- rodopsin chemie fyziologie MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protonové pumpy MeSH
- rodopsin MeSH
Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans. The first high-resolution structure of fungi rhodopsin and its functional properties reveal the striking similarity of its membrane part to archaeal but not to bacterial rhodopsins. We show that an unusually long N-terminal region stabilizes the protein through direct interaction with its extracellular loop (ECL2). We compare to our knowledge all available structures and sequences of outward light-driven proton pumps and show that eukaryotic and archaeal proton pumps, most likely, share a common ancestor.
ELI Beamlines Institute of Physics Czech Academy of Sciences Prague Czech Republic
European Molecular Biology Laboratory Hamburg unit c o DESY Hamburg Germany
European Molecular Biology Laboratory Hamburg Unit Notkestrasse 25a Hamburg Germany
Institut de Biologie Structurale Université Grenoble Alpes CEA CNRS Grenoble France
Institute for Biophysical Chemistry Hannover Medical School Hannover Germany
Institute for Safety Problems of Nuclear Power Plants NAS of Ukraine Kyiv Ukraine
Institute of Biological Information Processing ForschungszentrumJülich Jülich Germany
Institute of Crystallography University of Aachen Aachen Germany
Joint Institute for Nuclear Research Dubna Russia
JuStruct Jülich Center for Structural Biology Forschungszentrum Jülich Jülich Germany
Max Planck Institute of Biophysics Frankfurt am Main Germany
Zobrazit více v PubMed
Lozier RH, Bogomolni RA, Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys. J. 1975;15:955–962. doi: 10.1016/S0006-3495(75)85875-9. PubMed DOI PMC
Schobert, B. & Lanyi, J. K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306–10313 (1982). PubMed
Hoffmann, A., Hildebrandt, V., Heberle, J. & Buldt, G. Photoactive mitochondria: in vivo transfer of a light-driven proton pump into the inner mitochondrial membrane of Schizosaccharomyces pombe. Proc. Natl. Acad. Sci.91, 9367–9371 (1994). PubMed PMC
Inoue K, et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 2013;4:1678. doi: 10.1038/ncomms2689. PubMed DOI
Gushchin I, et al. Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 2015;22:390–396. doi: 10.1038/nsmb.3002. PubMed DOI
Shevchenko V, et al. Inward H+pump xenorhodopsin: Mechanism and alternative optogenetic approach. Sci. Adv. 2017;3:1–11. doi: 10.1126/sciadv.1603187. PubMed DOI PMC
Nagel G, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. 2003;100:13940–13945. doi: 10.1073/pnas.1936192100. PubMed DOI PMC
Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013). PubMed PMC
Oda, K. et al. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun.9, 3949 (2018). PubMed PMC
Gordeliy VI, et al. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature. 2002;419:484–487. doi: 10.1038/nature01109. PubMed DOI
Moukhametzianov R, et al. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature. 2006;440:115–119. doi: 10.1038/nature04520. PubMed DOI
Vogeley, L. et al. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science306, 1390–1393 (2004). PubMed PMC
Luck, M. et al. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 287, 40083–40090 (2012). PubMed PMC
Zhang F, et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633–639. doi: 10.1038/nature05744. PubMed DOI
Boyden ES. Optogenetics and the future of neuroscience. Nat. Neurosci. 2015;18:1200–1201. doi: 10.1038/nn.4094. PubMed DOI
Yutin N, Koonin EV. Proteorhodopsin genes in giant viruses. Biol. Direct. 2012;7:34. doi: 10.1186/1745-6150-7-34. PubMed DOI PMC
Bratanov D, et al. Unique structure and function of viral rhodopsins. Nat. Commun. 2019;10:4939. doi: 10.1038/s41467-019-12718-0. PubMed DOI PMC
Gómez-Consarnau L, et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 2019;5:eaaw8855. doi: 10.1126/sciadv.aaw8855. PubMed DOI PMC
Inoue K, et al. Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci. Adv. 2020;6:eaaz2441. doi: 10.1126/sciadv.aaz2441. PubMed DOI PMC
Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 2017;15:711–723. doi: 10.1038/nrmicro.2017.133. PubMed DOI
Gribaldo S, Brochier-Armanet C. Evolutionary relationships between Archaea and eukaryotes. Nat. Ecol. Evol. 2020;4:20–21. doi: 10.1038/s41559-019-1073-1. PubMed DOI
DasSarma, S. & Schwieterman, E. W. Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. Int. J. Astrobiol.20, 241–250 (2018).
Ädelroth P, Brzezinski P. Surface-mediated proton-transfer reactions in membrane-bound proteins. Biochim. Biophys. Acta BBA - Bioenerg. 2004;1655:102–115. doi: 10.1016/j.bbabio.2003.10.018. PubMed DOI
Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol. Mol. Biol. Rev. 2016;80:929–954. doi: 10.1128/MMBR.00003-16. PubMed DOI PMC
Toscano-Underwood C, Huang YJ, Fitt BDL, Hall AM. Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris. Plant Pathol. 2003;52:726–736. doi: 10.1111/j.1365-3059.2003.00930.x. DOI
Fitt, B. D. L., Brun, H., Barbetti, M. J. & Rimmer, S. R. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). in Sustainable strategies for managing Brassica napus (oilseed rape) resistance to Leptosphaeria maculans (phoma stem canker) (eds Fitt, B. D. L., Evans, N., Howlett, B. J. & Cooke, B. M.) 3–15 (Springer-Verlag, 2006). 10.1007/1-4020-4525-5_1.
Ran T, et al. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D. 2013;69:1965–1980. doi: 10.1107/S0907444913017575. PubMed DOI
Chervakov, P. et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl Acad Sci. USA110, 12631–12636 (2013). PubMed PMC
Tsukamoto T, et al. X-ray crystallographic structure of thermophilic rhodopsin. J. Biol. Chem. 2016;291:12223–12232. doi: 10.1074/jbc.M116.719815. PubMed DOI PMC
Luecke H, et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl Acad. Sci. 2008;105:16561–16565. doi: 10.1073/pnas.0807162105. PubMed DOI PMC
Wickstrand C, et al. Bacteriorhodopsin: structural insights revealed using X-Ray lasers and synchrotron radiation. Annu. Rev. Biochem. 2019;88:59–83. doi: 10.1146/annurev-biochem-013118-111327. PubMed DOI
Furuse M, et al. Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum. Acta Crystallogr. D. 2015;71:2203–2216. doi: 10.1107/S1399004715015722. PubMed DOI
Wada T, et al. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J. Mol. Biol. 2011;411:986–998. doi: 10.1016/j.jmb.2011.06.028. PubMed DOI
Fudim, R. et al. Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin. Sci. Signal. 12, eaav4203 (2019). PubMed
Klare, J. P., Chizhov, I. & Engelhard, M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. in Bioenergetics (eds. Schäfer, G. & Penefsky, H. S.) vol. 45, 73–122 (Springer Berlin Heidelberg, 2008). PubMed
Volkov, O. et al. Structural insights into ion conduction by channelrhodopsin 2. Science358, eaan8862 (2017). PubMed
Luecke, H., Schobert, B., Richter, H., Cartailler, J. & Lanyi, J. K. Ê Resolution structure of bacteriorhodopsin at 1. 55 A. J. Mol. Biol.291, 899–911 (1999). PubMed
Sumii M, Furutani Y, Waschuk SA, Brown LS, Kandori H. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria Rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote †. Biochemistry. 2005;44:15159–15166. doi: 10.1021/bi0513498. PubMed DOI
Brown LS. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 2004;3:555. doi: 10.1039/b315527g. PubMed DOI
Chow BY, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 2010;463:98–102. doi: 10.1038/nature08652. PubMed DOI PMC
Shihoya W, et al. Crystal structure of heliorhodopsin. Nature. 2019;574:132–136. doi: 10.1038/s41586-019-1604-6. PubMed DOI
Kovalev, K. et al. High-resolution structural insights into the heliorhodopsin family. Proc. Natl. Acad. Sci. 117, 4131–4141(2020). PubMed PMC
Morizumi T, et al. X-ray crystallographic structure and oligomerization of gloeobacter rhodopsin. Sci. Rep. 2019;9:11283. doi: 10.1038/s41598-019-47445-5. PubMed DOI PMC
Hempelmann, F. et al. His75-Asp97 cluster in green proteorhodopsin. J. Am. Chem. Soc. 133, 4645–4654 (2011). PubMed
Huber, R. et al. pH-dependent photoisomerization of retinal in proteorhodopsin. Biochemistry44, 1800–1806 (2005). PubMed
Bamann, C., Bamberg, E., Wachtveitl, J. & Glaubitz, C. Proteorhodopsin. Biochim. et Biophys. Acta - Bioenerg.1837, 614–625 (2014). PubMed
Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003). PubMed PMC
Gerwert K, Freier E, Wolf S. The role of protein-bound water molecules in microbial rhodopsins. Biochim. Biophys. Acta BBA - Bioenerg. 2014;1837:606–613. doi: 10.1016/j.bbabio.2013.09.006. PubMed DOI
Sass HJ, et al. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature. 2000;406:649–653. doi: 10.1038/35020607. PubMed DOI
Chizhov I, et al. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 1996;71:2329–2345. doi: 10.1016/S0006-3495(96)79475-4. PubMed DOI PMC
Lanyi JK. Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta BBA - Bioenerg. 2006;1757:1012–1018. doi: 10.1016/j.bbabio.2005.11.003. PubMed DOI
Lanyi JK. Bacteriorhodopsin. Annu. Rev. Physiol. 2004;66:665–688. doi: 10.1146/annurev.physiol.66.032102.150049. PubMed DOI
Heberle J, Fitter J, Sass HJ, Büldt G. Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys. Chem. 2000;85:229–248. doi: 10.1016/S0301-4622(99)00154-4. PubMed DOI
Friedrich T, et al. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J. Mol. Biol. 2002;321:821–838. doi: 10.1016/S0022-2836(02)00696-4. PubMed DOI
Yamashita H, et al. Role of trimer–trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. J. Struct. Biol. 2013;184:2–11. doi: 10.1016/j.jsb.2013.02.011. PubMed DOI
Heyes CD, El-Sayed MA. The role of the native lipids and lattice structure in bacteriorhodopsin protein conformation and stability as studied by temperature-dependent fourier transform-infrared spectroscopy. J. Biol. Chem. 2002;277:29437–29443. doi: 10.1074/jbc.M203435200. PubMed DOI
Kovalev, K. et al. Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci. Adv. 5, eaav2671 (2019). PubMed PMC
Shibata M, et al. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 2018;8:8262. doi: 10.1038/s41598-018-26606-y. PubMed DOI PMC
Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 1988;204:155–164. doi: 10.1016/0022-2836(88)90606-7. PubMed DOI
Baek M, Park T, Heo L, Park C, Seok C. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res. 2017;45:W320–W324. doi: 10.1093/nar/gkx246. PubMed DOI PMC
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Källberg, M., Margaryan, G., Wang, S., Ma, J. & Xu, J. Raptorx server: a resource for template-based protein structure modeling. Methods Mol. Biol. 1137, 17–27 (2014). PubMed
Strutz, W. Exploring protein stability by nanoDSF. Biophys. J. 110, 393a (2016).
Waschuk SA, Bezerra AG, Shi L, Brown LS. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc. Natl Acad. Sci. 2005;102:6879–6883. doi: 10.1073/pnas.0409659102. PubMed DOI PMC
Kmiecik S, et al. Coarse-grained protein models and their applications. Chem. Rev. 2016;116:7898–7936. doi: 10.1021/acs.chemrev.6b00163. PubMed DOI
Von Heijne G. Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 1992;225:487–494. doi: 10.1016/0022-2836(92)90934-C. PubMed DOI
Elazar A, Weinstein JJ, Prilusky J, Fleishman SJ. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology. Proc. Natl Acad. Sci. 2016;113:10340–10345. doi: 10.1073/pnas.1605888113. PubMed DOI PMC
Boeuf, D., Audic, S., Brillet-Guéguen, L., Caron, C. & Jeanthon, C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database2015, bav080 (2015). PubMed PMC
Ruiz-González, M. X. & Marín, I. New insights into the evolutionary history of type 1 rhodopsins. J. Mol. Evol. 58, 348–358 (2004). PubMed
Sharma AK, Spudich JL, Doolittle WF. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol. 2006;14:463–469. doi: 10.1016/j.tim.2006.09.006. PubMed DOI
Stoeckenius, W. Bacterial rhodopsins: evolution of a mechanistic model for the ion pumps. Protein Sci. 8, 447–459 (2010). PubMed PMC
Slamovits, C. H., Okamoto, N., Burri, L., James, E. R. & Keeling, P. J. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2,183 (2011). PubMed
Frigaard NU, Martinez A, Mincer TJ, DeLong EF. Proteorhodopsin lateral gene transfer between marine planktonic bacteria and archaea. Nature. 2006;439:847–850. doi: 10.1038/nature04435. PubMed DOI
Landau EM, Rosenbusch JP. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA. 1996;93:14532–14535. doi: 10.1073/pnas.93.25.14532. PubMed DOI PMC
Caffrey M, Cherezov V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 2009;4:706–731. doi: 10.1038/nprot.2009.31. PubMed DOI PMC
Caffrey M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. Sect. F. 2015;71:3–18. doi: 10.1107/S2053230X14026843. PubMed DOI PMC
Nollert P. Lipidic cubic phases as matrices for membrane protein crystallization. Methods. 2004;34:348–353. doi: 10.1016/j.ymeth.2004.03.030. PubMed DOI PMC
Li, D., Boland, C., Aragao, D., Walsh, K. & Caffrey, M. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J. Vis. Exp. 67, e4001 (2012). PubMed PMC
Vonrhein C, et al. Advances in automated data analysis and processing within ıt autoPROC, combined with improved characterisation, mitigation and visualisation of the anisotropy of diffraction limits using ıt STARANISO. Acta Crystallogr. Sect. A. 2018;74:a360. doi: 10.1107/S010876731809640X. DOI
Murshudov GN, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Adams PD, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–376 (2012). PubMed PMC
Interfacing with the Brain: How Nanotechnology Can Contribute