Structure-based insights into evolution of rhodopsins

. 2021 Jun 30 ; 4 (1) : 821. [epub] 20210630

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34193947
Odkazy

PubMed 34193947
PubMed Central PMC8245419
DOI 10.1038/s42003-021-02326-4
PII: 10.1038/s42003-021-02326-4
Knihovny.cz E-zdroje

Rhodopsins, most of which are proton pumps generating transmembrane electrochemical proton gradients, span all three domains of life, are abundant in the biosphere, and could play a crucial role in the early evolution of life on earth. Whereas archaeal and bacterial proton pumps are among the best structurally characterized proteins, rhodopsins from unicellular eukaryotes have not been well characterized. To fill this gap in the current understanding of the proton pumps and to gain insight into the evolution of rhodopsins using a structure-based approach, we performed a structural and functional analysis of the light-driven proton pump LR (Mac) from the pathogenic fungus Leptosphaeria maculans. The first high-resolution structure of fungi rhodopsin and its functional properties reveal the striking similarity of its membrane part to archaeal but not to bacterial rhodopsins. We show that an unusually long N-terminal region stabilizes the protein through direct interaction with its extracellular loop (ECL2). We compare to our knowledge all available structures and sequences of outward light-driven proton pumps and show that eukaryotic and archaeal proton pumps, most likely, share a common ancestor.

Zobrazit více v PubMed

Lozier RH, Bogomolni RA, Stoeckenius W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys. J. 1975;15:955–962. doi: 10.1016/S0006-3495(75)85875-9. PubMed DOI PMC

Schobert, B. & Lanyi, J. K. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257, 10306–10313 (1982). PubMed

Hoffmann, A., Hildebrandt, V., Heberle, J. & Buldt, G. Photoactive mitochondria: in vivo transfer of a light-driven proton pump into the inner mitochondrial membrane of Schizosaccharomyces pombe. Proc. Natl. Acad. Sci.91, 9367–9371 (1994). PubMed PMC

Inoue K, et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 2013;4:1678. doi: 10.1038/ncomms2689. PubMed DOI

Gushchin I, et al. Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 2015;22:390–396. doi: 10.1038/nsmb.3002. PubMed DOI

Shevchenko V, et al. Inward H+pump xenorhodopsin: Mechanism and alternative optogenetic approach. Sci. Adv. 2017;3:1–11. doi: 10.1126/sciadv.1603187. PubMed DOI PMC

Nagel G, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. 2003;100:13940–13945. doi: 10.1073/pnas.1936192100. PubMed DOI PMC

Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013). PubMed PMC

Oda, K. et al. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun.9, 3949 (2018). PubMed PMC

Gordeliy VI, et al. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature. 2002;419:484–487. doi: 10.1038/nature01109. PubMed DOI

Moukhametzianov R, et al. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature. 2006;440:115–119. doi: 10.1038/nature04520. PubMed DOI

Vogeley, L. et al. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science306, 1390–1393 (2004). PubMed PMC

Luck, M. et al. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 287, 40083–40090 (2012). PubMed PMC

Zhang F, et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446:633–639. doi: 10.1038/nature05744. PubMed DOI

Boyden ES. Optogenetics and the future of neuroscience. Nat. Neurosci. 2015;18:1200–1201. doi: 10.1038/nn.4094. PubMed DOI

Yutin N, Koonin EV. Proteorhodopsin genes in giant viruses. Biol. Direct. 2012;7:34. doi: 10.1186/1745-6150-7-34. PubMed DOI PMC

Bratanov D, et al. Unique structure and function of viral rhodopsins. Nat. Commun. 2019;10:4939. doi: 10.1038/s41467-019-12718-0. PubMed DOI PMC

Gómez-Consarnau L, et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 2019;5:eaaw8855. doi: 10.1126/sciadv.aaw8855. PubMed DOI PMC

Inoue K, et al. Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci. Adv. 2020;6:eaaz2441. doi: 10.1126/sciadv.aaz2441. PubMed DOI PMC

Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 2017;15:711–723. doi: 10.1038/nrmicro.2017.133. PubMed DOI

Gribaldo S, Brochier-Armanet C. Evolutionary relationships between Archaea and eukaryotes. Nat. Ecol. Evol. 2020;4:20–21. doi: 10.1038/s41559-019-1073-1. PubMed DOI

DasSarma, S. & Schwieterman, E. W. Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. Int. J. Astrobiol.20, 241–250 (2018).

Ädelroth P, Brzezinski P. Surface-mediated proton-transfer reactions in membrane-bound proteins. Biochim. Biophys. Acta BBA - Bioenerg. 2004;1655:102–115. doi: 10.1016/j.bbabio.2003.10.018. PubMed DOI

Pinhassi J, DeLong EF, Béjà O, González JM, Pedrós-Alió C. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol. Mol. Biol. Rev. 2016;80:929–954. doi: 10.1128/MMBR.00003-16. PubMed DOI PMC

Toscano-Underwood C, Huang YJ, Fitt BDL, Hall AM. Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris. Plant Pathol. 2003;52:726–736. doi: 10.1111/j.1365-3059.2003.00930.x. DOI

Fitt, B. D. L., Brun, H., Barbetti, M. J. & Rimmer, S. R. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). in Sustainable strategies for managing Brassica napus (oilseed rape) resistance to Leptosphaeria maculans (phoma stem canker) (eds Fitt, B. D. L., Evans, N., Howlett, B. J. & Cooke, B. M.) 3–15 (Springer-Verlag, 2006). 10.1007/1-4020-4525-5_1.

Ran T, et al. Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D. 2013;69:1965–1980. doi: 10.1107/S0907444913017575. PubMed DOI

Chervakov, P. et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl Acad Sci. USA110, 12631–12636 (2013). PubMed PMC

Tsukamoto T, et al. X-ray crystallographic structure of thermophilic rhodopsin. J. Biol. Chem. 2016;291:12223–12232. doi: 10.1074/jbc.M116.719815. PubMed DOI PMC

Luecke H, et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl Acad. Sci. 2008;105:16561–16565. doi: 10.1073/pnas.0807162105. PubMed DOI PMC

Wickstrand C, et al. Bacteriorhodopsin: structural insights revealed using X-Ray lasers and synchrotron radiation. Annu. Rev. Biochem. 2019;88:59–83. doi: 10.1146/annurev-biochem-013118-111327. PubMed DOI

Furuse M, et al. Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum. Acta Crystallogr. D. 2015;71:2203–2216. doi: 10.1107/S1399004715015722. PubMed DOI

Wada T, et al. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J. Mol. Biol. 2011;411:986–998. doi: 10.1016/j.jmb.2011.06.028. PubMed DOI

Fudim, R. et al. Design of a light-gated proton channel based on the crystal structure of Coccomyxa rhodopsin. Sci. Signal. 12, eaav4203 (2019). PubMed

Klare, J. P., Chizhov, I. & Engelhard, M. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors. in Bioenergetics (eds. Schäfer, G. & Penefsky, H. S.) vol. 45, 73–122 (Springer Berlin Heidelberg, 2008). PubMed

Volkov, O. et al. Structural insights into ion conduction by channelrhodopsin 2. Science358, eaan8862 (2017). PubMed

Luecke, H., Schobert, B., Richter, H., Cartailler, J. & Lanyi, J. K. Ê Resolution structure of bacteriorhodopsin at 1. 55 A. J. Mol. Biol.291, 899–911 (1999). PubMed

Sumii M, Furutani Y, Waschuk SA, Brown LS, Kandori H. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria Rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote †. Biochemistry. 2005;44:15159–15166. doi: 10.1021/bi0513498. PubMed DOI

Brown LS. Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 2004;3:555. doi: 10.1039/b315527g. PubMed DOI

Chow BY, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 2010;463:98–102. doi: 10.1038/nature08652. PubMed DOI PMC

Shihoya W, et al. Crystal structure of heliorhodopsin. Nature. 2019;574:132–136. doi: 10.1038/s41586-019-1604-6. PubMed DOI

Kovalev, K. et al. High-resolution structural insights into the heliorhodopsin family. Proc. Natl. Acad. Sci. 117, 4131–4141(2020). PubMed PMC

Morizumi T, et al. X-ray crystallographic structure and oligomerization of gloeobacter rhodopsin. Sci. Rep. 2019;9:11283. doi: 10.1038/s41598-019-47445-5. PubMed DOI PMC

Hempelmann, F. et al. His75-Asp97 cluster in green proteorhodopsin. J. Am. Chem. Soc. 133, 4645–4654 (2011). PubMed

Huber, R. et al. pH-dependent photoisomerization of retinal in proteorhodopsin. Biochemistry44, 1800–1806 (2005). PubMed

Bamann, C., Bamberg, E., Wachtveitl, J. & Glaubitz, C. Proteorhodopsin. Biochim. et Biophys. Acta - Bioenerg.1837, 614–625 (2014). PubMed

Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003). PubMed PMC

Gerwert K, Freier E, Wolf S. The role of protein-bound water molecules in microbial rhodopsins. Biochim. Biophys. Acta BBA - Bioenerg. 2014;1837:606–613. doi: 10.1016/j.bbabio.2013.09.006. PubMed DOI

Sass HJ, et al. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin. Nature. 2000;406:649–653. doi: 10.1038/35020607. PubMed DOI

Chizhov I, et al. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 1996;71:2329–2345. doi: 10.1016/S0006-3495(96)79475-4. PubMed DOI PMC

Lanyi JK. Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta BBA - Bioenerg. 2006;1757:1012–1018. doi: 10.1016/j.bbabio.2005.11.003. PubMed DOI

Lanyi JK. Bacteriorhodopsin. Annu. Rev. Physiol. 2004;66:665–688. doi: 10.1146/annurev.physiol.66.032102.150049. PubMed DOI

Heberle J, Fitter J, Sass HJ, Büldt G. Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys. Chem. 2000;85:229–248. doi: 10.1016/S0301-4622(99)00154-4. PubMed DOI

Friedrich T, et al. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J. Mol. Biol. 2002;321:821–838. doi: 10.1016/S0022-2836(02)00696-4. PubMed DOI

Yamashita H, et al. Role of trimer–trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. J. Struct. Biol. 2013;184:2–11. doi: 10.1016/j.jsb.2013.02.011. PubMed DOI

Heyes CD, El-Sayed MA. The role of the native lipids and lattice structure in bacteriorhodopsin protein conformation and stability as studied by temperature-dependent fourier transform-infrared spectroscopy. J. Biol. Chem. 2002;277:29437–29443. doi: 10.1074/jbc.M203435200. PubMed DOI

Kovalev, K. et al. Structure and mechanisms of sodium-pumping KR2 rhodopsin. Sci. Adv. 5, eaav2671 (2019). PubMed PMC

Shibata M, et al. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 2018;8:8262. doi: 10.1038/s41598-018-26606-y. PubMed DOI PMC

Janin J, Miller S, Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J. Mol. Biol. 1988;204:155–164. doi: 10.1016/0022-2836(88)90606-7. PubMed DOI

Baek M, Park T, Heo L, Park C, Seok C. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res. 2017;45:W320–W324. doi: 10.1093/nar/gkx246. PubMed DOI PMC

Camacho C, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Källberg, M., Margaryan, G., Wang, S., Ma, J. & Xu, J. Raptorx server: a resource for template-based protein structure modeling. Methods Mol. Biol. 1137, 17–27 (2014). PubMed

Strutz, W. Exploring protein stability by nanoDSF. Biophys. J. 110, 393a (2016).

Waschuk SA, Bezerra AG, Shi L, Brown LS. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc. Natl Acad. Sci. 2005;102:6879–6883. doi: 10.1073/pnas.0409659102. PubMed DOI PMC

Kmiecik S, et al. Coarse-grained protein models and their applications. Chem. Rev. 2016;116:7898–7936. doi: 10.1021/acs.chemrev.6b00163. PubMed DOI

Von Heijne G. Membrane protein structure prediction: hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 1992;225:487–494. doi: 10.1016/0022-2836(92)90934-C. PubMed DOI

Elazar A, Weinstein JJ, Prilusky J, Fleishman SJ. Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology. Proc. Natl Acad. Sci. 2016;113:10340–10345. doi: 10.1073/pnas.1605888113. PubMed DOI PMC

Boeuf, D., Audic, S., Brillet-Guéguen, L., Caron, C. & Jeanthon, C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database2015, bav080 (2015). PubMed PMC

Ruiz-González, M. X. & Marín, I. New insights into the evolutionary history of type 1 rhodopsins. J. Mol. Evol. 58, 348–358 (2004). PubMed

Sharma AK, Spudich JL, Doolittle WF. Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol. 2006;14:463–469. doi: 10.1016/j.tim.2006.09.006. PubMed DOI

Stoeckenius, W. Bacterial rhodopsins: evolution of a mechanistic model for the ion pumps. Protein Sci. 8, 447–459 (2010). PubMed PMC

Slamovits, C. H., Okamoto, N., Burri, L., James, E. R. & Keeling, P. J. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2,183 (2011). PubMed

Frigaard NU, Martinez A, Mincer TJ, DeLong EF. Proteorhodopsin lateral gene transfer between marine planktonic bacteria and archaea. Nature. 2006;439:847–850. doi: 10.1038/nature04435. PubMed DOI

Landau EM, Rosenbusch JP. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl Acad. Sci. USA. 1996;93:14532–14535. doi: 10.1073/pnas.93.25.14532. PubMed DOI PMC

Caffrey M, Cherezov V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 2009;4:706–731. doi: 10.1038/nprot.2009.31. PubMed DOI PMC

Caffrey M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. Sect. F. 2015;71:3–18. doi: 10.1107/S2053230X14026843. PubMed DOI PMC

Nollert P. Lipidic cubic phases as matrices for membrane protein crystallization. Methods. 2004;34:348–353. doi: 10.1016/j.ymeth.2004.03.030. PubMed DOI PMC

Li, D., Boland, C., Aragao, D., Walsh, K. & Caffrey, M. Harvesting and cryo-cooling crystals of membrane proteins grown in lipidic mesophases for structure determination by macromolecular crystallography. J. Vis. Exp. 67, e4001 (2012). PubMed PMC

Vonrhein C, et al. Advances in automated data analysis and processing within ıt autoPROC, combined with improved characterisation, mitigation and visualisation of the anisotropy of diffraction limits using ıt STARANISO. Acta Crystallogr. Sect. A. 2018;74:a360. doi: 10.1107/S010876731809640X. DOI

Murshudov GN, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC

Adams PD, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC

Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI

Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–376 (2012). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Interfacing with the Brain: How Nanotechnology Can Contribute

. 2025 Mar 25 ; 19 (11) : 10630-10717. [epub] 20250310

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace