Proteorhodopsin insights into the molecular mechanism of vectorial proton transport
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40238873
PubMed Central
PMC12002130
DOI
10.1126/sciadv.adu5303
Knihovny.cz E-resources
- MeSH
- Protein Conformation MeSH
- Models, Molecular MeSH
- Proton Pumps chemistry metabolism MeSH
- Protons * MeSH
- Rhodopsins, Microbial * chemistry metabolism MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- proteorhodopsin MeSH Browser
- Proton Pumps MeSH
- Protons * MeSH
- Rhodopsins, Microbial * MeSH
Bacterial proton pumps, proteorhodopsins (PRs), are a major group of light-driven membrane proteins found in marine bacteria. They are functionally and structurally distinct from archaeal and eukaryotic proton pumps. To elucidate the proton transfer mechanism by PRs and understand the differences to nonbacterial pumps on a molecular level, high-resolution structures of PRs' functional states are needed. In this work, we have determined atomic-resolution structures of MAR, a PR from marine actinobacteria, in various functional states, notably the challenging late O intermediate state. These data and information from recent atomic-resolution structures on an archaeal outward proton pump bacteriorhodopsin and bacterial inward proton pump xenorhodopsin allow for deducing key universal elements for light-driven proton pumping. First, long hydrogen-bonded chains characterize proton pathways. Second, short hydrogen bonds allow proton storage and inhibit their backflow. Last, the retinal Schiff base is the active proton donor and acceptor to and from hydrogen-bonded chains.
Department of Cell and Molecular Biology Biomedical Centre Uppsala University 75124 Uppsala Sweden
ELI Beamlines Centre ELI ERIC 252 41 Dolní Břežany Czechia
European 10 ray Free Electron Laser GmbH 22869 Schenefeld Germany
Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research 141980 Dubna Russia
Hamburg Outstation c o DESY European Molecular Biology Laboratory 22607 Hamburg Germany
Institut de Biologie Structurale J P Ebel Université Grenoble Alpes CEA CNRS 38000 Grenoble France
Institute for Biophysical Chemistry Medizinische Hochschule Hannover D 30625 Hannover Germany
Institute for Nanostructure and Solid State Physics HARBOR Universität Hamburg 22761 Hamburg Germany
Université Paris Saclay CNRS and Ecole Normale Supérieure Paris Saclay 91190 Gif sur Yvette France
See more in PubMed
Béja O., Spudich E. N., Spudich J. L., Leclerc M., DeLong E. F., Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001). PubMed
Gómez-Consarnau L., Raven J. A., Levine N. M., Cutter L. S., Wang D., Seegers B., Arístegui J., Fuhrman J. A., Gasol J. M., Sañudo-Wilhelmy S. A., Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019). PubMed PMC
Borshchevskiy V., Kovalev K., Round E., Efremov R., Astashkin R., Bourenkov G., Bratanov D., Balandin T., Chizhov I., Baeken C., Gushchin I., Kuzmin A., Alekseev A., Rogachev A., Willbold D., Engelhard M., Bamberg E., Büldt G., Gordeliy V., True-atomic-resolution insights into the structure and functional role of linear chains and low-barrier hydrogen bonds in proteins. Nat. Struct. Mol. Biol. 29, 440–450 (2022). PubMed
Zabelskii D., Dmitrieva N., Volkov O., Shevchenko V., Kovalev K., Balandin T., Soloviov D., Astashkin R., Zinovev E., Alekseev A., Round E., Polovinkin V., Chizhov I., Rogachev A., Okhrimenko I., Borshchevskiy V., Chupin V., Büldt G., Yutin N., Bamberg E., Koonin E., Gordeliy V., Structure-based insights into evolution of rhodopsins. Commun. Biol. 4, 821 (2021). PubMed PMC
Friedrich T., Geibel S., Kalmbach R., Chizhov I., Ataka K., Heberle J., Engelhard M., Bamberg E., Proteorhodopsin is a light-driven proton pump with variable vectoriality. J. Mol. Biol. 321, 821–838 (2002). PubMed
Zimányi L., Váró G., Chang M., Ni B., Needleman R., Lanyi J. K., Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry 31, 8535–8543 (1992). PubMed
Gushchin I., Chervakov P., Kuzmichev P., Popov A. N., Round E., Borshchevskiy V., Ishchenko A., Petrovskaya L., Chupin V., Dolgikh D. A., Arseniev A. A., Kirpichnikov M., Gordeliy V., Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl. Acad. Sci. U.S.A. 110, 12631–12636 (2013). PubMed PMC
Bergo V. B., Sineshchekov O. A., Kralj J. M., Partha R., Spudich E. N., Rothschild K. J., Spudich J. L., His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. J. Biol. Chem. 284, 2836–2843 (2009). PubMed PMC
Hempelmann F., Hölper S., Verhoefen M.-K., Woerner A. C., Köhler T., Fiedler S.-A., Pfleger N., Wachtveitl J., Glaubitz C., His75-Asp97 cluster in green proteorhodopsin. J. Am. Chem. Soc. 133, 4645–4654 (2011). PubMed
Astashkin R., Kovalev K., Bukhdruker S., Vaganova S., Kuzmin A., Alekseev A., Balandin T., Zabelskii D., Gushchin I., Royant A., Volkov D., Bourenkov G., Koonin E., Engelhard M., Bamberg E., Gordeliy V., Structural insights into light-driven anion pumping in cyanobacteria. Nat. Commun. 13, 6460 (2022). PubMed PMC
Kovalev K., Astashkin R., Gushchin I., Orekhov P., Volkov D., Zinovev E., Marin E., Rulev M., Alekseev A., Royant A., Carpentier P., Vaganova S., Zabelskii D., Baeken C., Sergeev I., Balandin T., Bourenkov G., Carpena X., Boer R., Maliar N., Borshchevskiy V., Büldt G., Bamberg E., Gordeliy V., Molecular mechanism of light-driven sodium pumping. Nat. Commun. 11, 2137 (2020). PubMed PMC
Brown L. S., Light-driven proton transfers and proton transport by microbial rhodopsins – A biophysical perspective. Biochim. Biophys. Acta Biomembr. 1864, 183867 (2022). PubMed
Efremov R., Gordeliy V. I., Heberle J., Büldt G., Time-resolved microspectroscopy on a single crystal of bacteriorhodopsin reveals lattice-induced differences in the photocycle kinetics. Biophys. J. 91, 1441–1451 (2006). PubMed PMC
Engilberge S., Caramello N., Bukhdruker S., Byrdin M., Giraud T., Jacquet P., Scortani D., Biv R., Gonzalez H., Broquet A., van der Linden P., Rose S. L., Flot D., Balandin T., Gordeliy V., Lahey-Rudolph J. M., Roessle M., de Sanctis D., Leonard G. A., Mueller-Dieckmann C., Royant A., The TR-icOS setup at the ESRF: Time-resolved microsecond UV-Vis absorption spectroscopy on protein crystals. Acta Crystallogr. D Struct. Biol. 80, 16–25 (2024). PubMed PMC
Weinert T., Skopintsev P., James D., Dworkowski F., Panepucci E., Kekilli D., Furrer A., Brünle S., Mous S., Ozerov D., Nogly P., Wang M., Standfuss J., Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365, 61–65 (2019). PubMed
Ghai R., Mizuno C. M., Picazo A., Camacho A., Rodriguez-Valera F., Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci. Rep. 3, 2471 (2013). PubMed PMC
Landau E. M., Rosenbusch J. P., Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 14532–14535 (1996). PubMed PMC
Luecke H., Schobert B., Richter H. T., Cartailler J. P., Lanyi J. K., Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286, 255–260 (1999). PubMed
Luecke H., Richter H. T., Lanyi J. K., Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280, 1934–1937 (1998). PubMed
Kovalev K., Tsybrov F., Alekseev A., Shevchenko V., Soloviov D., Siletsky S., Bourenkov G., Agthe M., Nikolova M., von Stetten D., Astashkin R., Bukhdruker S., Chizhov I., Royant A., Kuzmin A., Gushchin I., Rosselli R., Rodriguez-Valera F., Ilyinskiy N., Rogachev A., Borshchevskiy V., Schneider T. R., Bamberg E., Gordeliy V., Mechanisms of inward transmembrane proton translocation. Nat. Struct. Mol. Biol. 30, 970–979 (2023). PubMed
Bukhdruker S., Melnikov I., Baeken C., Balandin T., Gordeliy V., Crystallographic insights into lipid-membrane protein interactions in microbial rhodopsins. Front. Mol. Biosci. 11, 1503709 (2024). PubMed PMC
López-Pérez M., Haro-Moreno J. M., Iranzo J., Rodriguez-Valera F., Genomes of the “Candidatus Actinomarinales” order: Highly streamlined marine epipelagic actinobacteria. mSystems 5, e01041-20 (2020). PubMed PMC
Pinhassi J., DeLong E. F., Béjà O., González J. M., Pedrós-Alió C., Marine bacterial and archaeal ion-pumping rhodopsins: Genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 80, 929–954 (2016). PubMed PMC
Higuchi A., Shihoya W., Konno M., Ikuta T., Kandori H., Inoue K., Nureki O., Crystal structure of schizorhodopsin reveals mechanism of inward proton pumping. Proc. Natl. Acad. Sci. U.S.A. 118, e2016328118 (2021). PubMed PMC
Köhler T., Weber I., Glaubitz C., Wachtveitl J., Proteorhodopsin Photocycle Kinetics Between pH 5 and pH 9. Photochem. Photobiol. 93, 762–771 (2017). PubMed
Stone K. M., Voska J., Kinnebrew M., Pavlova A., Junk M. J. N., Han S., Structural insight into proteorhodopsin oligomers. Biophys. J. 104, 472–481 (2013). PubMed PMC
Hirschi S., Kalbermatter D., Ucurum Z., Lemmin T., Fotiadis D., Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nat. Commun. 12, 4107 (2021). PubMed PMC
Hirschi S., Lemmin T., Ayoub N., Kalbermatter D., Pellegata D., Ucurum Z., Gertsch J., Fotiadis D., Structural insights into the mechanism and dynamics of proteorhodopsin biogenesis and retinal scavenging. Nat. Commun. 15, 6950 (2024). PubMed PMC
Morizumi T., Ou W. L., Van Eps N., Inoue K., Kandori H., Brown L. S., Ernst O. P., X-ray crystallographic structure and oligomerization of Gloeobacter rhodopsin. Sci. Rep. 9, 11283 (2019). PubMed PMC
Iizuka A., Kajimoto K., Fujisawa T., Tsukamoto T., Aizawa T., Kamo N., Jung K.-H., Unno M., Demura M., Kikukawa T., Functional importance of the oligomer formation of the cyanobacterial H+ pump Gloeobacter rhodopsin. Sci. Rep. 9, 10711 (2019). PubMed PMC
Gordeliy V. I., Labahn J., Moukhametzianov R., Efremov R., Granzin J., Schlesinger R., Büldt G., Savopol T., Scheidig A. J., Klare J. P., Engelhard M., Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484–487 (2002). PubMed
Gordeliy V. I., Schlesinger R., Efremov R., Büldt G., Heberle J., Crystallization in lipidic cubic phases: A case study with bacteriorhodopsin. Methods Mol. Biol. 228, 305–316 (2003). PubMed
Luecke H., Schobert B., Stagno J., Imasheva E. S., Wang J. M., Balashov S. P., Lanyi J. K., Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. U.S.A. 105, 16561–16565 (2008). PubMed PMC
Ran T., Ozorowski G., Gao Y., Sineshchekov O. A., Wang W., Spudich J. L., Luecke H., Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr. D Biol. Crystallogr. 69, 1965–1980 (2013). PubMed
Chazan A., Das I., Fujiwara T., Murakoshi S., Rozenberg A., Molina-Márquez A., Sano F. K., Tanaka T., Gómez-Villegas P., Larom S., Pushkarev A., Malakar P., Hasegawa M., Tsukamoto Y., Ishizuka T., Konno M., Nagata T., Mizuno Y., Katayama K., Abe-Yoshizumi R., Ruhman S., Inoue K., Kandori H., León R., Shihoya W., Yoshizawa S., Sheves M., Nureki O., Béjà O., Phototrophy by antenna-containing rhodopsin pumps in aquatic environments. Nature 615, 535–540 (2023). PubMed
Reckel S., Gottstein D., Stehle J., Löhr F., Verhoefen M.-K., Takeda M., Silvers R., Kainosho M., Glaubitz C., Wachtveitl J., Bernhard F., Schwalbe H., Güntert P., Dötsch V., Solution NMR Structure of Proteorhodopsin. Angew. Chem. Int. Ed. Engl. 50, 11942–11946 (2011). PubMed PMC
Gao K., Beardall J., Häder D.-P., Hall-Spencer J. M., Gao G., Hutchins D. A., Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front. Mar. Sci. 6, 322 (2019).
Imasheva E. S., Balashov S. P., Wang J. M., Lanyi J. K., pH-dependent transitions in xanthorhodopsin. Photochem. Photobiol. 82, 1406–1413 (2006). PubMed PMC
Balashov S. P., Petrovskaya L. E., Lukashev E. P., Imasheva E. S., Dioumaev A. K., Wang J. M., Sychev S. V., Dolgikh D. A., Rubin A. B., Kirpichnikov M. P., Lanyi J. K., Aspartate-histidine interaction in the retinal schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum. Biochemistry 51, 5748–5762 (2012). PubMed PMC
Okumura H., Murakami M., Kouyama T., Crystal structures of acid blue and alkaline purple forms of bacteriorhodopsin. J. Mol. Biol. 351, 481–495 (2005). PubMed
Dioumaev A. K., Brown L. S., Shih J., Spudich E. N., Spudich J. L., Lanyi J. K., Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41, 5348–5358 (2002). PubMed
Subramanlam S., Henderson R., Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653–657 (2000). PubMed
Huber R., Köhler T., Lenz M. O., Bamberg E., Kalmbach R., Engelhard M., Wachtveitl J., pH-dependent photoisomerization of retinal in proteorhodopsin. Biochemistry 44, 1800–1806 (2005). PubMed
Lenz M. O., Huber R., Schmidt B., Gilch P., Kalmbach R., Engelhard M., Wachtveitl J., First steps of retinal photoisomerization in proteorhodopsin. Biophys. J. 91, 255–262 (2006). PubMed PMC
Ikeda D., Furutani Y., Kandori H., FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Biochemistry 46, 5365–5373 (2007). PubMed
Mehler M., Eckert C. E., Leeder A. J., Kaur J., Fischer T., Kubatova N., Brown L. J., Brown R. C. D., Becker-Baldus J., Wachtveitl J., Glaubitz C., Chromophore distortions in photointermediates of proteorhodopsin visualized by dynamic nuclear polarization-enhanced solid-state NMR. J. Am. Chem. Soc. 139, 16143–16153 (2017). PubMed
Bada Juarez J. F., Judge P. J., Adam S., Axford D., Vinals J., Birch J., Kwan T. O. C., Hoi K. K., Yen H.-Y., Vial A., Milhiet P.-E., Robinson C. V., Schapiro I., Moraes I., Watts A., Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat. Commun. 12, 629 (2021). PubMed PMC
Zabelskii D., Alekseev A., Kovalev K., Rankovic V., Balandin T., Soloviov D., Bratanov D., Savelyeva E., Podolyak E., Volkov D., Vaganova S., Astashkin R., Chizhov I., Yutin N., Rulev M., Popov A., Eria-Oliveira A.-S., Rokitskaya T., Mager T., Antonenko Y., Rosselli R., Armeev G., Shaitan K., Vivaudou M., Büldt G., Rogachev A., Rodriguez-Valera F., Kirpichnikov M., Moser T., Offenhäusser A., Willbold D., Koonin E., Bamberg E., Gordeliy V., Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat. Commun. 11, 5707 (2020). PubMed PMC
Park J. H., Scheerer P., Hofmann K. P., Choe H.-W., Ernst O. P., Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008). PubMed
Hilf R. J. C., Dutzler R., Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009). PubMed
Fujisawa T., Nishikawa K., Tamogami J., Unno M., Conformational analysis of a retinal schiff base chromophore in proteorhodopsin by Raman optical activity. J. Phys. Chem. Lett. 12, 9564–9568 (2021). PubMed
Bamann C., Bamberg E., Wachtveitl J., Glaubitz C., Proteorhodopsin. Biochim. Biophys. Acta Bioenerg. 1837, 614–625 (2014). PubMed
Schätzler B., Dencher N. A., Tittor J., Oesterhelt D., Yaniv-Checover S., Nachliel E., Gutman M., Subsecond proton-hole propagation in bacteriorhodopsin. Biophys. J. 84, 671–686 (2003). PubMed PMC
Faramarzi S., Feng J., Mertz B., Allosteric effects of the proton donor on the microbial proton pump Proteorhodopsin. Biophys. J. 115, 1240–1250 (2018). PubMed PMC
Sasaki S., Tamogami J., Nishiya K., Demura M., Kikukawa T., Replaceability of Schiff base proton donors in light-driven proton pump rhodopsins. J. Biol. Chem. 297, 101013 (2021). PubMed PMC
Nagle J. F., Morowitz H. J., Molecular mechanisms for proton transport in membranes. Proc. Natl. Acad. Sci. U.S.A. 75, 298–302 (1978). PubMed PMC
Nagle J. F., Tristram-Nagle S., Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J. Membr. Biol. 74, 1–14 (1983). PubMed
Noji T., Chiba Y., Saito K., Ishikita H., Energetics of the H-bond network in Exiguobacterium sibiricum rhodopsin. Biochemistry 63, 1505–1512 (2024). PubMed PMC
Freier E., Wolf S., Gerwert K., Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl. Acad. Sci. U.S.A. 108, 11435–11439 (2011). PubMed PMC
Miranda M. R. M., Choi A. R., Shi L., Bezerra A. G. Jr., Jung K.-H., Brown L. S., The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys. J. 96, 1471–1481 (2009). PubMed PMC
Garczarek F., Gerwert K., Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006). PubMed
Sugimoto T., Katayama K., Kandori H., FTIR study of light-induced proton transfer and Ca2+ binding in T82D mutant of TAT rhodopsin. Biophys. J. 123, 4245–4255 (2024). PubMed PMC
Goyal P., Ghosh N., Phatak P., Clemens M., Gaus M., Elstner M., Cui Q., Proton storage site in bacteriorhodopsin: New insights from quantum mechanics/molecular mechanics simulations of microscopic pKa and infrared spectra. J. Am. Chem. Soc. 133, 14981–14997 (2011). PubMed PMC
Maag D., Mast T., Elstner M., Cui Q., Kubař T., O to bR transition in bacteriorhodopsin occurs through a proton hole mechanism. Proc. Natl. Acad. Sci. U.S.A. 118, e2024803118 (2021). PubMed PMC
Shigeta A., Ito S., Inoue K., Okitsu T., Wada A., Kandori H., Kawamura I., Solid-state nuclear magnetic resonance structural study of the retinal-binding pocket in sodium ion pump rhodopsin. Biochemistry 56, 543–550 (2017). PubMed
Caramello N., Royant A., From femtoseconds to minutes: Time-resolved macromolecular crystallography at XFELs and synchrotrons. Acta Crystallogr. D Struct. Biol. 80, 60–79 (2024). PubMed PMC
Khusainov G., Standfuss J., Weinert T., The time revolution in macromolecular crystallography. Struct. Dyn. 11, 020901 (2024). PubMed PMC
Gushchin I., Reshetnyak A., Borshchevskiy V., Ishchenko A., Round E., Grudinin S., Engelhard M., Büldt G., Gordeliy V., Active state of sensory rhodopsin II: Structural determinants for signal transfer and proton pumping. J. Mol. Biol. 412, 591–600 (2011). PubMed
Liu S., Li W., Protein fusion strategies for membrane protein stabilization and crystal structure determination. Crystals 12, 1041 (2022).
Dai S., Funk L.-M., von Pappenheim F. R., Sautner V., Paulikat M., Schröder B., Uranga J., Mata R. A., Tittmann K., Low-barrier hydrogen bonds in enzyme cooperativity. Nature 573, 609–613 (2019). PubMed
Ogata H., Nishikawa K., Lubitz W., Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520, 571–574 (2015). PubMed
Woińska M., Grabowsky S., Dominiak P. M., Woźniak K., Jayatilaka D., Hydrogen atoms can be located accurately and precisely by X-ray crystallography. Sci. Adv. 2, e1600192 (2016). PubMed PMC
Eriksson U. K., Fischer G., Friemann R., Enkavi G., Tajkhorshid E., Neutze R., Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340, 1346–1349 (2013). PubMed PMC
Blakeley M. P., Hasnain S. S., Antonyuk S. V., Sub-atomic resolution X-ray crystallography and neutron crystallography: Promise, challenges and potential. IUCrJ 2, 464–474 (2015). PubMed PMC
Fuhrman J. A., Schwalbach M. S., Stingl U., Proteorhodopsins: An array of physiological roles? Nat. Rev. Microbiol. 6, 488–494 (2008). PubMed
Neutze R., Pebay-Peyroula E., Edman K., Royant A., Navarro J., Landau E. M., Bacteriorhodopsin: A high-resolution structural view of vectorial proton transport. Biochim. Biophys. Acta 1565, 144–167 (2002). PubMed
Inoue K., Ito S., Kato Y., Nomura Y., Shibata M., Uchihashi T., Tsunoda S. P., Kandori H., A natural light-driven inward proton pump. Nat. Commun. 7, 13415 (2016). PubMed PMC
Shevchenko V., Mager T., Kovalev K., Polovinkin V., Alekseev A., Juettner J., Chizhov I., Bamann C., Vavourakis C., Ghai R., Gushchin I., Borshchevskiy V., Rogachev A., Melnikov I., Popov A., Balandin T., Rodriguez-Valera F., Manstein D. J., Bueldt G., Bamberg E., Gordeliy V., Inward H+ pump xenorhodopsin: Mechanism and alternative optogenetic approach. Sci. Adv. 3, e1603187 (2017). PubMed PMC
Okuyama A., Hososhima S., Kandori H., Tsunoda S. P., Driving forces of proton-pumping rhodopsins. Biophys. J. 123, 4274–4284 (2024). PubMed PMC
Warshel A., Papazyan A., Kollman P. A., On low-barrier hydrogen bonds and enzyme catalysis. Science 269, 102–106 (1995). PubMed
Yamaguchi S., Kamikubo H., Kurihara K., Kuroki R., Niimura N., Shimizu N., Yamazaki Y., Kataoka M., Low-barrier hydrogen bond in photoactive yellow protein. Proc. Natl. Acad. Sci. U.S.A. 106, 440–444 (2009). PubMed PMC
Wang J., Visualization of H atoms in the X-ray crystal structure of photoactive yellow protein: Does it contain low-barrier hydrogen bonds? Protein Sci. 28, 1966–1972 (2019). PubMed PMC
Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., Von Haeseler A., Lanfear R., Teeling E., IQ-TREE 2: New models and efficient methods for phylogenetic inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534 (2020). PubMed PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von Haeseler A., Jermiin L. S., ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). PubMed PMC
Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S., UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). PubMed PMC
Edgar R. C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Okonechnikov K., Golosova O., Fursov M., UGENE team , Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012). PubMed
Letunic I., Bork P., Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021). PubMed PMC
Studier F. W., Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005). PubMed
Renault L., Guibert B., Cherfils J., Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003). PubMed
Gushchin I., Shevchenko V., Polovinkin V., Kovalev K., Alekseev A., Round E., Borshchevskiy V., Balandin T., Popov A., Gensch T., Fahlke C., Bamann C., Willbold D., Büldt G., Bamberg E., Gordeliy V., Crystal structure of a light-driven sodium pump. Nat. Struct. Mol. Biol. 22, 390–395 (2015). PubMed
Bamberg E., Apell H.-J., Dencher N. A., Sperling W., Stieve H., Läuger P., Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. Mech. 5, 277–292 (1979).
Chizhov I., Chernavskii D. S., Engelhard M., Mueller K. H., Zubov B. V., Hess B., Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 71, 2329–2345 (1996). PubMed PMC
Chizhov I., Schmies G., Seidel R., Sydor J. R., Lüttenberg B., Engelhard M., The photophobic receptor from natronobacterium pharaonis: Temperature and pH dependencies of the photocycle of sensory Rhodopsin II. Biophys. J. 75, 999–1009 (1998). PubMed PMC
Chizhov I., Engelhard M., Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis. Biophys. J. 81, 1600–1612 (2001). PubMed PMC
Bratanov D., Kovalev K., Machtens J.-P., Astashkin R., Chizhov I., Soloviov D., Volkov D., Polovinkin V., Zabelskii D., Mager T., Gushchin I., Rokitskaya T., Antonenko Y., Alekseev A., Shevchenko V., Yutin N., Rosselli R., Baeken C., Borshchevskiy V., Bourenkov G., Popov A., Balandin T., Büldt G., Manstein D. J., Rodriguez-Valera F., Fahlke C., Bamberg E., Koonin E., Gordeliy V., Unique structure and function of viral rhodopsins. Nat. Commun. 10, 4939 (2019). PubMed PMC
Volkov O., Kovalev K., Polovinkin V., Borshchevskiy V., Bamann C., Astashkin R., Marin E., Popov A., Balandin T., Willbold D., Büldt G., Bamberg E., Gordeliy V., Structural insights into ion conduction by channelrhodopsin 2. Science 358, eaan8862 (2017). PubMed
Kovalev K., Volkov D., Astashkin R., Alekseev A., Gushchin I., Haro-Moreno J. M., Chizhov I., Siletsky S., Mamedov M., Rogachev A., Balandin T., Borshchevskiy V., Popov A., Bourenkov G., Bamberg E., Rodriguez-Valera F., Büldt G., Gordeliy V., High-resolution structural insights into the heliorhodopsin family. Proc. Natl. Acad. Sci. U.S.A. 117, 4131–4141 (2020). PubMed PMC
Kabsch W., XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC
Günther S., Reinke P. Y. A., Fernández-García Y., Lieske J., Lane T. J., Ginn H. M., Koua F. H. M., Ehrt C., Ewert W., Oberthuer D., Yefanov O., Meier S., Lorenzen K., Krichel B., Kopicki J.-D., Gelisio L., Brehm W., Dunkel I., Seychell B., Gieseler H., Norton-Baker B., Escudero-Pérez B., Domaracky M., Saouane S., Tolstikova A., White T. A., Hänle A., Groessler M., Fleckenstein H., Trost F., Galchenkova M., Gevorkov Y., Li C., Awel S., Peck A., Barthelmess M., Schlünzen F., Xavier P. L., Werner N., Andaleeb H., Ullah N., Falke S., Srinivasan V., França B. A., Schwinzer M., Brognaro H., Rogers C., Melo D., Zaitseva-Kinneberg J. I., Knoska J., Peña-Murillo G. E., Mashhour A. R., Hennicke V., Fischer P., Hakanpää J., Meyer J., Gribbon P., Ellinger B., Kuzikov M., Wolf M., Beccari A. R., Bourenkov G., von Stetten D., Pompidor G., Bento I., Panneerselvam S., Karpics I., Schneider T. R., Garcia-Alai M. M., Niebling S., Günther C., Schmidt C., Schubert R., Han H., Boger J., Monteiro D. C. F., Zhang L., Sun X., Pletzer-Zelgert J., Wollenhaupt J., Feiler C. G., Weiss M. S., Schulz E.-C., Mehrabi P., Karničar K., Usenik A., Loboda J., Tidow H., Chari A., Hilgenfeld R., Uetrecht C., Cox R., Zaliani A., Beck T., Rarey M., Günther S., Turk D., Hinrichs W., Chapman H. N., Pearson A. R., Betzel C., Meents A., X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 372, 642–646 (2021). PubMed PMC
Słabicki M., Kozicka Z., Petzold G., Li Y.-D., Manojkumar M., Bunker R. D., Donovan K. A., Sievers Q. L., Koeppel J., Suchyta D., Sperling A. S., Fink E. C., Gasser J. A., Wang L. R., Corsello S. M., Sellar R. S., Jan M., Gillingham D., Scholl C., Fröhling S., Golub T. R., Fischer E. S., Thomä N. H., Ebert B. L., The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020). PubMed PMC
Andreeva L., Hiller B., Kostrewa D., Lässig C., De Oliveira Mann C. C., Jan Drexler D., Maiser A., Gaidt M., Leonhardt H., Hornung V., Hopfner K.-P., cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature 549, 394–398 (2017). PubMed
Sievers Q. L., Petzold G., Bunker R. D., Renneville A., Słabicki M., Liddicoat B. J., Abdulrahman W., Mikkelsen T., Ebert B. L., Thomä N. H., Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018). PubMed PMC
Evans P., Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006). PubMed
Vagin A., Teplyakov A., Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010). PubMed
Melnikov I., Polovinkin V., Kovalev K., Gushchin I., Shevtsov M., Shevchenko V., Mishin A., Alekseev A., Rodriguez-Valera F., Borshchevskiy V., Cherezov V., Leonard G. A., Gordeliy V., Popov A., Fast iodide-SAD phasing for high-throughput membrane protein structure determination. Sci. Adv. 3, e1602952 (2017). PubMed PMC
Amor J. C., Harrison D. H., Kahn R. A., Ringe D., Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994). PubMed
Terwilliger T. C., Grosse-Kunstleve R. W., Afonine P. V., Moriarty N. W., Zwart P. H., Hung L. W., Read R. J., Adams P. D., Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2007). PubMed PMC
Emsley P., Lohkamp B., Scott W. G., Cowtan K., Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). PubMed PMC
Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long F., Vagin A. A., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011). PubMed PMC
Afonine P. V., Grosse-Kunstleve R. W., Echols N., Headd J. J., Moriarty N. W., Mustyakimov M., Terwilliger T. C., Urzhumtsev A., Zwart P. H., Adams P. D., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012). PubMed PMC
Williams C. J., Headd J. J., Moriarty N. W., Prisant M. G., Videau L. L., Deis L. N., Verma V., Keedy D. A., Hintze B. J., Chen V. B., Jain S., Lewis S. M., Arendall W. B. III, Snoeyink J., Adams P. D., Lovell S. C., Richardson J. S., Richardson D. C., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018). PubMed PMC
Diederichs K., Karplus P. A., Better models by discarding data? Acta Crystallogr. D Biol. Crystallogr. 69, 1215–1222 (2013). PubMed PMC
Ho B. K., Gruswitz F., HOLLOW: Generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008). PubMed PMC
Lomize M. A., Pogozheva I. D., Joo H., Mosberg H. I., Lomize A. L., OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012). PubMed PMC
De Zitter E., Coquelle N., Oeser P., Barends T. R. M., Colletier J.-P., Xtrapol8 enables automatic elucidation of low-occupancy intermediate-states in crystallographic studies. Commun. Biol. 5, 640 (2022). PubMed PMC
Cruickshank D. W., Remarks about protein structure precision. Acta Crystallogr. D Biol. Crystallogr. 55, 583–601 (1999). PubMed
G. A. J. Jeffrey, G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford Univ. Press, 1997).
P. A. Frey, Encyclopedia of Biological Chemistry (Elsevier, 2004).
von Stetten D., Giraud T., Carpentier P., Sever F., Terrien M., Dobias F., Juers D. H., Flot D., Mueller-Dieckmann C., Leonard G. A., de Sanctis D., Royant A., In crystallo optical spectroscopy (icOS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. Acta Crystallogr. D Biol. Crystallogr. 71, 15–26 (2015). PubMed PMC
Smith S. O., Lugtenburg J., Mathies R. A., Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. J. Membr. Biol. 85, 95–109 (1985). PubMed
Kouyama T., Ihara K., Existence of two substates in the O intermediate of the bacteriorhodopsin photocycle. Biochim. Biophys. Acta Biomembr. 1864, 183998 (2022). PubMed
Heberle J., Proton transfer reactions across bacteriorhodopsin and along the membrane. Biochim. Biophys. Acta 1458, 135–147 (2000). PubMed
Kandori H., Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Biochim. Biophys. Acta 1658, 72–79 (2004). PubMed
Cao Z., Peng Y., Yan T., Li S., Li A., Voth G. A., Mechanism of fast proton transport along one-dimensional water chains confined in carbon nanotubes. J. Am. Chem. Soc. 132, 11395–11397 (2010). PubMed
Deamer D. W., Proton permeation of lipid bilayers. J. Bioenerg. Biomembr. 19, 457–479 (1987). PubMed