Structural Insights into (Tere)phthalate-Ester Hydrolysis by a Carboxylesterase and Its Role in Promoting PET Depolymerization

. 2022 Dec 16 ; 12 (24) : 15259-15270. [epub] 20221129

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36570084

TfCa, a promiscuous carboxylesterase from Thermobifida fusca, was found to hydrolyze polyethylene terephthalate (PET) degradation intermediates such as bis(2-hydroxyethyl) terephthalate (BHET) and mono-(2-hydroxyethyl)-terephthalate (MHET). In this study, we elucidated the structures of TfCa in its apo form, as well as in complex with a PET monomer analogue and with BHET. The structure-function relationship of TfCa was investigated by comparing its hydrolytic activity on various ortho- and para-phthalate esters of different lengths. Structure-guided rational engineering of amino acid residues in the substrate-binding pocket resulted in the TfCa variant I69W/V376A (WA), which showed 2.6-fold and 3.3-fold higher hydrolytic activity on MHET and BHET, respectively, than the wild-type enzyme. TfCa or its WA variant was mixed with a mesophilic PET depolymerizing enzyme variant [Ideonella sakaiensis PETase (IsPETase) PM] to degrade PET substrates of various crystallinity. The dual enzyme system with the wild-type TfCa or its WA variant produced up to 11-fold and 14-fold more terephthalate (TPA) than the single IsPETase PM, respectively. In comparison to the recently published chimeric fusion protein of IsPETase and MHETase, our system requires 10% IsPETase and one-fourth of the reaction time to yield the same amount of TPA under similar PET degradation conditions. Our simple dual enzyme system reveals further advantages in terms of cost-effectiveness and catalytic efficiency since it does not require time-consuming and expensive cross-linking and immobilization approaches.

Zobrazit více v PubMed

Wei R.; Tiso T.; Bertling J.; O’Connor K.; Blank L. M.; Bornscheuer U. T. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 2020, 3, 867–871. 10.1038/s41929-020-00521-w. DOI

Müller R.-J.; Schrader H.; Profe J.; Dresler K.; Deckwer W.-D. Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromol. Rapid Commun. 2005, 26, 1400–1405. 10.1002/marc.200500410. DOI

Lu H.; Diaz D. J.; Czarnecki N. J.; Zhu C.; Kim W.; Shroff R.; Acosta D. J.; Alexander B. R.; Cole H. O.; Zhang Y.; Lynd N. A.; Ellington A. D.; Alper H. S. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 2022, 604, 662–667. 10.1038/s41586-022-04599-z. PubMed DOI

Wei R.; von Haugwitz G.; Pfaff L.; Mican J.; Badenhorst C. P. S.; Liu W.; Weber G.; Austin H. P.; Bednar D.; Damborsky J.; Bornscheuer U. T. Mechanism-based design of efficient PET hydrolases. ACS Catal. 2022, 12, 3382–3396. 10.1021/acscatal.1c05856. PubMed DOI PMC

Tournier V.; Topham C. M.; Gilles A.; David B.; Folgoas C.; Moya-Leclair E.; Kamionka E.; Desrousseaux M.-L.; Texier H.; Gavalda S.; Cot M.; Guémard E.; Dalibey M.; Nomme J.; Cioci G.; Barbe S.; Chateau M.; André I.; Duquesne S.; Marty A. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. 10.1038/s41586-020-2149-4. PubMed DOI

Wei R.; Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?. Microb. Biotechnol. 2017, 10, 1308–1322. 10.1111/1751-7915.12710. PubMed DOI PMC

Barth M.; Oeser T.; Wei R.; Then J.; Schmidt J.; Zimmermann W. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester Hydrolase from Thermobifida fusca. Biochem. Eng. J. 2015, 93, 222–228. 10.1016/j.bej.2014.10.012. DOI

Barth M.; Wei R.; Oeser T.; Then J.; Schmidt J.; Wohlgemuth F.; Zimmermann W. Enzymatic hydrolysis of polyethylene terephthalate films in an ultrafiltration membrane reactor. J. Membr. Sci. 2015, 494, 182–187. 10.1016/j.memsci.2015.07.030. DOI

Wei R.; Oeser T.; Schmidt J.; Meier R.; Barth M.; Then J.; Zimmermann W. Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition. Biotechnol. Bioeng. 2016, 113, 1658–1665. 10.1002/bit.25941. PubMed DOI

Yoshida S.; Hiraga K.; Takehana T.; Taniguchi I.; Yamaji H.; Maeda Y.; Toyohara K.; Miyamoto K.; Kimura Y.; Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. 10.1126/science.aad6359. PubMed DOI

Palm G. J.; Reisky L.; Böttcher D.; Müller H.; Michels E. A. P.; Walczak M. C.; Berndt L.; Weiss M. S.; Bornscheuer U. T.; Weber G. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat. Commun. 2019, 10, 1717.10.1038/s41467-019-09326-3. PubMed DOI PMC

Knott B. C.; Erickson E.; Allen M. D.; Gado J. E.; Graham R.; Kearns F. L.; Pardo I.; Topuzlu E.; Anderson J. J.; Austin H. P.; Dominick G.; Johnson C. W.; Rorrer N. A.; Szostkiewicz C. J.; Copié V.; Payne C. M.; Woodcock H. L.; Donohoe B. S.; Beckham G. T.; McGeehan J. E. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 25476–25485. 10.1073/pnas.2006753117. PubMed DOI PMC

Billig S.; Oeser T.; Birkemeyer C.; Zimmermann W. Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl. Microbiol. Biotechnol. 2010, 87, 1753–1764. 10.1007/s00253-010-2635-y. PubMed DOI

Oeser T.; Wei R.; Baumgarten T.; Billig S.; Föllner C.; Zimmermann W. High level expression of a hydrophobic poly(ethylene terephthalate)-hydrolyzing carboxylesterase from Thermobifida fusca KW3 in Escherichia coli BL21(DE3). J. Biotechnol. 2010, 146, 100–104. 10.1016/j.jbiotec.2010.02.006. PubMed DOI

Barth M.; Honak A.; Oeser T.; Wei R.; Belisário-Ferrari M. R.; Then J.; Schmidt J.; Zimmermann W. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol. J. 2016, 11, 1082–1087. 10.1002/biot.201600008. PubMed DOI

Sagong H.-Y.; Seo H.; Kim T.; Son H. F.; Joo S.; Lee S. H.; Kim S.; Woo J.-S.; Hwang S. Y.; Kim K.-J. Decomposition of the PET film by MHETase using exo-PETase function. ACS Catal. 2020, 10, 4805–4812. 10.1021/acscatal.9b05604. DOI

Pfaff L.; Breite D.; Badenhorst C. P. S.; Bornscheuer U.; Wei R. Fluorimetric high-throughput screening method for polyester hydrolase activity using polyethylene terephthalate nanoparticles. Methods Enzymol. 2021, 648, 253–270. 10.1016/bs.mie.2020.11.003. PubMed DOI

Fischer-Colbrie G.; Heumann S.; Liebminger S.; Almansa E.; Cavaco-Paulo A.; Guebitz G. M. New enzymes with potential for PET surface modification. Biocatal. Biotransform. 2004, 22, 341–346. 10.1080/10242420400024565. DOI

Mueller U.; Förster R.; Hellmig M.; Huschmann F. U.; Kastner A.; Malecki P.; Pühringer S.; Röwer M.; Sparta K.; Steffien M.; Ühlein M.; Wilk P.; Weiss M. S. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus 2015, 130, 141.10.1140/epjp/i2015-15141-2. DOI

McCoy A. J.; Grosse-Kunstleve R. W.; Adams P. D.; Winn M. D.; Storoni L. C.; Read R. J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. 10.1107/S0021889807021206. PubMed DOI PMC

Liebschner D.; Afonine P. V.; Baker M. L.; Bunkóczi G.; Chen V. B.; Croll T. I.; Hintze B.; Hung L.-W.; Jain S.; McCoy A. J.; Moriarty N. W.; Oeffner R. D.; Poon B. K.; Prisant M. G.; Read R. J.; Richardson J. S.; Richardson D. C.; Sammito M. D.; Sobolev O. V.; Stockwell D. H.; Terwilliger T. C.; Urzhumtsev A. G.; Videau L. L.; Williams C. J.; Adams P. D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019, 75, 861–877. 10.1107/S2059798319011471. PubMed DOI PMC

Afonine P. V.; Grosse-Kunstleve R. W.; Echols N.; Headd J. J.; Moriarty N. W.; Mustyakimov M.; Terwilliger T. C.; Urzhumtsev A.; Zwart P. H.; Adams P. D. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 352–367. 10.1107/S0907444912001308. PubMed DOI PMC

Emsley P.; Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. 10.1107/S0907444904019158. PubMed DOI

Brünger A. T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D Biol. Crystallogr. 1993, 49, 24–36. 10.1107/S0907444992007352. PubMed DOI

Brott S.; Pfaff L.; Schuricht J.; Schwarz J.-N.; Böttcher D.; Badenhorst C. P. S.; Wei R.; Bornscheuer U. T. Engineering and evaluation of thermostable IsPETase variants for PET degradation. Eng. Life Sci. 2022, 22, 192–203. 10.1002/elsc.202100105. PubMed DOI PMC

Trott O.; Olson A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. 10.1002/jcc.21334. PubMed DOI PMC

Berman H. M.; Westbrook J.; Feng Z.; Gilliland G.; Bhat T. N.; Weissig H.; Shindyalov I. N.; Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. 10.1093/nar/28.1.235. PubMed DOI PMC

Miller B. R.; McGee T. D.; Swails J. M.; Homeyer N.; Gohlke H.; Roitberg A. E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. 10.1021/ct300418h. PubMed DOI

Genheden S.; Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. 10.1517/17460441.2015.1032936. PubMed DOI PMC

Weiser J.; Shenkin P. S.; Still W. C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999, 20, 217–230. 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A. DOI

Eberl A.; Heumann S.; Brückner T.; Araujo R.; Cavaco-Paulo A.; Kaufmann F.; Kroutil W.; Guebitz G. M. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J. Biotechnol. 2009, 143, 207–212. 10.1016/j.jbiotec.2009.07.008. PubMed DOI

Belisário-Ferrari M. R.; Wei R.; Schneider T.; Honak A.; Zimmermann W. Fast turbidimetric assay for analyzing the enzymatic hydrolysis of polyethylene terephthalate model substrates. Biotechnol. J. 2019, 14, 180027210.1002/biot.201800272. PubMed DOI

Vogel K.; Wei R.; Pfaff L.; Breite D.; Al-Fathi H.; Ortmann C.; Estrela-Lopis I.; Venus T.; Schulze A.; Harms H.; Bornscheuer U. T.; Maskow T. Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry. Sci. Total Environ. 2021, 773, 14511110.1016/j.scitotenv.2021.145111. PubMed DOI

Pfaff L.; Gao J.; Li Z.; Jäckering A.; Weber G.; Mican J.; Chen Y.; Dong W.; Han X.; Feiler C. G.; Ao Y.-F.; Badenhorst C. P. S.; Bednar D.; Palm G. J.; Lammers M.; Damborsky J.; Strodel B.; Liu W.; Bornscheuer U. T.; Wei R. Multiple substrate binding mode-guided engineering of a thermophilic PET hydrolase. ACS Catal. 2022, 12, 9790–9800. 10.1021/acscatal.2c02275. PubMed DOI PMC

Ribitsch D.; Herrero Acero E.; Greimel K.; Dellacher A.; Zitzenbacher S.; Marold A.; Rodriguez R. D.; Steinkellner G.; Gruber K.; Schwab H.; Guebitz G. M. A New esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymer 2012, 4, 617–629. 10.3390/polym4010617. DOI

Samak N. A.; Jia Y.; Sharshar M. M.; Mu T.; Yang M.; Peh S.; Xing J. Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environ. Int. 2020, 145, 10614410.1016/j.envint.2020.106144. PubMed DOI

Sonnendecker C.; Oeser J.; Richter P. K.; Hille P.; Zhao Z.; Fischer C.; Lippold H.; Blázquez-Sánchez P.; Engelberger F.; Ramírez-Sarmiento C. A.; Oeser T.; Lihanova Y.; Frank R.; Jahnke H.-G.; Billig S.; Abel B.; Sträter N.; Matysik J.; Zimmermann W. Low carbon footprint recycling of post-consumer PET plastic with a metagenomic polyester hydrolase. ChemSusChem 2022, 15, e20210106210.1002/cssc.202101062. PubMed DOI PMC

Sriyapai P.; Chansiri K.; Sriyapai T. Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology 2018, 87, 290–300. 10.1134/S0026261718020157. DOI

Gautom T.; Dheeman D.; Levy C.; Butterfield T.; Alvarez Gonzalez G.; Le Roy P.; Caiger L.; Fisher K.; Johannissen L.; Dixon N. Structural basis of terephthalate recognition by solute binding protein TphC. Nat. Commun. 2021, 12, 6244.10.1038/s41467-021-26508-0. PubMed DOI PMC

Lykidis A.; Mavromatis K.; Ivanova N.; Anderson I.; Land M.; DiBartolo G.; Martinez M.; Lapidus A.; Lucas S.; Copeland A.; Richardson P.; Wilson D. B.; Kyrpides N. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol. 2007, 189, 2477–2486. 10.1128/JB.01899-06. PubMed DOI PMC

Kleeberg I.; Hetz C.; Kroppenstedt R. M.; Müller R.-J.; Deckwer W.-D. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Appl. Environ. Microbiol. 1998, 64, 1731–1735. 10.1128/AEM.64.5.1731-1735.1998. PubMed DOI PMC

Giam C. S.; Atlas E.; Powers M. A.; Leonard J. E.. Phthalic acid esters. In Anthropogenic Compounds; Springer: Berlin, Heidelberg, 1984; pp. 67–142.

Baloyi N. D.; Tekere M.; Maphangwa K. W.; Masindi V. Insights into the prevalence and impacts of phthalate esters in aquatic ecosystems. Front. Environ. Sci. 2021, 9, 68419010.3389/fenvs.2021.684190. DOI

Boll M.; Geiger R.; Junghare M.; Schink B. Microbial degradation of phthalates: biochemistry and environmental implications. Environ. Microbiol. Rep. 2020, 12, 3–15. 10.1111/1758-2229.12787. PubMed DOI

Gao D.-W.; Wen Z.-D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 2016, 541, 986–1001. 10.1016/j.scitotenv.2015.09.148. PubMed DOI

Vamsee-Krishna C.; Phale P. S. Bacterial degradation of phthalate isomers and their esters. Indian J. Microbiol. 2008, 48, 19–34. 10.1007/s12088-008-0003-8. PubMed DOI PMC

Singh A.; Rorrer N. A.; Nicholson S. R.; Erickson E.; DesVeaux J. S.; Avelino A. F. T.; Lamers P.; Bhatt A.; Zhang Y.; Avery G.; Tao L.; Pickford A. R.; Carpenter A. C.; McGeehan J. E.; Beckham G. T. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021, 5, 2479–2503. 10.1016/j.joule.2021.06.015. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace