Multiple Substrate Binding Mode-Guided Engineering of a Thermophilic PET Hydrolase

. 2022 Aug 05 ; 12 (15) : 9790-9800. [epub] 20220727

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35966606

Thermophilic polyester hydrolases (PES-H) have recently enabled biocatalytic recycling of the mass-produced synthetic polyester polyethylene terephthalate (PET), which has found widespread use in the packaging and textile industries. The growing demand for efficient PET hydrolases prompted us to solve high-resolution crystal structures of two metagenome-derived enzymes (PES-H1 and PES-H2) and notably also in complex with various PET substrate analogues. Structural analyses and computational modeling using molecular dynamics simulations provided an understanding of how product inhibition and multiple substrate binding modes influence key mechanistic steps of enzymatic PET hydrolysis. Key residues involved in substrate-binding and those identified previously as mutational hotspots in homologous enzymes were subjected to mutagenesis. At 72 °C, the L92F/Q94Y variant of PES-H1 exhibited 2.3-fold and 3.4-fold improved hydrolytic activity against amorphous PET films and pretreated real-world PET waste, respectively. The R204C/S250C variant of PES-H1 had a 6.4 °C higher melting temperature than the wild-type enzyme but retained similar hydrolytic activity. Under optimal reaction conditions, the L92F/Q94Y variant of PES-H1 hydrolyzed low-crystallinity PET materials 2.2-fold more efficiently than LCC ICCG, which was previously the most active PET hydrolase reported in the literature. This property makes the L92F/Q94Y variant of PES-H1 a good candidate for future applications in industrial plastic recycling processes.

CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Zhongguancun North 1st Street 2 Beijing 100190 China

Department of Biotechnology and Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix Hausdorff Str 4 17487 Greifswald Germany

Department Synthetic and Structural Biochemistry Institute of Biochemistry University of Greifswald Felix Hausdorff Str 4 17487 Greifswald Germany

Helmholtz Zentrum Berlin für Materialien und Energie Hahn Meitner Platz 1 14109 Berlin Germany

Institute of Biological Information Processing Structural Biochemistry Forschungszentrum Jülich Wilhelm Johnen Straße 52428 Jülich Germany

Institute of Theoretical and Computational Chemistry Heinrich Heine University Düsseldorf Universitätsstr 1 40225 Düsseldorf Germany

International Clinical Research Center St Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic

Loschmidt Laboratories Department of Experimental Biology and RECETOX Faculty of Science Masaryk University Kamenice 5 C13 625 00 Brno Czech Republic

National Technology Innovation Center of Synthetic Biology 32 West Seventh Avenue Tianjin Airport Economic Area Tianjin 300308 China

State Key Laboratory of Materials Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China

Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West Seventh Avenue Tianjin Airport Economic Area Tianjin 300308 China

University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China

Zobrazit více v PubMed

Singh A.; Rorrer N. A.; Nicholson S. R.; Erickson E.; DesVeaux J. S.; Avelino A. F. T.; Lamers P.; Bhatt A.; Zhang Y.; Avery G.; Tao L.; Pickford A. R.; Carpenter A. C.; McGeehan J. E.; Beckham G. T. Techno-Economic, Life-Cycle, and Socioeconomic Impact Analysis of Enzymatic Recycling of Poly(Ethylene Terephthalate). Joule 2021, 5 (9), 2479–2503. 10.1016/j.joule.2021.06.015. DOI

Wei R.; Tiso T.; Bertling J.; O’Connor K.; Blank L. M.; Bornscheuer U. T. Possibilities and Limitations of Biotechnological Plastic Degradation and Recycling. Nat. Catal. 2020, 3 (11), 867–871. 10.1038/s41929-020-00521-w. DOI

Tiso T.; Winter B.; Wei R.; Hee J.; de Witt J.; Wierckx N.; Quicker P.; Bornscheuer U. T.; Bardow A.; Nogales J.; Blank L. M. The Metabolic Potential of Plastics as Biotechnological Carbon Sources – Review and Targets for the Future. Metab. Engin. 2022, 71, 77–98. 10.1016/j.ymben.2021.12.006. PubMed DOI

Jönsson C.; Wei R.; Biundo A.; Landberg J.; Schwarz Bour L.; Pezzotti F.; Toca A.; Jacques L. M.; Bornscheuer U. T.; Syrén P. Biocatalysis in the Recycling Landscape for Synthetic Polymers and Plastics towards Circular Textiles. ChemSusChem 2021, 14 (19), 4028–4040. 10.1002/cssc.202002666. PubMed DOI PMC

Tournier V.; Topham C. M.; Gilles A.; David B.; Folgoas C.; Moya-Leclair E.; Kamionka E.; Desrousseaux M.-L.; Texier H.; Gavalda S.; Cot M.; Guémard E.; Dalibey M.; Nomme J.; Cioci G.; Barbe S.; Chateau M.; André I.; Duquesne S.; Marty A. An Engineered PET Depolymerase to Break down and Recycle Plastic Bottles. Nature 2020, 580 (7802), 216–219. 10.1038/s41586-020-2149-4. PubMed DOI

Wei R.; von Haugwitz G.; Pfaff L.; Mican J.; Badenhorst C. P. S.; Liu W.; Weber G.; Austin H. P.; Bednar D.; Damborsky J.; Bornscheuer U. T. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal. 2022, 12 (6), 3382–3396. 10.1021/acscatal.1c05856. PubMed DOI PMC

Bianchi R.; Chiavacci P.; Vosa R.; Guerra G. Effect of Moisture on the Crystallization Behavior of PET from the Quenched Amorphous Phase. J. Appl. Polym. Sci. 1991, 43 (6), 1087–1089. 10.1002/app.1991.070430608. DOI

Langevin D.; Grenet J.; Saiter J. M. Moisture Sorption in PET Influence on the Thermokinetic Parameters. Eur. Polym. J. 1994, 30 (3), 339–345. 10.1016/0014-3057(94)90297-6. DOI

Yoshida S.; Hiraga K.; Takehana T.; Taniguchi I.; Yamaji H.; Maeda Y.; Toyohara K.; Miyamoto K.; Kimura Y.; Oda K. A Bacterium That Degrades and Assimilates Poly(Ethylene Terephthalate). Science 2016, 351 (6278), 1196–1199. 10.1126/science.aad6359. PubMed DOI

Kawai F. The Current State of Research on PET Hydrolyzing Enzymes Available for Biorecycling. Catalysts 2021, 11 (2), 206.10.3390/catal11020206. DOI

Brott S.; Pfaff L.; Schuricht J.; Schwarz J.; Böttcher D.; Badenhorst C. P. S.; Wei R.; Bornscheuer U. T. Engineering and Evaluation of Thermostable IsPETase Variants for PET Degradation. Eng. Life Sci. 2022, 22 (3–4), 192–203. 10.1002/elsc.202100105. PubMed DOI PMC

Ronkvist Å. M.; Xie W.; Lu W.; Gross R. A. Cutinase-Catalyzed Hydrolysis of Poly(Ethylene Terephthalate). Macromolecules 2009, 42 (14), 5128–5138. 10.1021/ma9005318. DOI

Sulaiman S.; You D.-J.; Kanaya E.; Koga Y.; Kanaya S. Crystal Structure and Thermodynamic and Kinetic Stability of Metagenome-Derived LC-Cutinase. Biochemistry 2014, 53 (11), 1858–1869. 10.1021/bi401561p. PubMed DOI

Sulaiman S.; Yamato S.; Kanaya E.; Kim J.-J.; Koga Y.; Takano K.; Kanaya S. Isolation of a Novel Cutinase Homolog with Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic Approach. Appl. Environ. Microbiol. 2012, 78 (5), 1556–1562. 10.1128/AEM.06725-11. PubMed DOI PMC

Wei R.; Song C.; Gräsing D.; Schneider T.; Bielytskyi P.; Böttcher D.; Matysik J.; Bornscheuer U. T.; Zimmermann W. Conformational Fitting of a Flexible Oligomeric Substrate Does Not Explain the Enzymatic PET Degradation. Nat. Commun. 2019, 10 (1), 5581.10.1038/s41467-019-13492-9. PubMed DOI PMC

Miyakawa T.; Mizushima H.; Ohtsuka J.; Oda M.; Kawai F.; Tanokura M. Structural Basis for the Ca2+-Enhanced Thermostability and Activity of PET-Degrading Cutinase-like Enzyme from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 2015, 99 (10), 4297–4307. 10.1007/s00253-014-6272-8. PubMed DOI

Then J.; Wei R.; Oeser T.; Gerdts A.; Schmidt J.; Barth M.; Zimmermann W. A Disulfide Bridge in the Calcium Binding Site of a Polyester Hydrolase Increases Its Thermal Stability and Activity against Polyethylene Terephthalate. FEBS Open Bio 2016, 6 (5), 425–432. 10.1002/2211-5463.12053. PubMed DOI PMC

Oda M.; Yamagami Y.; Inaba S.; Oida T.; Yamamoto M.; Kitajima S.; Kawai F. Enzymatic Hydrolysis of PET: Functional Roles of Three Ca2+ Ions Bound to a Cutinase-like Enzyme, Cut190*, and Its Engineering for Improved Activity. Appl. Microbiol. Biotechnol. 2018, 102 (23), 10067–10077. 10.1007/s00253-018-9374-x. PubMed DOI

Zhong-Johnson E. Z. L.; Voigt C. A.; Sinskey A. J. An Absorbance Method for Analysis of Enzymatic Degradation Kinetics of Poly(Ethylene Terephthalate) Films. Sci. Rep. 2021, 11 (1), 928.10.1038/s41598-020-79031-5. PubMed DOI PMC

Then J.; Wei R.; Oeser T.; Barth M.; Belisário-Ferrari M. R.; Schmidt J.; Zimmermann W. Ca 2+ and Mg 2+ Binding Site Engineering Increases the Degradation of Polyethylene Terephthalate Films by Polyester Hydrolases from Thermobifida fusca. Biotechnol. J. 2015, 10 (4), 592–598. 10.1002/biot.201400620. PubMed DOI

Emori M.; Numoto N.; Senga A.; Bekker G.; Kamiya N.; Kobayashi Y.; Ito N.; Kawai F.; Oda M. Structural Basis of Mutants of PET -degrading Enzyme from Saccharomonospora viridis AHK190 with High Activity and Thermal Stability. Proteins 2021, 89 (5), 502–511. 10.1002/prot.26034. PubMed DOI

Nakamura A.; Kobayashi N.; Koga N.; Iino R. Positive Charge Introduction on the Surface of Thermostabilized PET Hydrolase Facilitates PET Binding and Degradation. ACS Catal. 2021, 11 (14), 8550–8564. 10.1021/acscatal.1c01204. DOI

Zeng W.; Li X.; Yang Y.; Min J.; Huang J.-W.; Liu W.; Niu D.; Yang X.; Han X.; Zhang L.; Dai L.; Chen C.-C.; Guo R.-T. Substrate-Binding Mode of a Thermophilic PET Hydrolase and Engineering the Enzyme to Enhance the Hydrolytic Efficacy. ACS Catal. 2022, 12 (5), 3033–3040. 10.1021/acscatal.1c05800. DOI

Thomsen T. B.; Hunt C. J.; Meyer A. S. Influence of Substrate Crystallinity and Glass Transition Temperature on Enzymatic Degradation of Polyethylene Terephthalate (PET). N. Biotechnol. 2022, 69, 28–35. 10.1016/j.nbt.2022.02.006. PubMed DOI

Wei R.; Breite D.; Song C.; Gräsing D.; Ploss T.; Hille P.; Schwerdtfeger R.; Matysik J.; Schulze A.; Zimmermann W. Biocatalytic Degradation Efficiency of Postconsumer Polyethylene Terephthalate Packaging Determined by Their Polymer Microstructures. Adv. Sci. 2019, 6 (14), 1900491.10.1002/advs.201900491. PubMed DOI PMC

Cui Y.; Chen Y.; Liu X.; Dong S.; Tian Y.; Qiao Y.; Mitra R.; Han J.; Li C.; Han X.; Liu W.; Chen Q.; Wei W.; Wang X.; Du W.; Tang S.; Xiang H.; Liu H.; Liang Y.; Houk K. N.; Wu B. Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catal. 2021, 11 (3), 1340–1350. 10.1021/acscatal.0c05126. DOI

Lu H.; Diaz D. J.; Czarnecki N. J.; Zhu C.; Kim W.; Shroff R.; Acosta D. J.; Alexander B. R.; Cole H. O.; Zhang Y.; Lynd N. A.; Ellington A. D.; Alper H. S. Machine Learning-Aided Engineering of Hydrolases for PET Depolymerization. Nature 2022, 604 (7907), 662–667. 10.1038/s41586-022-04599-z. PubMed DOI

Han X.; Liu W.; Huang J.-W.; Ma J.; Zheng Y.; Ko T.-P.; Xu L.; Cheng Y.-S.; Chen C.-C.; Guo R.-T. Structural Insight into Catalytic Mechanism of PET Hydrolase. Nat. Commun. 2017, 8 (1), 2106.10.1038/s41467-017-02255-z. PubMed DOI PMC

Boneta S.; Arafet K.; Moliner V. QM/MM Study of the Enzymatic Biodegradation Mechanism of Polyethylene Terephthalate. J. Chem. Inf. Model. 2021, 61 (6), 3041–3051. 10.1021/acs.jcim.1c00394. PubMed DOI PMC

Feng S.; Yue Y.; Zheng M.; Li Y.; Zhang Q.; Wang W. Is PETase- and Is MHETase-Catalyzed Cascade Degradation Mechanism toward Polyethylene Terephthalate. ACS Sustain. Chem. Eng. 2021, 9 (29), 9823–9832. 10.1021/acssuschemeng.1c02420. DOI

Jerves C.; Neves R. P. P.; Ramos M. J.; da Silva S.; Fernandes P. A. Reaction Mechanism of the PET Degrading Enzyme PETase Studied with DFT/MM Molecular Dynamics Simulations. ACS Catal. 2021, 11 (18), 11626–11638. 10.1021/acscatal.1c03700. DOI

Zheng M.; Li Y.; Dong W.; Feng S.; Zhang Q.; Wang W. Computational Biotransformation of Polyethylene Terephthalate by Depolymerase: A QM/MM Approach. J. Hazard. Mater. 2022, 423, 127017.10.1016/j.jhazmat.2021.127017. PubMed DOI

Zimmermann W.; Wei R.; Hille P.; Oeser T.; Schmidt J.. New Polypeptides Having a Polyester Degrading Activity and Uses Thereof. EP3517608A1, July 31, 2019.

Sonnendecker C.; Oeser J.; Richter P. K.; Hille P.; Zhao Z.; Fischer C.; Lippold H.; Blázquez-Sánchez P.; Engelberger F.; Ramírez-Sarmiento C. A.; Oeser T.; Lihanova Y.; Frank R.; Jahnke H.; Billig S.; Abel B.; Sträter N.; Matysik J.; Zimmermann W. Low Carbon Footprint Recycling of Post-Consumer PET Plastic with a Metagenomic Polyester Hydrolase. ChemSusChem 2022, 15 (9), e20210106210.1002/cssc.202101062. PubMed DOI PMC

Falkenstein P.; Wei R.; Matysik J.; Song C.. Mechanistic Investigation of Enzymatic Degradation of Polyethylene Terephthalate by Nuclear Magnetic Resonance. In Methods in Enzymology; Elsevier, 2021; Vol. 648, pp 231–252. PubMed

Barth M.; Honak A.; Oeser T.; Wei R.; Belisário-Ferrari M. R.; Then J.; Schmidt J.; Zimmermann W. A Dual Enzyme System Composed of a Polyester Hydrolase and a Carboxylesterase Enhances the Biocatalytic Degradation of Polyethylene Terephthalate Films. J. Biotechnol. 2016, 11 (8), 1082–1087. 10.1002/biot.201600008. PubMed DOI

Eugenio E. de Q.; Campisano I. S. P.; de Castro A. M.; Coelho M. A. Z.; Langone M. A. P. Kinetic Modeling of the Post-Consumer Poly(Ethylene Terephthalate) Hydrolysis Catalyzed by Cutinase from Humicola insolens. J. Polym. Environ. 2022, 30, 1627–1637. 10.1007/s10924-021-02301-4. DOI

Chen C.; Han X.; Ko T.; Liu W.; Guo R. Structural Studies Reveal the Molecular Mechanism of PETase. FEBS J. 2018, 285 (20), 3717–3723. 10.1111/febs.14612. PubMed DOI

Schmidt J.; Wei R.; Oeser T.; Belisário-Ferrari M. R.; Barth M.; Then J.; Zimmermann W. Effect of Tris, MOPS, and Phosphate Buffers on the Hydrolysis of Polyethylene Terephthalate Films by Polyester Hydrolases. FEBS Open Bio 2016, 6 (9), 919–927. 10.1002/2211-5463.12097. PubMed DOI PMC

Numoto N.; Kamiya N.; Bekker G.-J.; Yamagami Y.; Inaba S.; Ishii K.; Uchiyama S.; Kawai F.; Ito N.; Oda M. Structural Dynamics of the PET-Degrading Cutinase-like Enzyme from Saccharomonospora viridis AHK190 in Substrate-Bound States Elucidates the Ca 2+ -Driven Catalytic Cycle. Biochemistry 2018, 57 (36), 5289–5300. 10.1021/acs.biochem.8b00624. PubMed DOI

Baker P. J.; Poultney C.; Liu Z.; Gross R.; Montclare J. K. Identification and Comparison of Cutinases for Synthetic Polyester Degradation. Appl. Microbiol. Biotechnol. 2012, 93 (1), 229–240. 10.1007/s00253-011-3402-4. PubMed DOI

Furukawa M.; Kawakami N.; Tomizawa A.; Miyamoto K. Efficient Degradation of Poly(Ethylene Terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated Using Mutagenesis and Additive-Based Approaches. Sci. Rep. 2019, 9 (1), 16038.10.1038/s41598-019-52379-z. PubMed DOI PMC

Austin H. P.; Allen M. D.; Donohoe B. S.; Rorrer N. A.; Kearns F. L.; Silveira R. L.; Pollard B. C.; Dominick G.; Duman R.; El Omari K.; Mykhaylyk V.; Wagner A.; Michener W. E.; Amore A.; Skaf M. S.; Crowley M. F.; Thorne A. W.; Johnson C. W.; Woodcock H. L.; McGeehan J. E.; Beckham G. T. Characterization and Engineering of a Plastic-Degrading Aromatic Polyesterase. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (19), E4350–E4357. 10.1073/pnas.1718804115. PubMed DOI PMC

Erickson E.; Shakespeare T. J.; Bratti F.; Buss B. L.; Graham R.; Hawkins M. A.; König G.; Michener W. E.; Miscall J.; Ramirez K. J.; Rorrer N. A.; Zahn M.; Pickford A. R.; McGeehan J. E.; Beckham G. T. Comparative Performance of PETase as a Function of Reaction Conditions, Substrate Properties, and Product Accumulation. ChemSusChem 2022, 15 (1), e20210193210.1002/cssc.202101932. PubMed DOI

Wei R.; Oeser T.; Then J.; Kühn N.; Barth M.; Schmidt J.; Zimmermann W. Functional Characterization and Structural Modeling of Synthetic Polyester-Degrading Hydrolases from Thermomonospora curvata. AMB Expr. 2014, 4 (1), 44.10.1186/s13568-014-0044-9. PubMed DOI PMC

Wei R.; Oeser T.; Schmidt J.; Meier R.; Barth M.; Then J.; Zimmermann W. Engineered Bacterial Polyester Hydrolases Efficiently Degrade Polyethylene Terephthalate Due to Relieved Product Inhibition: Engineered Polyester Hydrolases. Biotechnol. Bioeng. 2016, 113 (8), 1658–1665. 10.1002/bit.25941. PubMed DOI

Silva C.; Da S.; Silva N.; Matamá T.; Araújo R.; Martins M.; Chen S.; Chen J.; Wu J.; Casal M.; Cavaco-Paulo A. Engineered Thermobifida fusca Cutinase with Increased Activity on Polyester Substrates. J. Biotechnol. 2011, 6 (10), 1230–1239. 10.1002/biot.201000391. PubMed DOI

Gamerith C.; Zartl B.; Pellis A.; Guillamot F.; Marty A.; Acero E. H.; Guebitz G. M. Enzymatic Recovery of Polyester Building Blocks from Polymer Blends. Process. Biochem. 2017, 59, 58–64. 10.1016/j.procbio.2017.01.004. DOI

Bai C. Structural Changes in Poly(Ethylene Terephthalate) Induced by Mechanical Milling. Polymer 2000, 41 (19), 7147–7157. 10.1016/S0032-3861(00)00048-3. DOI

Falkenstein P.; Gräsing D.; Bielytskyi P.; Zimmermann W.; Matysik J.; Wei R.; Song C. UV Pretreatment Impairs the Enzymatic Degradation of Polyethylene Terephthalate. Front. Microbiol. 2020, 11, 689.10.3389/fmicb.2020.00689. PubMed DOI PMC

Vogel K.; Wei R.; Pfaff L.; Breite D.; Al-Fathi H.; Ortmann C.; Estrela-Lopis I.; Venus T.; Schulze A.; Harms H.; Bornscheuer U. T.; Maskow T. Enzymatic Degradation of Polyethylene Terephthalate Nanoplastics Analyzed in Real Time by Isothermal Titration Calorimetry. Sci. Total Environ. 2021, 773, 145111.10.1016/j.scitotenv.2021.145111. PubMed DOI

Wei R.; Oeser T.; Barth M.; Weigl N.; Lübs A.; Schulz-Siegmund M.; Hacker M. C.; Zimmermann W. Turbidimetric Analysis of the Enzymatic Hydrolysis of Polyethylene Terephthalate Nanoparticles. J. Mol. Catal. B: Enzym. 2014, 103, 72–78. 10.1016/j.molcatb.2013.08.010. DOI

Scandola M.; Focarete M. L.; Frisoni G. Simple Kinetic Model for the Heterogeneous Enzymatic Hydrolysis of Natural Poly(3-Hydroxybutyrate). Macromolecules 1998, 31 (12), 3846–3851. 10.1021/ma980137y. DOI

Pfaff L.; Breite D.; Badenhorst C. P. S.; Bornscheuer U. T.; Wei R.. Fluorimetric High-Throughput Screening Method for Polyester Hydrolase Activity Using Polyethylene Terephthalate Nanoparticles. In Methods in Enzymology; Elsevier, 2021; Vol. 648, pp 253–270. PubMed

Krause D.; Thörnig P. JURECA: Modular Supercomputer at Jülich Supercomputing Centre. JLSRF 2018, 4, A132.10.17815/jlsrf-4-121-1. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural Insights into (Tere)phthalate-Ester Hydrolysis by a Carboxylesterase and Its Role in Promoting PET Depolymerization

. 2022 Dec 16 ; 12 (24) : 15259-15270. [epub] 20221129

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...