The high-capacity specific fructose facilitator ZrFfz1 is essential for the fructophilic behavior of Zygosaccharomyces rouxii CBS 732T
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25172765
PubMed Central
PMC4248702
DOI
10.1128/ec.00137-14
PII: EC.00137-14
Knihovny.cz E-zdroje
- MeSH
- biologický transport genetika MeSH
- fermentace genetika MeSH
- fruktosa metabolismus MeSH
- fungální proteiny genetika metabolismus MeSH
- genový knockdown MeSH
- glukosa metabolismus MeSH
- proliferace buněk genetika MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Zygosaccharomyces genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fruktosa MeSH
- fungální proteiny MeSH
- glukosa MeSH
Zygosaccharomyces rouxii is a fructophilic yeast that consumes fructose preferably to glucose. This behavior seems to be related to sugar uptake. In this study, we constructed Z. rouxii single-, double-, and triple-deletion mutants in the UL4 strain background (a ura3 strain derived from CBS 732(T)) by deleting the genes encoding the specific fructose facilitator Z. rouxii Ffz1 (ZrFfz1), the fructose/glucose facilitator ZrFfz2, and/or the fructose symporter ZrFsy1. We analyzed the effects on the growth phenotype, on kinetic parameters of fructose and glucose uptake, and on sugar consumption profiles. No growth phenotype was observed on fructose or glucose upon deletion of FFZ genes. Deletion of ZrFFZ1 drastically reduced fructose transport capacity, increased glucose transport capacity, and eliminated the fructophilic character, while deletion of ZrFFZ2 had almost no effect. The strain in which both FFZ genes were deleted presented even higher consumption of glucose than strain Zrffz1Δ, probably due to a reduced repressing effect of fructose. This study confirms the molecular basis of the Z. rouxii fructophilic character, demonstrating that ZrFfz1 is essential for Z. rouxii fructophilic behavior. The gene is a good candidate to improve the fructose fermentation performance of industrial Saccharomyces cerevisiae strains.
Zobrazit více v PubMed
Martorell P, Stratford M, Steels H, Fernández-Espinar MT, Querol A. 2007. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int. J. Food Microbiol. 114:234–242. 10.1016/j.ijfoodmicro.2006.09.014. PubMed DOI
Dakal TC, Solieri L, Giudici P. 2014. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int. J. Food Microbiol. 185:140–157. 10.1016/j.ijfoodmicro.2014.05.015. PubMed DOI
Deák T. 2007. Yeasts in specific types of foods, p 117–201 In Deák T. (ed), Handbook of food spoilage yeasts, 2nd ed. CRC Press, Boca Raton, FL.
Solieri L, Giudici P. 2008. Yeasts associated to traditional balsamic vinegar: ecological and technological features. Int. J. Food Microbiol. 125:36–45. 10.1016/j.ijfoodmicro.2007.06.022. PubMed DOI
Emmerich W, Radler F. 1983. The anaerobic metabolism of glucose and fructose by Saccharomyces bailii. Microbiology 129:3311–3318. 10.1099/00221287-129-11-3311. DOI
Sols A. 1956. Selective fermentation and phosphorylation of sugars by sauternes yeast. Biochim. Biophys. Acta 20:62–68. 10.1016/0006-3002(56)90263-3. PubMed DOI
Eddy AA, Barnett JA. 2007. A history of research on yeasts. 11. The study of solute transport: the first 90 years, simple and facilitated diffusion. Yeast 24:1023–1059. 10.1002/yea.1572. PubMed DOI
Saier MH., Jr 2000. Families of transmembrane sugar transport proteins. Mol. Microbiol. 35:699–710. 10.1046/j.1365-2958.2000.01759.x. PubMed DOI
Leandro MJ, Fonseca C, Gonçalves P. 2009. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 9:511–525. 10.1111/j.1567-1364.2009.00509.x. PubMed DOI
Sousa-Dias S, Gonçalves T, Leyva JS, Peinado JM, Loureiro-Dias MC. 1996. Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiology 142:1733–1738. 10.1099/13500872-142-7-1733. DOI
Sousa-Dias S. 2000. Ph.D. thesis Technical University of Lisbon, Lisbon, Portugal.
Pina C, Gonçalves P, Prista C, Loureiro-Dias MC. 2004. Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology 150:2429–2433. 10.1099/mic.0.26979-0. PubMed DOI
Leandro MJ, Sychrová H, Prista C, Loureiro-Dias MC. 2011. The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology 157:601–608. 10.1099/mic.0.044446-0. PubMed DOI
Lee DH, Kim SJ, Seo JH. 2014. Molecular cloning and characterization of two novel fructose-specific transporters from the osmotolerant and fructophilic yeast Candida magnoliae JH110. Appl. Microbiol. Biotechnol. 98:3569–3578. 10.1007/s00253-013-5225-y. PubMed DOI
Mira NP, Münsterkötter M, Dias-Valada F, Santos J, Palma M, Roque FC, Guerreiro JF, Rodrigues F, Sousa MJ, Leão C, Guldener U, Sá-Correia I. 2014. The genome sequence of the highly acetic acid-tolerant Zygosaccharomyces bailii-derived interspecies hybrid strain ISA1307, isolated from a sparkling wine plant. DNA Res. 21:299–313. 10.1093/dnares/dst058. PubMed DOI PMC
Galeote V, Bigey F, Devillers H, Neuveglise C, Dequin S. 2013. Genome sequence of the food spoilage yeast Zygosaccharomyces bailii CLIB 213T. Genome Announc. 1:e00606–13. 10.1128/genomeA.00606-13. PubMed DOI PMC
Leandro MJ, Sychrová H, Prista C, Loureiro-Dias MC. 2013. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii. PLoS One 8:e68165. 10.1371/journal.pone.0068165. PubMed DOI PMC
Pribylová L, Straub ML, Sychrová H, de Montigny J. 2007. Characterisation of Zygosaccharomyces rouxii centromeres and construction of first Z. rouxii centromeric vectors. Chromosome Res. 15:439–445. 10.1007/s10577-007-1136-z. PubMed DOI
Pribylová L, Sychrová H. 2003. Efficient transformation of the osmotolerant yeast Zygosaccharomyces rouxii by electroporation. J. Microbiol. Methods 55:481–484. 10.1016/S0167-7012(03)00197-0. PubMed DOI
Pribylová L, de Montigny J, Sychrová H. 2007. Tools for the genetic manipulation of Zygosaccharomyces rouxii. FEMS Yeast Res. 7:1285–1294. 10.1111/j.1567-1364.2007.00308.x. PubMed DOI
Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:2519–2524. 10.1093/nar/24.13.2519. PubMed DOI PMC
Marešová L, Sychrová H. 2007. Applications of a microplate reader in yeast physiology research. Biotechniques 43:667–672. 10.2144/000112620. PubMed DOI
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
Hoffman CS, Winston F. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272. 10.1016/0378-1119(87)90131-4. PubMed DOI
Zaragoza O. 2003. Generation of disruption cassettes in vivo using a PCR product and Saccharomyces cerevisiae. J. Microbiol. Methods 52:141–145. 10.1016/S0167-7012(02)00154-9. PubMed DOI
Kinclová-Zimmermannová O, Zavrel M, Sychrová H. 2005. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J. Biol. Chem. 280:30638–30647. 10.1074/jbc.M506341200. PubMed DOI
Jones GV, White MA, Cooper OR, Storchmann K. 2005. Climate change and global wine quality. Climatic Change 73:319–343. 10.1007/s10584-005-4704-2. DOI
Berthels NJ, Cordero Otero RR, Bauer FF, Thevelein JM, Pretorius IS. 2004. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 4:683–689. 10.1016/j.femsyr.2004.02.005. PubMed DOI
Bisson LF. 1999. Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50:107–119.
Salmon JM. 1989. Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl. Environ. Microbiol. 55:953–958. PubMed PMC
Palma M, Seret ML, Baret PV. 2009. Combined phylogenetic and neighbourhood analysis of the hexose transporters and glucose sensors in yeasts. FEMS Yeast Res. 9:526–534. 10.1111/j.1567-1364.2009.00511.x. PubMed DOI
Yu JH, Lee DH, Oh YJ, Han KC, Ryu YW, Seo JH. 2006. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl. Biochem. Biotechnol. 131:870–879. 10.1385/ABAB:131:1:870. PubMed DOI
Yu JH, Lee DH, Park YC, Lee MG, Kim DO, Ryu YW, Seo JH. 2008. Proteomic analysis of fructophilic properties of osmotolerant Candida magnoliae. J. Microbiol. Biotechnol. 18:248–254. PubMed
Guillaume C, Delobel P, Sablayrolles JM, Blondin B. 2007. Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl. Environ. Microbiol. 73:2432–2439. 10.1128/AEM.02269-06. PubMed DOI PMC