Dynamin-like proteins in Trypanosoma brucei: A division of labour between two paralogs?

. 2017 ; 12 (5) : e0177200. [epub] 20170508

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28481934

Dynamins and dynamin-like proteins (DLPs) belong to a family of large GTPases involved in membrane remodelling events. These include both fusion and fission processes with different dynamin proteins often having a specialised function within the same organism. Trypanosoma brucei is thought to have only one multifunctional DLP (TbDLP). While this was initially reported to function in mitochondrial division only, an additional role in endocytosis and cytokinesis was later also proposed. Since there are two copies of TbDLP present in the trypanosome genome, we investigated potential functional differences between these two paralogs by re-expressing either protein in a TbDLP RNAi background. These paralogs, called TbDLP1 and TbDLP2, are almost identical bar a few amino acid substitutions. Our results, based on cell lines carrying tagged and RNAi-resistant versions of each protein, show that overexpression of TbDLP1 alone is able to rescue the observed endocytosis and growth defects in the mammalian bloodstream form (BSF) of the parasite. While TbDLP2 shows no rescue in our experiments in BSF, this might also be due to lower expression levels of the protein in this life stage. In contrast, both TbDLP proteins apparently play more complementary roles in the insect procyclic form (PCF) since neither TbDLP1 nor TbDLP2 alone can fully restore wildtype growth and morphology in TbDLP-depleted parasites.

Zobrazit více v PubMed

Matthews KR. The developmental cell biology of Trypanosoma brucei. J Cell Sci. 2005;118: 283–90. 10.1242/jcs.01649 PubMed DOI PMC

Tielens AGM, Van Hellemond JJ. Differences in energy metabolism between Trypanosomatidae. Trends Parasitol. 1998;14: 265–271. PubMed

Bienen EJ, Saric M, Pollakis G, Grady RW, Clarkson ABJ. Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Mol Biochem Parasitol.; 1991;45: 185–192. PubMed

Tielens AGM, van Hellemond JJ. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol. 2009;25: 482–90. 10.1016/j.pt.2009.07.007 PubMed DOI

Verner Z, Basu S, Benz C, Dixit S, Dobáková E, Faktorová D, et al. Malleable mitochondrion of Trypanosoma brucei. Int Rev Cell Mol Biol. 2015;315: 73–151. 10.1016/bs.ircmb.2014.11.001 PubMed DOI

Cross GAM, Kim HS, Wickstead B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol Biochem Parasitol.; 2014;195: 59–73. 10.1016/j.molbiopara.2014.06.004 PubMed DOI

Morrison LJ, McCulloch R, Hall JPJ. DNA Recombination strategies during antigenic variation in the African trypanosome. Microbiology Spectrum. 2014; 409–435. PubMed

Natesan SKA, Peacock L, Matthews K, Gibson W, Field MC. Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell. 2007;6: 2029–2037. 10.1128/EC.00213-07 PubMed DOI PMC

Engstler M, Pfohl T, Herminghaus S, Boshart M, Wiegertjes G, Heddergott N, et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell. 2007;131: 505–515. 10.1016/j.cell.2007.08.046 PubMed DOI

Allen CL, Goulding D, Field MC. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 2003;22: 4991–5002. 10.1093/emboj/cdg481 PubMed DOI PMC

García-Salcedo JA, Pérez-Morga D, Gijón P, Dilbeck V, Pays E, Nolan DP. A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J. 2004;23: 780–789. 10.1038/sj.emboj.7600094 PubMed DOI PMC

Field MC, Carrington M. The trypanosome flagellar pocket. Nat Rev Micro.; 2009;7: 775–786. Available: 10.1038/nrmicro2221 PubMed DOI

Williams M, Kim K. From membranes to organelles: Emerging roles for dynamin-like proteins in diverse cellular processes. Eur J Cell Biol.; 2014;93: 267–277. 10.1016/j.ejcb.2014.05.002 PubMed DOI

Bui HT, Shaw JM. Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr Biol.; 2013;23: R891–9. 10.1016/j.cub.2013.08.040 PubMed DOI PMC

Figueroa-Romero C, Iñiguez-Lluhí JA, Stadler J, Chang C-R, Arnoult D, Keller PJ, et al. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J. 2009;23: 3917–27. 10.1096/fj.09-136630 PubMed DOI PMC

Macdonald PJ, Francy CA, Stepanyants N, Lehman L, Baglio A, Mears JA, et al. Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J Biol Chem. 2016;291: 493–507. 10.1074/jbc.M115.680181 PubMed DOI PMC

Koirala S, Guo Q, Kalia R, Bui HT, Eckert DM, Frost A, et al. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc Natl Acad Sci U S A. 2013;110: E1342–51. 10.1073/pnas.1300855110 PubMed DOI PMC

Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24: 659–667. 10.1091/mbc.E12-10-0721 PubMed DOI PMC

Guo Q, Koirala S, Perkins EM, McCaffery JM, Shaw JM. The mitochondrial fission adaptors Caf4 and Mdv1 are not functionally equivalent. PLoS One. 2012;7. PubMed PMC

Wang B, Nguyen M, Chang NC, Shore GC. Fis1, Bap31 and the kiss of death between mitochondria and endoplasmic reticulum. EMBO J. 2011;30: 451–452. 10.1038/emboj.2010.352 PubMed DOI PMC

Bramkamp M. Structure and function of bacterial dynamin-like proteins. Biol Chem. 2012;393: 1203–1214. 10.1515/hsz-2012-0185 PubMed DOI

Bürmann F, Ebert N, Van Baarle S, Bramkamp M. A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion. Mol Microbiol. 2011;79: 1294–1304. 10.1111/j.1365-2958.2011.07523.x PubMed DOI

Detmer SA, Chan DC. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol. 2007;176: 405–414. 10.1083/jcb.200611080 PubMed DOI PMC

Morgan GW, Goulding D, Field MC. The single dynamin-like protein of Trypanosoma brucei regulates mitochondrial division and is not required for endocytosis. J Biol Chem. 2004;279: 10692–701. 10.1074/jbc.M312178200 PubMed DOI

Hammarton TC. Cell cycle regulation in Trypanosoma brucei. Mol Biochem Parasitol. 2007;153: 1–8. 10.1016/j.molbiopara.2007.01.017 PubMed DOI PMC

Wang J, Englund PT, Jensen RE. TbPIF8, a Trypanosoma brucei protein related to the yeast Pif1 helicase, is essential for cell viability and mitochondrial genome maintenance. Mol Microbiol. 2012;83: 471–485. 10.1111/j.1365-2958.2011.07938.x PubMed DOI PMC

Chanez A-L, Hehl AB, Engstler M, Schneider A. Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J Cell Sci. 2006;119: 2968–74. 10.1242/jcs.03023 PubMed DOI

Purkanti R, Thattai M. Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc Natl Acad Sci U S A. 2015;112: 2800–5. 10.1073/pnas.1407163112 PubMed DOI PMC

Butter F, Bucerius F, Michel M, Cicova Z, Mann M, Janzen CJ. Comparative proteomics of two life cycle stages of stable isotope-labeled Trypanosoma brucei reveals novel components of the parasite’s host adaptation machinery. Mol Cell Proteomics. 2012;12: 172–179. 10.1074/mcp.M112.019224 PubMed DOI PMC

Dejung M, Subota I, Bucerius F, Dindar G, Freiwald A, Engstler M, et al. Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei. PLoS Pathog. 2016;12: 1–20. PubMed PMC

Gunasekera K, Wüthrich D, Braga-Lagache S, Heller M, Ochsenreiter T. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry. BMC Genomics. 2012;13: 556 10.1186/1471-2164-13-556 PubMed DOI PMC

Nett IRE, Martin DMA, Miranda-Saavedra D, Lamont D, Barber JD, Mehlert A, et al. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics. 2009;8: 1527–38. 10.1074/mcp.M800556-MCP200 PubMed DOI PMC

Urbaniak MD, Martin DMA, Ferguson MAJ. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res. 2013;12: 2233–2244. 10.1021/pr400086y PubMed DOI PMC

Urbaniak MD, Guther MLS, Ferguson MAJ. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One. 2012;7: e36619 10.1371/journal.pone.0036619 PubMed DOI PMC

Brun R, Schönenberger. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979;36: 289–292. PubMed

Coustou V, Biran M, Breton M, Guegan F, Rivière L, Plazolles N, et al. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei. J Biol Chem. 2008;283: 16343–16354. PubMed

Wirtz E, Leal S, Ochatt C, Cross GA. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999;99: 89–101. http://www.ncbi.nlm.nih.gov/pubmed/10215027 PubMed

Changmai P, Horáková E, Long S, Černotíková-Stříbrná E, McDonald LM, Bontempi EJ, et al. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol Microbiol. 2013;89: 135–51. 10.1111/mmi.12264 PubMed DOI

Wickstead B, Ersfeld K, Gull K. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol Biochem Parasitol. 125: 211–6. http://www.ncbi.nlm.nih.gov/pubmed/12467990 PubMed

Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. Enigmatic presence of mitochondrial complex I in Trypanosoma brucei bloodstream forms. Eukaryot Cell. 2012;11: 183–193. 10.1128/EC.05282-11 PubMed DOI PMC

Kelly S, Reed J, Kramer S, Ellis L, Webb H, Sunter J, et al. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol. 2007;154: 103–9. 10.1016/j.molbiopara.2007.03.012 PubMed DOI PMC

Hashimi H, McDonald L, Stříbrná E, Lukeš J. Trypanosome letm1 protein is essential for mitochondrial potassium homeostasis. J Biol Chem. 2013;288: 26914–26925. 10.1074/jbc.M113.495119 PubMed DOI PMC

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9: 671–5. http://www.ncbi.nlm.nih.gov/pubmed/22930834 PubMed PMC

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7: 539 10.1038/msb.2011.75 PubMed DOI PMC

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27: 221–4. 10.1093/molbev/msp259 PubMed DOI

Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30: 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61: 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC

Marks B, Stowell MH, Vallis Y, Mills IG, Gibson a, Hopkins CR, et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature. 2001;410: 231–235. 10.1038/35065645 PubMed DOI

Cao H, Garcia F, Mcniven MA. Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell. 1998;9: 2595–2609. PubMed PMC

Kashatus DF, Lim K-H, Brady DC, Pershing NLK, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol. 2011;13: 1108–15. 10.1038/ncb2310 PubMed DOI PMC

Tan TC, Valova VA, Malladi CS, Graham ME, Berven LA, Jupp OJ, et al. Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol. 2003;5: 701–710. 10.1038/ncb1020 PubMed DOI

Osellame LD, Singh AP, Stroud DA, Palmer CS, Stojanovski D, Ramachandran R, et al. Cooperative and independent roles of Drp1 adaptors Mff and MiD49/51 in mitochondrial fission. J Cell Sci. 2016; jcs.185165-. PubMed PMC

Zhang Z, Liu L, Wu S, Xing D. Drp1, Mff, Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis. FASEB J. 2016;30: 466–476. 10.1096/fj.15-274258 PubMed DOI

Vanwalleghem G, Fontaine F, Lecordier L, Tebabi P, Klewe K, Nolan DP, et al. Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun. 2015;6: 8078 10.1038/ncomms9078 PubMed DOI PMC

Benz C, Clucas C, Mottram JC, Hammarton TC. Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin. PLoS One. 2012;7. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mitochondrial dynamics in parasitic protists

. 2019 Nov ; 15 (11) : e1008008. [epub] 20191121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...