Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
- MeSH
- antiprotozoální látky farmakologie MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genotyp MeSH
- hmyz - vektory parazitologie MeSH
- Leishmania klasifikace účinky léků genetika izolace a purifikace MeSH
- leishmanióza klasifikace farmakoterapie epidemiologie přenos MeSH
- lidé MeSH
- molekulární typizace přístrojové vybavení metody MeSH
- protozoální DNA genetika MeSH
- protozoální proteiny genetika MeSH
- Psychodidae parazitologie MeSH
- senzitivita a specificita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial ribosomes evolved from prokaryotic ribosomes, with which they therefore share more common features than with their counterparts in the cytosol. Yet, mitochondrial ribosomes are highly diverse in structure and composition, having undergone considerable changes, including reduction of their RNA component and varying degree of acquisition of novel proteins in various phylogenetic lineages. Here, we present functional analysis of three putative mitochondrial ribosome-associated proteins (RSM22, mtYsxC and PNKD-like) in Trypanosoma brucei, originally identified by database mining. While in other systems the homologs of RSM22 are known as components of mitochondrial ribosomes, YsxC was linked with ribosomes only in bacteria. The PNKD-like protein shows similarity to a human protein, the defects of which cause PNKD (paroxysmal non-kinesigenic dyskinesia). Here we show that all three proteins are important for the growth of T. brucei. They play an important function in mitochondrial translation, as their ablation by RNAi rapidly and severely affected the de novo synthesis of mitochondrial proteins. Moreover, following the RNAi-mediated depletion of RSM22, structure of the small subunit of mitochondrial ribosome becomes severely compromised, suggesting a role of RSM22 in ribosomal assembly and/or stability.
- MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- proteosyntéza * MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- sekvenční homologie aminokyselin MeSH
- Trypanosoma brucei brucei genetika růst a vývoj MeSH
- umlčování genů MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Every eukaryote requires iron, which is also true for the parasitic protist Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle. T. brucei undergoes a complex life cycle during which its single mitochondrion is subject to major metabolic and morphological changes. SCOPE OF REVIEW: This review covers what is known about processes associated with iron-sulfur clusters and heme metabolism in T. brucei. We discuss strategies by which iron and heme are acquired and utilized by this model parasite, emphasizing the differences between its two life cycle stages residing in the bloodstream of the mammalian host and gut of the insect vector. Finally, the role of iron in the host-parasite interactions is discussed along with their possible exploitation in fighting these deadly parasites. MAJOR CONCLUSIONS: The processes associated with acquisition and utilization of iron, distinct in the two life stages of T. brucei, are fine tuned for the dramatically different host environment occupied by them. Although the composition and compartmentalization of the iron-sulfur cluster assembly seem to be conserved, some unique features of the iron acquisition strategies may be exploited for medical interventions against these parasites. GENERAL SIGNIFICANCE: As early-branching protists, trypanosomes and related flagellates are known to harbor an array of unique features, with the acquisition of iron being another peculiarity. Thanks to intense research within the last decade, understanding of iron-sulfur cluster assembly and iron metabolism in T. brucei is among the most advanced of all eukaryotes.
- Publikační typ
- abstrakt z konference MeSH
In our previous work we established a T7 polymerase-driven Tetracycline-inducible protein expression system in Leishmania mexicana (Biagi, 1953). We used this system to analyse gene expression profiles during development of L. mexicana in procyclic and metacyclic promastigotes and amastigotes. The transcription of the gene of interest and the T7 polymerase genes was significantly reduced upon cell differentiation. This regulation is not locus-specific. It depends on untranslated regions flanking open reading frames of the genes analysed. In this paper, we report that the previously established conventional inducible protein expression system may not be suitable for studies on differentiation of species of Leishmania Ross, 1903 and protein expression systems might have certain limitations.
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
- MeSH
- editace RNA MeSH
- elektronový transportní řetězec metabolismus MeSH
- genom mikrobiální * MeSH
- hem metabolismus MeSH
- kyslík metabolismus MeSH
- mitochondriální ribozomy metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- paraziti genetika metabolismus MeSH
- replikace DNA MeSH
- RNA genetika metabolismus MeSH
- síra metabolismus MeSH
- strukturální variace genomu MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- MeSH
- Eukaryota MeSH
- lidé MeSH
- střevní mikroflóra fyziologie MeSH
- symbióza * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tsetse and tabanid flies transmit several Trypanosoma species, some of which are human and livestock pathogens of major medical and socioeconomic impact in Africa. Recent advances in molecular techniques and phylogenetic analyses have revealed a growing diversity of previously unidentified tsetse-transmitted trypanosomes potentially pathogenic to livestock and/or other domestic animals as well as wildlife, including African great apes. To map the distribution, prevalence and co-occurrence of known and novel trypanosome species, we analyzed tsetse and tabanid flies collected in the primary forested part of the Dzanga-Sangha Protected Areas, Central African Republic, which hosts a broad spectrum of wildlife including primates and is virtually devoid of domestic animals. Altogether, 564 tsetse flies and 81 tabanid flies were individually screened for the presence of trypanosomes using 18S rRNA-specific nested PCR. Herein, we demonstrate that wildlife animals are parasitized by a surprisingly wide range of trypanosome species that in some cases may circulate via these insect vectors. While one-third of the examined tsetse flies harbored trypanosomes either from the Trypanosoma theileri, Trypanosoma congolense or Trypanosoma simiae complex, or one of the three new members of the genus Trypanosoma (strains 'Bai', 'Ngbanda' and 'Didon'), more than half of the tabanid flies exclusively carried T. theileri. To establish the putative vertebrate hosts of the novel trypanosome species, we further analyzed the provenance of blood meals of tsetse flies. DNA individually isolated from 1033 specimens of Glossina spp. and subjected to high-throughput library-based screening proved that most of the examined tsetse flies engorged on wild ruminants (buffalo, sitatunga, bongo), humans and suids. Moreover, they also fed (albeit more rarely) on other vertebrates, thus providing indirect but convincing evidence that trypanosomes can be transmitted via these vectors among a wide range of warm- and cold-blooded hosts.
- MeSH
- Diptera klasifikace růst a vývoj parazitologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- hmyz - vektory * MeSH
- Hominidae růst a vývoj MeSH
- molekulární sekvence - údaje MeSH
- moucha tse-tse růst a vývoj parazitologie MeSH
- polymerázová řetězová reakce MeSH
- protozoální DNA chemie genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Trypanosoma klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středoafrická republika MeSH
Although wild chimpanzees and other African great apes live in regions endemic for African sleeping sickness, very little is known about their trypanosome infections, mainly due to major difficulties in obtaining their blood samples. In present work, we established a diagnostic ITS1-based PCR assay that allows detection of the DNA of all four Trypanosoma brucei subspecies (Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma brucei evansi) in feces of experimentally infected mice. Next, using this assay we revealed the presence of trypanosomes in the fecal samples of wild chimpanzees and this finding was further supported by results obtained using a set of primate tissue samples. Phylogenetic analysis of the ITS1 region showed that the majority of obtained sequences fell into the robust T. brucei group, providing strong evidence that these infections were caused by T. b. rhodesiense and/or T. b. gambiense. The optimized technique of trypanosome detection in feces will improve our knowledge about the epidemiology of trypanosomes in primates and possibly also other endangered mammals, from which blood and tissue samples cannot be obtained. Finally, we demonstrated that the mandrill serum was able to efficiently lyse T. b. brucei and T. b. rhodesiense, and to some extent T. b. gambiense, while the chimpanzee serum failed to lyse any of these subspecies.
- Publikační typ
- časopisecké články MeSH
Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.
- MeSH
- analýza hlavních komponent MeSH
- fylogeneze * MeSH
- genom protozoální * MeSH
- jednonukleotidový polymorfismus MeSH
- mikrosatelitní repetice MeSH
- protozoální proteiny genetika metabolismus MeSH
- regulace genové exprese MeSH
- Trypanosoma klasifikace genetika MeSH
- trypanosomové variantní povrchové glykoproteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH