The neurotropic schistosome vs experimental autoimmune encephalomyelitis: are there any winners?

. 2024 Apr ; 151 (4) : 412-420. [epub] 20240306

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38443998

Grantová podpora
Cooperatio Biology Univerzita Karlova v Praze
PROGRES Q43 Univerzita Karlova v Praze
SVV 260432/2018 Univerzita Karlova v Praze
SVV 260563/2020 Univerzita Karlova v Praze
UNCE/SCI/012-204072/2018 Univerzita Karlova v Praze
UNCE24/SCI/011 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/ 0000759: Centre for Res Ministerstvo Školství, Mládeže a Tělovýchovy
18-11140S Grantová Agentura České Republiky
580120 Grantová Agentura, Univerzita Karlova

The incidences of multiple sclerosis have risen worldwide, yet neither the trigger nor efficient treatment is known. Some research is dedicated to looking for treatment by parasites, mainly by helminths. However, little is known about the effect of helminths that infect the nervous system. Therefore, we chose the neurotropic avian schistosome Trichobilharzia regenti, which strongly promotes M2 polarization and tissue repair in the central nervous system, and we tested its effect on the course of experimental autoimmune encephalomyelitis (EAE) in mice. Surprisingly, the symptoms of EAE tended to worsen after the infection with T. regenti. The infection did not stimulate tissue repair, as indicated by the similar level of demyelination. Eosinophils heavily infiltrated the infected tissue, and the microglia number increased as well. Furthermore, splenocytes from T. regenti-infected EAE mice produced more interferon (IFN)-γ than splenocytes from EAE mice after stimulation with myelin oligodendrocyte glycoprotein. Our research indicates that the combination of increased eosinophil numbers and production of IFN-γ tends to worsen the EAE symptoms. Moreover, the data highlight the importance of considering the direct effect of the parasite on the tissue, as the migrating parasite may further tissue damage and make tissue repair even more difficult.

Zobrazit více v PubMed

Arellano G, Ottum PA, Reyes LI, Burgos PI and Naves R (2015) Stage-specific role of interferon-γ in experimental autoimmune encephalomyelitis and multiple sclerosis. Frontiers in Immunology 6, 1–9. PubMed PMC

Attfield KE, Jensen LT, Kaufmann M, Friese MA and Fugger L (2022) The immunology of multiple sclerosis. Nature Reviews Immunology 22, 734–750. PubMed

Charabati M, Donkers SJ, Kirkland MC and Osborne LC (2020) A critical analysis of helminth immunotherapy in multiple sclerosis. Multiple Sclerosis Journal 26, 1448–1458. PubMed

Che J, Li D, Hong W, Wang L, Guo Y, Wu M, Lu J, Tong L, Weng Q, Wang J and Dong X (2022) Discovery of new macrophage M2 polarization modulators as multiple sclerosis treatment agents that enable the inflammation microenvironment remodeling. European Journal of Medicinal Chemistry 243, 1–19. PubMed

Chu F, Shi M, Lang Y, Chao Z, Jin T, Cui L and Zhu J (2021) Adoptive transfer of immunomodulatory M2 macrophages suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice via blockading NF-κB pathway. Clinical and Experimental Immunology 204, 199–211. PubMed PMC

Dendrou CA, Fugger L and Friese MA (2015) Immunopathology of multiple sclerosis. Nature Reviews Immunology 15, 545–558. PubMed

Dixit A, Tanaka A, Greer JM and Donnelly S (2017) Novel therapeutics for multiple sclerosis designed by parasitic worms. International Journal of Molecular Sciences 18, 1–17. PubMed PMC

Dolitzky A, Shapira G, Grisaru-Tal S, Hazut I, Avlas S, Gordon Y, Itan M, Shomron N and Munitz A (2021) Transcriptional profiling of mouse eosinophils identifies distinct gene signatures following cellular activation. Frontiers in Immunology 12, 1–15. PubMed PMC

Dolitzky A, Hazut I, Avlas S, Grisaru-Tal S, Itan M, Zaffran I, Levi-Schaffer F, Gerlic M and Munitz A (2022) Differential regulation of type 1 and type 2 mouse eosinophil activation by apoptotic cells. Frontiers in Immunology 13, 1–16. PubMed PMC

Finlay CM, Stefanska AM, Walsh KP, Kelly PJ, Boon L, Lavelle EC, Walsh PT and Mills KHG (2016) Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33, which promote eosinophilia. The Journal of Immunology 196, 703–714. PubMed

Furlan R, Brambilla E, Ruffini F, Poliani PL, Bergami A, Marconi PC, Franciotta DM, Penna G, Comi G, Adorini L and Martino G (2001) Intrathecal delivery of IFN-γ protects C57BL/6 mice from chronic-progressive experimental autoimmune encephalomyelitis by increasing apoptosis of central nervous system-infiltrating lymphocytes. Journal of Immunology 167, 1821–1829. PubMed

Ham DW, Kim SG, Seo SH, Shin JH, Lee SH and Shin EH (2021) Chronic Toxoplasma gondii infection alleviates experimental autoimmune encephalomyelitis by the immune regulation inducing reduction in IL-17A/Th17 via upregulation of SOCS3. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 18, 430–447. PubMed PMC

Hauser SL and Cree BAC (2020) Treatment of multiple sclerosis: a review. The American Journal of Medicine 133, 1380–1390.e2. PubMed PMC

Hayes KS and Grencis RK (2021) Trichuris muris and comorbidities – within a mouse model context. Parasitology 148, 1774–1782. PubMed PMC

Hooke Laboratories (n.d.) Mouse EAE Scoring. Retrieved from Hooke Laboratories website: https://hookelabs.com/services/cro/eae/MouseEAEscoring.html (accessed 2 February 2024).

Horák P, Dvořák J, Kolářová L and Trefil L (1999) Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology 119, 577–581. PubMed

Leontovyč R, Young ND, Korhonen PK, Hall RS, Tan P, Mikeš L, Kašný M, Horák P and Gasser RB (2016) Comparative transcriptomic exploration reveals unique molecular adaptations of neuropathogenic Trichobilharzia to invade and parasitize its avian definitive host. PLoS Neglected Tropical Diseases 10, 1–24. PubMed PMC

Lucarini V, Ziccheddu G, Macchia I, La Sorsa V, Peschiaroli F, Buccione C, Sistigu A, Sanchez M, Andreone S, D'Urso MT, Spada M, Macchia D, Afferni C, Mattei F and Schiavoni G (2017) IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. OncoImmunology 6, e1317420. PubMed PMC

Lund ME, Greer J, Dixit A, Alvarado R, McCauley-Winter P, To J, Tanaka A, Hutchinson AT, Robinson MW, Simpson AM, O’Brien BA, Dalton JP and Donnelly S (2016) A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Scientific Reports 6, 1–11. PubMed PMC

Macháček T, Šmídová B, Pankrác J, Majer M, Bulantová J and Horák P (2020) Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases. Parasites & Vectors 13, 1–14. PubMed PMC

Macháček T, Leontovyč R, Šmídová B, Majer M, Vondráček O, Vojtěchová I, Petrásek T and Horák P (2022) Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathogens 18, 1–34. PubMed PMC

Maizels RM (2013) Toxocara canis: molecular basis of immune recognition and evasion. Veterinary Parasitology 193, 365–374. PubMed PMC

Maizels RM, Smits HH and McSorley HJ (2018) Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunity 49, 801–818. PubMed PMC

Majer M, Macháček T, Súkeníková L, Hrdý J and Horák P (2020) The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunology 42, 1–11. PubMed

Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A and Franklin RJM and ffrench-Constant C. (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neuroscience 16, 1211–1218. PubMed PMC

Novák J, Macháček T, Majer M, Kostelanská M, Skulinová K, Černý V, Kolářová L, Hrdý J and Horák P (2022) Toxocara canis infection worsens the course of experimental autoimmune encephalomyelitis in mice. Parasitology 149, 1720–1728. PubMed PMC

Reyes J, Espinoza-Jiménez A, González M, Verdin L and Terrazas LI (2011) Taenia crassiceps infection abrogates experimental autoimmune encephalomyelitis. Cellular Immunology 267, 77–87. PubMed

Sakkal S, Miller S, Apostolopoulos V and Nurgali K (2016) Eosinophils in cancer: favourable or unfavourable? Current Medicinal Chemistry 23, 650–666. PubMed

Tanasescu R, Tench CR, Constantinescu CS, Telford G, Singh S, Frakich N, Onion D, Auer DP, Gran B, Evangelou N, Falah Y, Ranshaw C, Cantacessi C, Jenkins TP and Pritchard DI (2020) Hookworm treatment for relapsing multiple sclerosis: a randomized double-blinded placebo-controlled trial. JAMA Neurology 77, 1089–1098. PubMed PMC

Tichauer JE, Arellano G, Acuña E, González LF, Kannaiyan NR, Murgas P, Panadero-Medianero C, Ibañez-Vega J, Burgos PI, Loda E, Miller SD, Rossner MJ, Gebicke-Haerter PJ and Naves R (2023) Interferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia. Frontiers in Immunology 14, 1–22. PubMed PMC

Tintore M, Vidal-Jordana A and Sastre-Garriga J (2019) Treatment of multiple sclerosis – success from bench to bedside. Nature Reviews Neurology 15, 53–58. PubMed

Tran GT, Wilcox PL, Dent LA, Robinson CM, Carter N, Verma ND, Hall BM and Hodgkinson SJ (2017) Interleukin-5 mediates parasite-induced protection against experimental autoimmune encephalomyelitis: association with induction of antigen-specific CD4+CD25+ T regulatory cells. Frontiers in Immunology 8, 1–13. PubMed PMC

Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, Van der Mei I, Wallin M, Helme A, Angood Napier C, Rijke N and Baneke P (2020) Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Multiple Sclerosis Journal 26, 1816–1821. PubMed PMC

Weng Q, Wang J, Wang J, Wang J, Sattar F, Zhang Z, Zheng J, Xu Z, Zhao M, Liu X, Yang L, Hao G, Fang L, Lu QR, Yang B and He Q (2018) Lenalidomide regulates CNS autoimmunity by promoting M2 macrophages polarization. Cell Death & Disease 9, 1–13. PubMed PMC

Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M, Aktas O, Baum K, Berghoff M, Bittner S, Chan A, Czaplinski A, Deisenhammer F, Di Pauli F, Du Pasquier R, Enzinger C, Fertl E, Gass A, Gehring K, Gobbi C, Goebels N, Guger M, Haghikia A, Hartung HP, Heidenreich F, Hoffmann O, Kallmann B, Kleinschnitz C, Klotz L, Leussink VI, Leutmezer F, Limmroth V, Lünemann JD, Lutterotti A, Meuth SG, Meyding-Lamadé U, Platten M, Rieckmann P, Schmidt S, Tumani H, Weber F, Weber MS, Zettl UK, Ziemssen T and Zipp F (2021) Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Therapeutic Advances in Neurological Disorders 14, 1–39. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...