Toxocara canis infection worsens the course of experimental autoimmune encephalomyelitis in mice
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36050813
PubMed Central
PMC11010483
DOI
10.1017/s0031182022001238
PII: S0031182022001238
Knihovny.cz E-zdroje
- Klíčová slova
- EAE, MOG, Toxocara canis, experimental autoimmune encephalomyelitis, helminth, multiple sclerosis,
- MeSH
- CD4-pozitivní T-lymfocyty patologie MeSH
- cytokiny MeSH
- encefalomyelitida autoimunitní experimentální * patologie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- roztroušená skleróza * patologie MeSH
- Toxocara canis * MeSH
- toxokaróza * komplikace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
Toxocara canis, a gastrointestinal parasite of canids, is also highly prevalent in many paratenic hosts, such as mice and humans. As with many other helminths, the infection is associated with immunomodulatory effects, which could affect other inflammatory conditions including autoimmune and allergic diseases. Here, we investigated the effect of T. canis infection on the course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Mice infected with 2 doses of 100 T. canis L3 larvae 5 weeks prior to EAE induction (the Tc+EAE group) showed higher EAE clinical scores and greater weight loss compared to the non-infected group with induced EAE (the EAE group). Elevated concentrations of all measured serum cytokines (IL-1α, IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF-α) were observed in the Tc+EAE group compared to the EAE group. In the CNS, the similar number of regulatory T cells (Tregs; CD4+FoxP3+Helios+) but their decreased proportion from total CD4+ cells was found in the Tc+EAE group compared to the EAE group. This could indicate that the group Tc+EAE harboured significantly more CD4+ T cells of non-Treg phenotype within the affected CNS. Altogether, our results demonstrate that infection of mice with T. canis worsens the course of subsequently induced EAE. Further studies are, therefore, urgently needed to reveal the underlying pathological mechanisms and to investigate possible risks for the human population, in which exposure to T. canis is frequent.
Zobrazit více v PubMed
Bing SJ, Ha D, Ahn G, Cho J, Kim A, Park SK, Yu HS and Jee Y (2015) Galectin isolated from parasite inhibits remission of experimental autoimmune encephalomyelitis by up-regulating autoantibody. Clinical and Experimental Immunology 180, 419–431. PubMed PMC
Bittner S, Afzali AM, Wiendl H and Meuth SG (2014) Myelin oligodendrocyte glycoprotein (MOG(35–55)) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Jove-Journal of Visualized Experiments 86, e51275. doi: 10.3791/51275. PubMed DOI PMC
Bowman DD, Mikagrieve M and Grieve RB (1987) Circulating excretory-secretory antigen levels and specific antibody-responses in mice infected with Toxocara-canis. American Journal of Tropical Medicine and Hygiene 36, 75–82. PubMed
Charabati M, Donkers SJ, Kirkland MC and Osborne LC (2020) A critical analysis of helminth immunotherapy in multiple sclerosis. Multiple Sclerosis Journal 26, 1448–1458. PubMed
Chiuso-Minicucci F, Van DB, Zorzella-Pezavento SFG, Peres RS, Ishikawa LLW, Rosa LC, Franca TGD, Turato WM, Amarante AFT and Sartori A (2011) Experimental autoimmune encephalomyelitis evolution was not modified by multiple infections with Strongyloides venezuelensis. Parasite Immunology 33, 303–308. PubMed
Dargahi N, Katsara M, Tselios T, Androutsou ME, de Courten M, Matsoukas J and Apostolopoulos V (2017) Multiple sclerosis: immunopathology and treatment update. Brain Sciences 7, 78. doi: 10.3390/brainsci7070078. PubMed DOI PMC
Desavigny DH, Voller A and Woodruff AW (1979) Toxocariasis – serological diagnosis by enzyme immunoassay. Journal of Clinical Pathology 32, 284–288. PubMed PMC
Ditgen D, Anandarajah EM, Meissner KA, Brattig N, Wrenger C and Liebau E (2014) Harnessing the helminth secretome for therapeutic immunomodulators. Biomed Research International 2014, 964350. doi: 10.1155/2014/964350. PubMed DOI PMC
Donskow-Lysoniewska K, Krawczak K and Doligalska M (2012) Heligmosomoides polygyrus: EAE remission is correlated with different systemic cytokine profiles provoked by L4 and adult nematodes. Experimental Parasitology 132, 243–248. PubMed
Donskow-Lysoniewska K, Krawczak K, Bocian K and Doligalska M (2018) The effects of intestinal nematode L4 stage on mouse experimental autoimmune encephalomyelitis. Archivum Immunologiae Et Therapiae Experimentalis 66, 231–243. PubMed PMC
Doonan J, Thomas D, Wong MH, Ramage HJ, Al-Riyami L, Lumb FE, Bell KS, Fairlie-Clarke KJ, Suckling CJ, Michelsen KS, Jiang HR, Cooke A, Harnett MM and Harnett W (2018) Failure of the anti-inflammatory ParasiticWorm product ES-62 to provide protection in mouse models of type I diabetes, multiple sclerosis, and inflammatory bowel disease. Molecules 23. doi: 10.3390/molecules23102669. PubMed DOI PMC
Fan CK, Holland CV, Loxton K and Barghouth U (2015) Cerebral toxocariasis: silent progression to neurodegenerative disorders?. Clinical Microbiology Reviews 28, 663–686. PubMed PMC
Finlay CM, Stefanska AM, Walsh KP, Kelly PJ, Boon L, Lavelle EC, Walsh PT and Mills KHG (2016) Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33, which promote eosinophilia. Journal of Immunology 196, 703–714. PubMed
Fonseca GRE, dos Santos SV, Chieffi PP, de Paula FM, Gryschek RCB and Lescano SAZ (2017) Experimental toxocariasis in BALB/c mice: relationship between parasite inoculum and the IgG immune response. Memorias Do Instituto Oswaldo Cruz 112, 382–386. PubMed PMC
Genain CP, Abel K, Belmar N, Villinger F, Rosenberg DP, Linington C, Raine CS and Hauser SL (1996) Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057. PubMed
Glickman LT and Schantz PM (1981) Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiologic Reviews 3, 230–250. PubMed
Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M and Sofronic-Milosavljevic L (2010) Mechanisms of modulation of experimental autoimmune encephalomyelitis by chronic Trichinella spiralis infection in Dark Agouti rats. Parasite Immunology 32, 450–459. PubMed
Hamilton CM, Stafford P, Pinelli E and Holland CV (2006) A murine model for cerebral toxocariasis: characterization of host susceptibility and behaviour. Parasitology 132, 791–801. PubMed
Hauser SL, Kappos L, Montalban X, Craveiro L, Chognot C, Hughes R, Koendgen H, Pasquarelli N, Pradhan A, Prajapati K and Wolinsky JS (2021) Safety of ocrelizumab in patients with relapsing and primary progressive multiple sclerosis. Neurology 97, E1546–E1559. PubMed PMC
Holland CV (2017) Knowledge gaps in the epidemiology of Toxocara: the enigma remains. Parasitology 144, 81–94. PubMed
Holland CV and Cox DM (2001) Toxocara in the mouse: a model for parasite-altered host behaviour? Journal of Helminthology 75, 125–135. PubMed
Jahan-Abad AJ, Karima S, Shateri S, Baram SM, Rajaei S, Morteza-Zadeh P, Borhani-Haghighi M, Salari AA, Nikzamir A and Gorji A (2020) Serum pro-inflammatory and anti-inflammatory cytokines and the pathogenesis of experimental autoimmune encephalomyelitis. Neuropathology 40, 84–92. PubMed
Janecek E, Beineke A, Schnieder T and Strube C (2014) Neurotoxocarosis: marked preference of Toxocara canis for the cerebrum and T-cati for the cerebellum in the paratenic model host mouse. Parasites and Vectors 7, 194. doi: 10.1186/1756-3305-7-194. PubMed DOI PMC
Janecek E, Waindok P, Bankstahl M and Strube C (2017) Abnormal neurobehaviour and impaired memory function as a consequence of Toxocara canis – as well as Toxocara cati-induced neurotoxocarosis. PLoS Neglected Tropical Diseases 11, 0005594. doi: 10.1371/journal.pntd.0005594. PubMed DOI PMC
Kim JY, Cho MK, Choi SH, Lee KH, Ahn SC, Kim DH and Yu HS (2010) Inhibition of dextran sulfate sodium (DSS)-induced intestinal inflammation via enhanced IL-10 and TGF-beta production by galectin-9 homologues isolated from intestinal parasites. Molecular and Biochemical Parasitology 174, 53–61. PubMed
Kuijk LM, Klaver EJ, Kooij G, van der Pol SMA, Heijnen P, Bruijns SCM, Kringel H, Pinelli E, Kraal G, de Vries HE, Dijkstra CD, Bouma G and van Die I (2012) Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Molecular Immunology 51, 210–218. PubMed
La Flamme AC, Ruddenklau K and Backstrom BT (2003) Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infection and Immunity 71, 4996–5004. PubMed PMC
Loukas A, Maizels RM and Hotez PJ (2021) The yin and yang of human soil-transmitted helminth infections. International Journal for Parasitology 51, 1243–1253. PubMed PMC
Lund ME, Greer J, Dixit A, Alvarado R, McCauley-Winter P, To J, Tanaka A, Hutchinson AT, Robinson MW, Simpson AM, O'Brien BA, Dalton JP and Donnelly S (2016) A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of type 1 diabetes and multiple sclerosis. Scientific Reports 6, 37789. doi: 10.1038/srep37789. PubMed DOI PMC
Ma GX, Holland CV, Wang T, Hofmann A, Fan CK, Maizels RM, Hotez PJ and Gasser RB (2018) Human toxocariasis. Lancet Infectious Diseases 18, E14–E24. PubMed
Ma GX, Rostami A, Wang T, Hofmann A, Hotez PJ and Gasser RB (2020). Global and regional seroprevalence estimates for human toxocariasis: a call for action. In Bowman DD (ed.), Advances in Parasitology: Toxocara and Toxocariasis, vol. 109. London, UK: Elsevier Ltd., pp. 275–290. PubMed
Maizels RM (2020) Regulation of immunity and allergy by helminth parasites. Allergy 75, 524–534. PubMed
Maizels RM and McSorley HJ (2016) Regulation of the host immune system by helminth parasites. Journal of Allergy and Clinical Immunology 138, 666–675. PubMed PMC
Novák, J, Panská, L, Macháček, T, Kolářová, L and Horák (2017) Humoral response of mice infected with Toxocara canis following different infection schemes. Acta Parasitologica 62, 823–835. PubMed
Ohtani S, Kohyama K and Matsumoto Y (2011) Autoantibodies recognizing native MOG are closely associated with active demyelination but not with neuroinflammation in chronic EAE. Neuropathology 31, 101–111. PubMed
Ollero MD, Fenoy S, Cuellar C, Guillen JL and del Aguila C (2008) Experimental toxocariosis in BALB/c mice: effect of the inoculation dose on brain and eye involvement. Acta Tropica 105, 124–130. PubMed
Peon AN, Ledesma-Soto Y, Olguin JE, Bautista-Donis M, Sciutto E and Terrazas LI (2017) Helminth products potently modulate experimental autoimmune encephalomyelitis by downregulating neuroinflammation and promoting a suppressive microenvironment. Mediators of Inflammation 2017, 8494572. doi: 10.1155/2017/8494572. PubMed DOI PMC
Pino PA and Cardona AE (2011) Isolation of brain and spinal cord mononuclear cells using Percoll gradients. Jove-Journal of Visualized Experiments 48, 2348. doi: 10.3791/2348. PubMed DOI PMC
Radovic I, Gruden-Movsesijan A, Ilic N, Cvetkovic J, Mojsilovic S, Devic M and Sofronic-Milosavljevic L (2015) Immunomodulatory effects of Trichinella spiralis-derived excretory-secretory antigens. Immunologic Research 61, 312–325. PubMed
Reyes JL, Espinoza-Jimenez AF, Gonzalez MI, Verdin L and Terrazas LI (2011) Taenia crassiceps infection abrogates experimental autoimmune encephalomyelitis. Cellular Immunology 267, 77–87. PubMed
Rubinsky-Elefant G, Hirata CE, Yamamoto JH and Ferreira MU (2010) Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Annals of Tropical Medicine and Parasitology 104, 3–23. PubMed
Sewell D, Qing Z, Reinke E, Elliot D, Weinstock J, Sandor M and Fabry Z (2003) Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. International Immunology 15, 59–69. PubMed
Smallwood TB, Giacomin PR, Loukas A, Mulvenna JP, Clark RJ and Miles JJ (2017) Helminth immunomodulation in autoimmune disease. Frontiers in Immunology 8, 453. doi: 10.3389/fimmu.2017.00453. PubMed DOI PMC
Sofronic-Milosavljevic L, Radovic I, Ilic N, Majstorovic I, Cvetkovic J and Gruden-Movsesijan A (2013) Application of dendritic cells stimulated with Trichinella spiralis excretory-secretory antigens alleviates experimental autoimmune encephalomyelitis. Medical Microbiology and Immunology 202, 239–249. PubMed
Strube C, Heuer L and Janecek E (2013) Toxocara spp. infections in paratenic hosts. Veterinary Parasitology 193, 375–389. PubMed
Strube C, Waindok P, Raulf MK and Springer A (2020a) Toxocara-induced neural larva migrans (neurotoxocarosis) in rodent model hosts. In Bowman DD (ed.), Advances in Parasitology: Toxocara and Toxocariasis, vol. 109. London, UK: Elsevier Ltd., pp. 189–218. PubMed
Strube C, Raulf MK, Springer A, Waindok P and Auer H (2020b) Seroprevalence of human toxocarosis in Europe: a review and meta-analysis. In Bowman DD (ed.), Advances in Parasitology: Toxocara and Toxocariasis, vol. 109. Elsevier Ltd, pp. 375–418. PubMed
Terrazas C, Ruiz-Rosado JD, Amici SA, Jablonski KA, Martinez-Saucedo D, Webb LM, Cortado H, Robledo-Avila F, Oghumu S, Satoskar AR, Rodriguez-Sosa M, Terrazas LI, Guerau-de-Arellano M and Partida-Sanchez S (2017) Helminth-induced Ly6C(hi) monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis. Scientific Reports 7, 40814. doi: 10.1038/srep40814. PubMed DOI PMC
Tran GT, Wilcox PL, Dent LA, Robinson CM, Carter N, Verma ND, Hall BM and Hodgkinson SJ (2017) Interleukin-5 mediates parasite-induced protection against experimental autoimmune encephalomyelitis: association with induction of antigen-specific CD4(+) CD25(+) T regulatory cells. Frontiers in Immunology 8, 1453. doi: 10.3389/fimmu.2017.01453. PubMed DOI PMC
Waindok P and Strube C (2019) Neuroinvasion of Toxocara canis – and T. cati-larvae mediates dynamic changes in brain cytokine and chemokine profile. Journal of Neuroinflammation 16, 147. doi: 10.1186/s12974-019-1537-x. PubMed DOI PMC
Walsh KP, Brady MT, Finlay CM, Boon L and Mills KHG (2009) Infection with a helminth parasite attenuates autoimmunity through TGF-beta-mediated suppression of Th17 and Th1 responses. Journal of Immunology 183, 1577–1586. PubMed
White MPJ, Johnston CJC, Grainger JR, Konkel JE, O'connor RA, Anderton SM and Maizels RM (2020) The Helminth Parasite Heligmosomoides polygyrus Attenuates EAE in an IL-4R alpha-Dependent Manner. Frontiers in Immunology 11, 1830. doi: 10.3389/fimmu.2020.01830. PubMed DOI PMC
Wilson MS, Taylor MD, O'Gorman MT, Balic A, Barr TA, Filbey K, Anderton SM and Maizels RM (2010) Helminth-induced CD19(+)CD23(hi) B cells modulate experimental allergic and autoimmune inflammation. European Journal of Immunology 40, 1682–1696. PubMed PMC
Wu ZL, Nagano I, Asano K and Takahashi Y (2010) Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response. Parasitology Research 107, 1173–1188. PubMed
Zheng XP, Hu XQ, Zhou GY, Lu ZQ, Qiu W, Bao H and Dai YQ (2008) Soluble egg antigen from Schistosoma japonicum modulates the progression of chronic progressive experimental autoimmune encephalomyelitis via Th2-shift response. Journal of Neuroimmunology 194, 107–114. PubMed
Zhu B, Trikudanathan S, Zozulya AL, Sandoval-Garcia C, Kennedy JK, Atochina O, Norberg T, Castagner B, Seeberger P, Fabry Z, Harn D, Khoury SJ and Guleria I (2012) Immune modulation by Lacto-N-fucopentaose III in experimental autoimmune encephalomyelitis. Clinical Immunology 142, 351–361. PubMed PMC