No evidence of Alzheimer's disease pathology in mice infected with Toxocara canis

. 2025 ; 32 () : 24. [epub] 20250409

Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40214165

Grantová podpora
B-BIO 405022 Grantová Agentura, Univerzita Karlova
Cooperatio Biology, SVV 260687, SVV 260664, UNCE24/SCI/011 Univerzita Karlova v Praze

The potential link between the infections and the development of Alzheimer's disease (AD) has led to speculations about the role of various pathogens in triggering amyloid-β (Aβ) overproduction, possibly leading to AD onset. The globally distributed dog roundworm Toxocara canis was suggested to be a suitable candidate due to neurotropism of the larvae and infection chronicity. This study investigated whether chronic T. canis infection induces AD-like pathology in mice and whether Aβ is toxic to T. canis. BALB/c and APP/PS1 transgenic mice, which overproduce Aβ, were infected with T. canis L3 larvae and monitored for larval burden, Aβ accumulation, and behavioral changes. In vitro tests of recombinant Aβ toxicity against the larvae were also performed. Despite the presence of T. canis larvae in the central nervous system 8 and 16 weeks post-infection, no significant increase in Aβ concentration or AD-related behavioral alterations were observed. Aβ was detected on the surface and within the intestines of T. canis larvae, but in vitro exposure to recombinant Aβ did not affect larval viability or morphology. Our findings suggest that T. canis infection does not trigger AD-like pathology in mice, and Aβ does not act as an antiparasitic agent. This challenges the emerging hypothesis that chronic neurotoxocarosis infections may contribute to AD development.

TITLE: Absence de preuve de pathologie de la maladie d’Alzheimer chez les souris infectées par Toxocara canis. ABSTRACT: Le lien potentiel entre les infections et le développement de la maladie d’Alzheimer (MA) a suscité des spéculations sur le rôle de divers agents pathogènes dans le déclenchement de la surproduction de β-amyloïde (βA), pouvant conduire à l’apparition de la MA. Toxocara canis, un nématode du chien, répandu mondialement, a été suggéré comme un candidat potentiel en raison du neurotropisme de ses larves et de la chronicité de son infection. Cette étude examine si une infection chronique à T. canis induit une pathologie de type MA chez la souris et si la βA est toxique pour T. canis. Des souris transgéniques BALB/c et APP/PS1, qui surproduisent la βA, ont été infectées par des larves L3 de T. canis et la charge larvaire, l’accumulation de βA et les changements comportementaux ont été étudiés. Des tests in vitro de toxicité de la βA recombinante contre les larves ont également été réalisés. Malgré la présence de larves de T. canis dans le système nerveux central 8 et 16 semaines après l’infection, aucune augmentation significative de la concentration de la βA ni d’altération comportementale liée à la MA n’ont été observées. La βA a été détectée à la surface et dans les intestins des larves de T. canis, mais l’exposition in vitro à la βA recombinante n’a pas affecté la viabilité ou la morphologie des larves. Nos résultats suggèrent que l’infection à T. canis ne déclenche pas de pathologie de type MA chez la souris, et que la βA n’agit pas comme agent antiparasitaire. Cela remet en cause l’hypothèse émergente selon laquelle les infections chroniques par neurotoxocarose pourraient contribuer au développement de la MA.

Zobrazit více v PubMed

Beaver PC. 1962. Toxocarosis (visceral larva migrans) in relation to tropical eosinophilia. Bulletin de la Société de Pathologie Exotique, 55, 555–576. PubMed

Bocharova O, Pandit NP, Molesworth K, Fisher A, Mychko O, Makarava N, Baskakov IV. 2021. Alzheimer’s disease-associated β-amyloid does not protect against herpes simplex virus 1 infection in the mouse brain. Journal of Biological Chemistry, 297, 100845. PubMed PMC

Bourgade K, Garneau H, Giroux G, Le Page AY, Bocti C, Dupuis G, Frost EH, Fülöp T. 2015. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 16, 85–98. PubMed

Bourgade K, Le Page A, Bocti C, Witkowski JM, Dupuis G, Frost EH, Fülöp T. 2016. Protective effect of Amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model. Journal of Alzheimer’s Disease, 50, 1227–1241. PubMed

Bowman DD, Mika-Grieve M, Grieve RB. 1987. Circulating excretory-secretory antigen levels and specific antibody responses in mice infected with Toxocara canis. American Journal of Tropical Medicine and Hygiene, 36, 75–82. PubMed

Bowman DD, Oaks JA, Grieve RB. 1993. Infrastructure of the infective-stage larva of Toxocara canis (Nematoda:Ascaridoidea). Journal of the Helminthological Society of Washington, 60, 183–204.

Brill R, Churg J, Beaver PC. 1953. Allergic granulomatosis associated with visceral larva migrans; case report with autopsy findings on Toxocara infection in a child. American Journal of Clinical Pathology, 23, 1208–1215. PubMed

Burren CH. 1971. The distribution of Toxocara larvae in the central nervous system of the mouse. Transactions of the Royal Society of Tropical Medicine and Hygiene, 65, 450–453. PubMed

Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. 2017. Dissecting amyloid beta deposition using distinct strains of the neurotropic parasite Toxoplasma gondii as a novel tool. ASN Neuro, 9, 175909141772491. PubMed PMC

Chou CM, Lee YL, Liao CW, Huang YC, Fan CK. 2017. Enhanced expressions of neurodegeneration-associated factors, UPS impairment, and excess Aβ accumulation in the hippocampus of mice with persistent cerebral toxocariasis. Parasites & Vectors, 10, 620. PubMed PMC

Ciudad S, Puig E, Botzanowski T, Meigooni M, Arango AS, Do J, Mayzel M, Bayoumi M, Chaignepain S, Maglia G, Cianferani S, Orekhov V, Tajkhorshid E, Bardiaux B, Carulla N. 2020. Aβ(1-42) tetramer and octamer structures reveal edge conductivity pores as a mechanism for membrane damage. Nature Communications, 11, 3014. PubMed PMC

da Silva MB, Urrego JRA, Oviedo Y, Cooper PJ, Pacheco LGC, Pinheiro CS, Ferreira F, Briza P, Alcantara-Neves NM. 2018. The somatic proteins of Toxocara canis larvae and excretory-secretory products revealed by proteomics. Veterinary Parasitology, 259, 25–34. PubMed

De Chiara G, Piacentini R, Fabiani M, Mastrodonato A, Marcocci ME, Limongi D, Napoletani G, Protto V, Coluccio P, Celestino I, Li Puma DD, Grassi C, Palamara AT. 2019. Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathogens, 15, e1007617. PubMed PMC

De Savigny DH, Voller A, Woodruff AW. 1979. Toxocariasis: Serological diagnosis by enzyme immunoassay. Journal of Clinical Pathology, 32, 284–288. PubMed PMC

Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C, Holsinger LJ, Arastu-Kapur S, Kaba S, Lee A, Ryder MI, Potempa B, Mydel P, Hellvard A, Adamowicz K, Hasturk H, Walker GD, Reynolds EC, Maull RLM, Curtis MA, Dragunow M, Potempa J. 2019. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 5, eaau3333. PubMed PMC

Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ, György B, Breakefield XO, Tanzi RE, Moir RD. 2018. Alzheimer’s disease-associated β-amyloid is rapidly seeded by Herpesviridae to protect against brain infection. Neuron, 99, 56–63.e3. PubMed PMC

Fairbairn D. 1961. The in vitro hatching of Ascaris lumbricoides eggs. Canadian Journal of Zoology, 39, 153–162.

Fan CK, Holland CV, Loxton K, Barghouth U. 2015. Cerebral toxocariasis: Silent progression to neurodegenerative disorders? Clinical Microbiology Reviews, 28, 663–686. PubMed PMC

Finnie GS, Gunnarsson R, Manavis J, Blumbergs PC, Mander KA, Edwards S, Van den Heuvel C, Finnie JW. 2017. Characterization of an “Amyloid only” transgenic (B6C3-Tg (APPswe, PSEN1dE9) 85Dbo/Mmjax) mouse model of Alzheimer’s disease. Journal of Comparative Pathology, 156, 389–399. PubMed

Gosztyla ML, Brothers HM, Robinson SR. 2018. Alzheimer’s amyloid-β is an antimicrobial peptide: A review of the evidence. Journal of Alzheimer’s Disease, 62, 1495–1506. PubMed

Heuer L, Beyerbach M, Lühder F, Beineke A, Strube C. 2015. Neurotoxocarosis alters myelin protein gene transcription and expression. Parasitology Research, 114, 2175–2186. PubMed

Janecek E, Beineke A, Schnieder T, Strube C. 2014. Neurotoxocarosis: Marked preference of Toxocara canis for the cerebrum and T. cati for the cerebellum in the paratenic model host mouse. Parasites & Vectors, 7, 194. PubMed PMC

Janecek E, Waindok P, Bankstahl M, Strube C. 2017. Abnormal neurobehaviour and impaired memory function as a consequence of Toxocara canis- as well as Toxocara cati-induced neurotoxocarosis. PLoS Neglected Tropical Diseases, 11, e0005594. PubMed PMC

Kagan BL, Jang H, Capone R, Teran Arce F, Ramachandran S, Lal R, Nussinov R. 2012. Antimicrobial properties of amyloid peptides. Molecular Pharmaceutics, 9, 708–717. PubMed PMC

Khatir AA, Mousavi F, Sepidarkish M, Arshadi M, Arjmandi D, Aldaghi M, Rostami A. 2024. Association between Alzheimer’s disease and Toxocara infection/exposure: A case-control study. Transactions of the Royal Society of Tropical Medicine and Hygiene, 118, 744–751. PubMed

Kristen H, Santana S, Sastre I, Recuero M, Bullido MJ, Aldudo J. 2015. Herpes simplex virus type 2 infection induces AD-like neurodegeneration markers in human neuroblastoma cells. Neurobiology of Aging, 36, 2737–2747. PubMed

Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD. 2016. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Science Translational Medicine, 8, 139–148. PubMed PMC

Lapeyre L, Piret J, Rhéaume C, Pons V, Uyar O, Préfontaine P, Rivest S, Boivin G. 2024. Herpes simplex virus 1 infection does not increase amyloid-β pathology in APP/PS1 mice. Journal of Alzheimer’s Disease, 97, 171–178. PubMed

Long JM, Holtzman DM. 2019. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 179, 312–339. PubMed PMC

Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. 1998. Copper, iron and zinc in Alzheimer’s disease senile plaques. Journal of the Neurological Sciences, 158, 47–52. PubMed

Macháček T, Leontovyč R, Šmídová B, Majer M, Vondráček O, Vojtěchová I, Petrásek T, Horák P. 2022. Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathogens, 18, e1010302. PubMed PMC

Macháček T, Šmídová B, Pankrác J, Majer M, Bulantová J, Horák P. 2020. Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases. Parasites & Vectors, 13, 426. PubMed PMC

Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, Reiss K, Darbinian N, Darekar P, Mihaly L, Khalili K. 2006. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiology of Aging, 27, 228–236. PubMed

Novák J, Panská L, Macháček T, Kolářová L, Horák P. 2017. Humoral response of mice infected with Toxocara canis following different infection schemes. Acta Parasitologica, 62, 823–835. PubMed

Rahman MM, Westermark GT, Zetterberg H, Härd T, Sandgren M. 2018. Protofibrillar and fibrillar amyloid-β binding proteins in cerebrospinal fluid. Journal of Alzheimer’s Disease, 66, 1053–1064. PubMed

Resende NM, Gazzinelli-Guimarães PH, Barbosa FS, Oliveira LM, Nogueira DS, Gazzinelli-Guimarães AC, Gonçalves MTP, Amorim CCO, Oliveira FMS, Caliari MV, Rachid MA, Volpato GT, Bueno LL, Geiger SM, Fujiwara RT. 2015. New insights into the immunopathology of early Toxocara canis infection in mice. Parasites & Vectors, 8, 354. PubMed PMC

Serra-de-Oliveira N, Boilesen SN, Prado de França Carvalho C, LeSueur-Maluf L, Zollner RL, Spadari RC, Medalha CC, Monteiro de Castro G. 2015. Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behavioural Brain Research, 287, 265–275. PubMed

Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD. 2010. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One, 5, e9505. PubMed PMC

Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, Maler JM. 2016. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Scientific Reports, 6, 32228. PubMed PMC

Springer A, Heuer L, Janecek-Erfurth E, Beineke A, Strube C. 2019. Histopathological characterization of Toxocara canis- and T. cati-induced neurotoxocarosis in the mouse model. Parasitology Research, 118, 2591–2600. PubMed

Strube C, Waindok P, Raulf MK, Springer A. 2020. Toxocara-induced neural larva migrans (neurotoxocarosis) in rodent model hosts. Advances in Parasitology, 109, 189–218. PubMed

Taylor EL. 1924. On the ascarids of the dog and cat. Annals of Tropical Medicine and Parasitology, 18, 243–251.

Torres L, Robinson SA, Kim DG, Yan A, Cleland TA, Bynoe MS. 2018. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice. Journal of Neuroinflammation, 15, 57. PubMed PMC

Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. 2022. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathogens, 18, e1010929. PubMed PMC

Waindok P, Janecek-Erfurth E, Lindenwald DL, Wilk E, Schughart K, Geffers R, Strube C. 2022. Toxocara canis- and Toxocara cati-induced neurotoxocarosis is associated with comprehensive brain transcriptomic alterations. Microorganisms, 10, 177. PubMed PMC

Waindok P, Strube C. 2019. Neuroinvasion of Toxocara canis- and T. cati-larvae mediates dynamic changes in brain cytokine and chemokine profile. Journal of Neuroinflammation, 16, 147. PubMed PMC

Wang XL, Zeng J, Feng J, Tian YT, Liu YJ, Qiu M, Yan X, Yang Y, Xiong Y, Zhang ZH, Wang Q, Wang JZ, Liu R. 2014. Helicobacter pylori filtrate impairs spatial learning and memory in rats and increases β-amyloid by enhancing expression of presenilin-2. Frontiers in Aging Neuroscience, 6, 66. PubMed PMC

White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, Hartshorn KL. 2014. Alzheimer’s associated β-amyloid protein inhibits influenza a virus and modulates viral interactions with phagocytes. PLoS One, 9, e101364. PubMed PMC

Wisniewski HM, Moretz RC, Lossinsky AS. 1981. Evidence for induction of localized amyloid deposits and neuritic plaques by an infectious agent. Annals of Neurology, 10, 517–522. PubMed

Wong CW, Quaranta V, Glenner GG. 1985. Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proceedings of the National Academy of Sciences of the United States of America, 82, 8729–8732. PubMed PMC

Wu TK, Bowman DD. 2022. Toxocara canis. Trends in Parasitology, 38, 709–710. PubMed

Wu Y, Du S, Johnson JL, Tung HY, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, Zheng H, Corry DB. 2019. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nature Communications, 10(1), 58. PubMed PMC

Zhao M, Ma G, Yan X, Li X, Wang E, Xu XX, Zhao JB, Ma X, Zeng J. 2024. Microbial infection promotes amyloid pathology in a mouse model of Alzheimer’s disease via modulating γ-secretase. Molecular Psychiatry, 29, 1491–1500. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...