Deciphering lung adenocarcinoma evolution and the role of LINE-1 retrotransposition
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R01 CA269919
NCI NIH HHS - United States
R01 ES032547
NIEHS NIH HHS - United States
U01 CA290479
NCI NIH HHS - United States
ZIA CP101231
Intramural NIH HHS - United States
PubMed
40161734
PubMed Central
PMC11952568
DOI
10.1101/2025.03.14.643063
PII: 2025.03.14.643063
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Understanding lung cancer evolution can identify tools for intercepting its growth. In a landscape analysis of 1024 lung adenocarcinomas (LUAD) with deep whole-genome sequencing integrated with multiomic data, we identified 542 LUAD that displayed diverse clonal architecture. In this group, we observed an interplay between mobile elements, endogenous and exogenous mutational processes, distinct driver genes, and epidemiological features. Our results revealed divergent evolutionary trajectories based on tobacco smoking exposure, ancestry, and sex. LUAD from smokers showed an abundance of tobacco-related C:G>A:T driver mutations in KRAS plus short subclonal diversification. LUAD in never smokers showed early occurrence of copy number alterations and EGFR mutations associated with SBS5 and SBS40a mutational signatures. Tumors harboring EGFR mutations exhibited long latency, particularly in females of European-ancestry (EU_N). In EU_N, EGFR mutations preceded the occurrence of other driver genes, including TP53 and RBM10. Tumors from Asian never smokers showed a short clonal evolution and presented with heterogeneous repetitive patterns for the inferred mutational order. Importantly, we found that the mutational signature ID2 is a marker of a previously unrecognized mechanism for LUAD evolution. Tumors with ID2 showed short latency and high L1 retrotransposon activity linked to L1 promoter demethylation. These tumors exhibited an aggressive phenotype, characterized by increased genomic instability, elevated hypoxia scores, low burden of neoantigens, propensity to develop metastasis, and poor overall survival. Reactivated L1 retrotransposition-induced mutagenesis can contribute to the origin of the mutational signature ID2, including through the regulation of the transcriptional factor ZNF695, a member of the KZFP family. The complex nature of LUAD evolution creates both challenges and opportunities for screening and treatment plans.
Advanced Technology Center for Aging Research IRCCS INRCA Ancona Italy
Ben May Department for Cancer Research The University of Chicago Chicago IL USA
Biobanco IBSP CV FISABIO Valencia Spain
Clinic of Laboratory and Precision Medicine IRCCS INRCA Ancona Italy
Department of Bioengineering University of California San Diego La Jolla CA USA
Department of Cancer Epidemiology H Lee Moffitt Cancer Center and Research Institute Tampa FL USA
Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Łódź Poland
Department of Environmental Health Harvard T H Chan School of Public Health Boston MA USA
Department of Human Genetics The University of Chicago Chicago IL USA
Department of Mathematics Harvard University Cambridge MA USA
Department of Medicine Massachusetts General Hospital Boston MA USA
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
Department of Pathology Brigham and Women's Hospital Boston MA USA
Department of Pathology Centre Hospitalier de l'Université de Montréal Montreal Canada
Department of Pathology The University of Hong Kong Hong Kong China
Department of Pathology Yale School of Medicine New Haven CT USA
Department of Thoracic Surgery Clinical Center of Serbia Belgrade Serbia
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD USA
Division of Pulmonary and Critical Care Medicine Mayo Clinic Rochester MN USA
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France
IHU RespirERA Biobank BB 0033 0025 Côte d'Azur University Nice France
Institute of Medicine Chung Shan Medical University Taichung Taiwan
Institute of Population Health Sciences National Health Research Institutes Zhunan Taiwan
International Organisation for Cancer Prevention and Research Belgrade Serbia
Manchester Cancer Research Centre The University of Manchester Manchester UK
Manchester NIHR Biomedical Research Centre Manchester UK
Moores Cancer Center University of California San Diego La Jolla CA USA
Princess Margaret Cancer Center University of Toronto Toronto Ontario Canada
Queen Mary Hospital The University of Hong Kong Hong Kong China
Red Valenciana de Biobancos FISABIO Valencia Spain
Sanford Stem Cell Institute University of California San Diego La Jolla CA USA
Thoracic Surgery Roswell Park Comprehensive Cancer Center Buffalo NY USA
Zobrazit více v PubMed
Cancer facts & figures 2023. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html.
Yang P. et al. Adenocarcinoma of the Lung Is Strongly Associated with Cigarette Smoking: Further Evidence from a Prospective Study of Women. Am. J. Epidemiol. 156, 1114–1122 (2002). PubMed
Zappa C. & Mousa S. A. Non-small cell lung cancer: current treatment and future advances. Transl. Lung Cancer Res. 5, 288–300 (2016). PubMed PMC
Devarakonda S. et al. Genomic Profiling of Lung Adenocarcinoma in Never-Smokers. J. Clin. Orthod. 39, 3747–3758 (2021). PubMed PMC
Shi J. et al. Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population. Nat. Commun. 14, 1–17 (2023). PubMed PMC
Yachida S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010). PubMed PMC
Naxerova K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017). PubMed PMC
Reiter J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018). PubMed PMC
Gerstung M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020). PubMed PMC
Frankell A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023). PubMed PMC
Jamal-Hanjani M. et al. Tracking the Evolution of Non–Small-Cell Lung Cancer. N. Engl. J. Med. 376, 2109–2121 (2017). PubMed
Hu X. et al. Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung adenocarcinoma. Nat. Commun. 10, 1–10 (2019). PubMed PMC
Al Bakir M. et al. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 616, 534–542 (2023). PubMed PMC
Lee E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012). PubMed PMC
Tubio J. M. C. et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343 (2014). PubMed PMC
Burns K. H. Transposable elements in cancer. Nat. Rev. Cancer 17, 415–424 (2017). PubMed
Rodriguez-Martin B. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 52, 306–319 (2020). PubMed PMC
Burns K. H. Repetitive DNA in disease. Science 376, 353–354 (2022). PubMed
Zhang R. et al. LINE-1 retrotransposition promotes the development and progression of lung squamous cell carcinoma by disrupting the tumor-suppressor gene FGGY. Cancer Res. 79, 4453–4465 (2019). PubMed
Mendez-Dorantes C. & Burns K. H. LINE-1 retrotransposition and its deregulation in cancers: implications for therapeutic opportunities. Genes Dev. 37, 948–967 (2023). PubMed PMC
Mendez-Dorantes C. et al. Chromosomal rearrangements and instability caused by the LINE-1 retrotransposon. bioRxiv (2024) doi:10.1101/2024.12.14.628481. DOI
Rodić N. et al. Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nat. Med. 21, 1060–1064 (2015). PubMed PMC
Nguyen T. H. M. et al. L1 retrotransposon heterogeneity in ovarian tumor cell evolution. Cell Rep. 23, 3730–3740 (2018). PubMed
Zhang T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 53, 1348–1359 (2021). PubMed PMC
Landi M. T. et al. Tracing Lung Cancer Risk Factors Through Mutational Signatures in Never-Smokers. Am. J. Epidemiol. 190, 962–976 (2021). PubMed PMC
Dentro S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254.e39 (2021). PubMed PMC
López S. et al. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283–293 (2020). PubMed PMC
Zhu B. et al. The genomic and epigenomic evolutionary history of papillary renal cell carcinomas. Nat. Commun. 11, 3096 (2020). PubMed PMC
Alexandrov L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). PubMed PMC
Thatikonda V. et al. Comprehensive analysis of mutational signatures reveals distinct patterns and molecular processes across 27 pediatric cancers. Nat Cancer 4, 276–289 (2023). PubMed PMC
Spisak N., de Manuel M., Milligan W., Sella G. & Przeworski M. The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair. PLoS Biol. 22, e3002678 (2024). PubMed PMC
Senkin S. et al. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature 629, 910–918 (2024). PubMed PMC
Zhang T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 53, 1348–1359 (2021). PubMed PMC
Fontana D. et al. Evolutionary signatures of human cancers revealed via genomic analysis of over 35,000 patients. Nat. Commun. 14, 5982 (2023). PubMed PMC
Haga Y. et al. Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma. Nat. Commun. 14, 8375 (2023). PubMed PMC
McGranahan N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra54 (2015). PubMed PMC
Rosenthal R., McGranahan N., Herrero J., Taylor B. S. & Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016). PubMed PMC
Degasperi A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, (2022). PubMed PMC
Islam S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom 2, None (2022). PubMed PMC
Rubanova Y. et al. Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig. Nat. Commun. 11, 1–12 (2020). PubMed PMC
Otlu B. et al. Topography of mutational signatures in human cancer. bioRxiv 2022.05.29.493921 (2023) doi:10.1101/2022.05.29.493921. PubMed DOI PMC
Stamatoyannopoulos J. A. et al. Human mutation rate associated with DNA replication timing. Nat. Genet. 41, 393–395 (2009). PubMed PMC
Whitfield M. L., George L. K., Grant G. D. & Perou C. M. Common markers of proliferation. Nat. Rev. Cancer 6, 99–106 (2006). PubMed
Negrini S., Gorgoulis V. G. & Halazonetis T. D. Genomic instability--an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010). PubMed
Bhandari V., Li C. H., Bristow R. G., Boutros P. C. & PCAWG Consortium. Divergent mutational processes distinguish hypoxic and normoxic tumours. Nat. Commun. 11, 737 (2020). PubMed PMC
Höckel M., Schlenger K., Höckel S. & Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res. 59, 4525–4528 (1999). PubMed
Emami Nejad A. et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int. 21, 62 (2021). PubMed PMC
Li T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020). PubMed PMC
Liberzon A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011). PubMed PMC
Liu N. et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228–232 (2018). PubMed PMC
Li X. et al. LINE-1 transcription activates long-range gene expression. Nat. Genet. 56, 1494–1502 (2024). PubMed
Scott E. C. & Devine S. E. The Role of Somatic L1 Retrotransposition in Human Cancers. Viruses 9, (2017). PubMed PMC
Miglino N., Tamm M. & Borger P. Transposable element LINE1 is activated after exposure to cigarette smoke in primary human lung fibroblasts. Eur. Respir. J. 44, (2014).
Belgnaoui S. M., Gosden R. G., Semmes O. J. & Haoudi A. Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells. Cancer Cell Int. 6, 13 (2006). PubMed PMC
Gasior S. L., Wakeman T. P., Xu B. & Deininger P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 357, 1383–1393 (2006). PubMed PMC
McKerrow W. et al. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc. Natl. Acad. Sci. U. S. A. 119, (2022). PubMed PMC
Kazazian H. H. Jr & Moran J. V. Mobile DNA in Health and Disease. N. Engl. J. Med. 377, 361–370 (2017). PubMed PMC
Levin H. L. & Moran J. V. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12, 615–627 (2011). PubMed PMC
Morrish T. A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002). PubMed
Farkash E. A. & Luning Prak E. T. DNA damage and L1 retrotransposition. J. Biomed. Biotechnol. 2006, 37285 (2006). PubMed PMC
Mao Z., Bozzella M., Seluanov A. & Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 2902–2906 (2008). PubMed PMC
Suzuki J. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 5, e1000461 (2009). PubMed PMC
Lieber M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010). PubMed PMC
Levin H. L. & Moran J. V. Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet. 12, 615–627 (2011). PubMed PMC
Rodgers K. & McVey M. Error-Prone Repair of DNA Double-Strand Breaks. J. Cell. Physiol. 231, 15–24 (2016). PubMed PMC
Doucet A. J., Wilusz J. E., Miyoshi T., Liu Y. & Moran J. V. A 3’ Poly(A) Tract Is Required for LINE-1 Retrotransposition. Mol. Cell 60, 728–741 (2015). PubMed PMC
Baldwin E. T. et al. Structures, functions and adaptations of the human LINE-1 ORF2 protein. Nature 626, 194–206 (2024). PubMed PMC
Wolff E. M. et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 6, e1000917 (2010). PubMed PMC
Shademan M. et al. Promoter methylation, transcription, and retrotransposition of LINE-1 in colorectal adenomas and adenocarcinomas. Cancer Cell Int. 20, 1–16 (2020). PubMed PMC
Freeman B. et al. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res. 50, 1888–1907 (2022). PubMed PMC
Shigaki H. et al. LINE-1 hypomethylation in noncancerous esophageal mucosae is associated with smoking history. Ann. Surg. Oncol. 19, 4238–4243 (2012). PubMed
Wangsri S., Subbalekha K., Kitkumthorn N. & Mutirangura A. Patterns and possible roles of LINE-1 methylation changes in smoke-exposed epithelia. PLoS One 7, e45292 (2012). PubMed PMC
Stueve T. R. et al. Epigenome-wide analysis of DNA methylation in lung tissue shows concordance with blood studies and identifies tobacco smoke-inducible enhancers. Hum. Mol. Genet. 26, 3014–3027 (2017). PubMed PMC
Caliri A. W., Caceres A., Tommasi S. & Besaratinia A. Hypomethylation of LINE-1 repeat elements and global loss of DNA hydroxymethylation in vapers and smokers. Epigenetics 15, 816–829 (2020). PubMed PMC
Camila B. et al. Genotoxicity and hypomethylation of LINE-1 induced by electronic cigarettes. Ecotoxicol. Environ. Saf. 256, 114900 (2023). PubMed
Joehanes R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016). PubMed PMC
Yang P., Wang Y. & Macfarlan T. S. The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution. Trends Genet. 33, 871–881 (2017). PubMed PMC
Imbeault M., Helleboid P.-Y. & Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017). PubMed
Han G. et al. An atlas of epithelial cell states and plasticity in lung adenocarcinoma. Nature 627, 656–663 (2024). PubMed PMC
Long E. et al. Context-aware single-cell multiome approach identified cell-type specific lung cancer susceptibility genes. bioRxiv (2023) doi:10.1101/2023.09.25.559336. DOI
de Tribolet-Hardy J. et al. Genetic features and genomic targets of human KRAB-zinc finger proteins. Genome Res. 33, 1409–1423 (2023). PubMed PMC
Del Toro N. et al. The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Res. 50, D648–D653 (2022). PubMed PMC
Oleksiewicz U. et al. TRIM28 and interacting KRAB-ZNFs control self-renewal of human pluripotent stem cells through epigenetic repression of pro-differentiation genes. Stem Cell Reports 9, 2065–2080 (2017). PubMed PMC
Rosspopoff O. & Trono D. Take a walk on the KRAB side. Trends Genet. 39, 844–857 (2023). PubMed
Hill W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023). PubMed PMC
Huang Z. et al. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. Nat. Genet. 54, 492–498 (2022). PubMed PMC
Colom B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021). PubMed PMC
Jardim D. L., Goodman A., de Melo Gagliato D. & Kurzrock R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell 39, 154–173 (2021). PubMed PMC
Klein S. L. & Flanagan K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016). PubMed
Vaz M. et al. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell 32, 360–376.e6 (2017). PubMed PMC
Mengs U. Tumour induction in mice following exposure to aristolochic acid. Arch. Toxicol. 61, 504–505 (1988). PubMed
Das S. et al. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat. Rev. Cancer 22, 576–591 (2022). PubMed
Kazazian H. H. Jr & Goodier J. L. LINE drive. retrotransposition and genome instability. Cell 110, 277–280 (2002). PubMed
Gilbert N., Lutz-Prigge S. & Moran J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002). PubMed
Symer D. E. et al. Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110, 327–338 (2002). PubMed
Li X. et al. Author Correction: LINE-1 transcription activates long-range gene expression. Nat. Genet. 56, 1762 (2024). PubMed
Sun Z. et al. LINE-1 promotes tumorigenicity and exacerbates tumor progression via stimulating metabolism reprogramming in non-small cell lung cancer. Mol. Cancer 21, 147 (2022). PubMed PMC
Zhang X., Zhang R. & Yu J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front Cell Dev Biol 8, 657 (2020). PubMed PMC
Beck C. R., Garcia-Perez J. L., Badge R. M. & Moran J. V. LINE-1 elements in structural variation and disease. Annu. Rev. Genomics Hum. Genet. 12, 187–215 (2011). PubMed PMC
Ambatipudi S. et al. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics 8, 599–618 (2016). PubMed
Breitling L. P., Yang R., Korn B., Burwinkel B. & Brenner H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am. J. Hum. Genet. 88, 450–457 (2011). PubMed PMC
Ringh M. V. et al. Tobacco smoking induces changes in true DNA methylation, hydroxymethylation and gene expression in bronchoalveolar lavage cells. EBioMedicine 46, 290–304 (2019). PubMed PMC
Kobayashi S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005). PubMed
Pao W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005). PubMed PMC
Hoyt S. J. et al. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022). PubMed PMC
Thawani A., Ariza A. J. F., Nogales E. & Collins K. Template and target-site recognition by human LINE-1 in retrotransposition. Nature 626, 186–193 (2024). PubMed PMC
Shah N. M. et al. Pan-cancer analysis identifies tumor-specific antigens derived from transposable elements. Nat. Genet. 55, 631–639 (2023). PubMed
Bergmann E. A., Chen B.-J., Arora K., Vacic V. & Zody M. C. Conpair: concordance and contamination estimator for matched tumor-normal pairs. Bioinformatics 32, 3196–3198 (2016). PubMed PMC
Pedersen B. S. et al. Somalier: rapid relatedness estimation for cancer and germline studies using efficient genome sketches. Genome Med. 12, 62 (2020). PubMed PMC
Nik-Zainal S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). PubMed PMC
Sadedin S. P. & Oshlack A. Bazam: a rapid method for read extraction and realignment of high-throughput sequencing data. Genome Biol. 20, 78 (2019). PubMed PMC
Martínez-Jiménez F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020). PubMed
Yuan K., Macintyre G., Liu W., PCAWG-11 working group & Markowetz, F. Ccube: A fast and robust method for estimating cancer cell fractions. bioRxiv 484402 (2018) doi:10.1101/484402. DOI
Yang L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153, 919–929 (2013). PubMed PMC
Chen X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016). PubMed
Muiños F., Martínez-Jiménez F., Pich O., Gonzalez-Perez A. & Lopez-Bigas N. In silico saturation mutagenesis of cancer genes. Nature 596, 428–432 (2021). PubMed
Chakravarty D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017, (2017). PubMed PMC
Bailey M. H. et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173, 371–385.e18 (2018). PubMed PMC
Cheng J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023). PubMed
Bergstrom E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019). PubMed PMC
Sondka Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 52, D1210–D1217 (2024). PubMed PMC
Díaz-Gay M. et al. Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment. Bioinformatics 39, (2023). PubMed PMC
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014). PubMed PMC
Grossman R. L. et al. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 375, 1109–1112 (2016). PubMed PMC
Dobin A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Putri G. H., Anders S., Pyl P. T., Pimanda J. E. & Zanini F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics vol. 38 2943–2945 Preprint at 10.1093/bioinformatics/btac166 (2022). PubMed DOI PMC
Zhang Y., Parmigiani G. & Johnson W. E. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform 2, lqaa078 (2020). PubMed PMC
Robinson M. D., McCarthy D. J. & Smyth G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). PubMed PMC
McKerrow W. & Fenyö D. L1EM: a tool for accurate locus specific LINE-1 RNA quantification. Bioinformatics 36, 1167–1173 (2020). PubMed PMC
Long E. et al. Context-aware single-cell multiomics approach identifies cell-type-specific lung cancer susceptibility genes. Nat. Commun. 15, 7995 (2024). PubMed PMC
Reyes-Gopar H. et al. A single-cell transposable element atlas of human cell identity. Genomics (2023).
Müller F. et al. RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biol. 20, 55 (2019). PubMed PMC
Leek J. T., Johnson W. E., Parker H. S., Jaffe A. E. & Storey J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012). PubMed PMC
Kawaguchi S., Higasa K., Shimizu M., Yamada R. & Matsuda F. HLA-HD: An accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017). PubMed
Reynisson B., Alvarez B., Paul S., Peters B. & Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020). PubMed PMC
Schenck R. O., Lakatos E., Gatenbee C., Graham T. A. & Anderson A. R. A. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline. BMC Bioinformatics 20, 264 (2019). PubMed PMC
Thorsson V. et al. The Immune Landscape of Cancer. Immunity 48, 812–830.e14 (2018). PubMed PMC
Buffa F. M., Harris A. L., West C. M. & Miller C. J. Erratum: Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br. J. Cancer 103, 1136–1136 (2010). PubMed PMC
Winter S. C. et al. Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res. 67, 3441–3449 (2007). PubMed
Ragnum H. B. et al. The tumour hypoxia marker pimonidazole reflects a transcriptional programme associated with aggressive prostate cancer. Br. J. Cancer 112, 382–390 (2015). PubMed PMC
Elvidge G. P. et al. Concordant Regulation of Gene Expression by Hypoxia and 2-Oxoglutarate-dependent Dioxygenase Inhibition: THE ROLE OF HIF-1α, HIF-2α, AND OTHER PATHWAYS*. J. Biol. Chem. 281, 15215–15226 (2006). PubMed
Sørensen B. S., Toustrup K., Horsman M. R., Overgaard J. & Alsner J. Identifying pH independent hypoxia induced genes in human squamous cell carcinomas in vitro. Acta Oncol. 49, 895–905 (2010). PubMed
Yates L. R. & Campbell P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012). PubMed PMC