Geographic variation of mutagenic exposures in kidney cancer genomes

. 2024 May ; 629 (8013) : 910-918. [epub] 20240501

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38693263

Grantová podpora
Wellcome Trust - United Kingdom
001 World Health Organization - International
T32 CA067754 NCI NIH HHS - United States

Odkazy

PubMed 38693263
PubMed Central PMC11111402
DOI 10.1038/s41586-024-07368-2
PII: 10.1038/s41586-024-07368-2
Knihovny.cz E-zdroje

International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.

Bevital AS Bergen Norway

Biomedical Sciences Graduate Program University of California San Diego La Jolla CA USA

Cancer Ageing and Somatic Mutation Wellcome Sanger Institute Cambridge UK

Cancer Epidemiology Unit The Nuffield Department of Population Health University of Oxford Oxford UK

Cancer Research UK Edinburgh Centre Institute of Genetics and Cancer University of Edinburgh Edinburgh UK

Centre for Biodiversity Genomics University of Guelph Guelph Ontario Canada

Clinic of Nephrology Faculty of Medicine Military Medical Academy Belgrade Serbia

Department of Anatomic Pathology A C Camargo Cancer Center São Paulo Brazil

Department of Bioengineering University of California San Diego La Jolla CA USA

Department of Botany and Genetics Institute of Biosciences Vilnius University Vilnius Lithuania

Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic

Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA

Department of Clinical Epidemiology N N Blokhin National Medical Research Centre of Oncology Moscow Russia

Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Łódź Poland

Department of Epidemiology A C Camargo Cancer Center São Paulo Brazil

Department of Health Informatics Graduate School of Informatics Middle East Technical University Ankara Turkey

Department of Oncology 2nd Faculty of Medicine Charles University and Motol University Hospital Prague Czech Republic

Department of Pathology Barretos Cancer Hospital Barretos Brazil

Department of Pathology Graduate School of Medicine The University of Tokyo Bunkyo ku Japan

Department of Pathology Radboud University Medical Centre Nijmegen Netherlands

Department of Surgery Division of Urology Sao Paulo Federal University São Paulo Brazil

Department of Urology A C Camargo Cancer Center São Paulo Brazil

Department of Urology Barretos Cancer Hospital Barretos Brazil

Department of Urology N N Blokhin National Medical Research Centre of Oncology Moscow Russia

Department of Urology University Hospital Dr D Misovic Clinical Center Belgrade Serbia

Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA

Division of Cancer Genomics National Cancer Center Research Institute Chuo ku Japan

Division of Urology Department of Surgery Faculty of Medicine Prince of Songkla University Hat Yai Thailand

Evidence Synthesis and Classification Branch International Agency for Research on Cancer Lyon France

Experimental Research Center Genomic Medicine Laboratory Hospital de Clínicas de Porto Alegre Porto Alegre Brazil

Faculdade Ciências Médicas de Minas Gerais Belo Horizonte Brazil

Faculty of Health Sciences Palacky University Olomouc Czech Republic

Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France

Hasheminejad Kidney Center Iran University of Medical Sciences Tehran Iran

Institute of Hygiene and Epidemiology 1st Faculty of Medicine Charles University Prague Czech Republic

Institute of Public Health and Preventive Medicine 2nd Faculty of Medicine Charles University Prague Czech Republic

International Organization for Cancer Prevention and Research Belgrade Serbia

Laboratory of Genetic Diagnostic National Cancer Institute Vilnius Lithuania

Laboratory of Molecular Medicine The Institute of Medical Science The University of Tokyo Minato ku Japan

Latin American Renal Cancer Group São Paulo Brazil

Leeds Institute of Medical Research at St James's University of Leeds Leeds UK

Life and Health Sciences Research Institute School of Medicine Minho University Braga Portugal

Molecular Oncology Research Center Barretos Cancer Hospital Barretos Brazil

Moores Cancer Center University of California San Diego La Jolla CA USA

National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation A C Camargo Cancer Center São Paulo Brazil

Nutrition and Metabolism Branch International Agency for Research on Cancer Lyon France

Observational and Pragmatic Research Institute Pte Ltd Singapore Singapore

Occupational Health and Toxicology Department National Center for Environmental Risk Monitoring National Institute of Public Health Bucharest Romania

Oncopathology Research Center Iran University of Medical Sciences Tehran Iran

Ontario Tumour Bank Ontario Institute for Cancer Research Toronto Ontario Canada

Post Graduate Program in Genetics and Molecular Biology Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

Post Graduate Program in Medicine Surgical Sciences Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

Service d'Anatomie Pathologique Assistance Publique Hôpitaux de Paris Univeristé Paris Saclay Le Kremlin Bicêtre France

Service of Urology Hospital de Clínicas de Porto Alegre Porto Alegre Brazil

Translational Medicine Research Center Faculty of Medicine Prince of Songkla University Hat Yai Thailand

Transplant Immunology and Personalized Medicine Unit Hospital de Clínicas de Porto Alegre Porto Alegre Brazil

Urology Department Carol Davila University of Medicine and Pharmacy Prof Dr Th Burghele Clinical Hospital Bucharest Romania

Komentář v

PubMed

Zobrazit více v PubMed

Brennan P, Davey-Smith G. Identifying novel causes of cancers to enhance cancer prevention: new strategies are needed. J. Natl Cancer Inst. 2022;114:353–360. doi: 10.1093/jnci/djab204. PubMed DOI PMC

Hsieh JJ, et al. Renal cell carcinoma. Nat. Rev. Dis. Primers. 2017;3:17009. doi: 10.1038/nrdp.2017.9. PubMed DOI PMC

Koh G, Degasperi A, Zou X, Momen S, Nik-Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat. Rev. Cancer. 2021;21:619–637. doi: 10.1038/s41568-021-00377-7. PubMed DOI

Alexandrov LB, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101. doi: 10.1038/s41586-020-1943-3. PubMed DOI PMC

Scelo G, et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 2014;5:5135. doi: 10.1038/ncomms6135. PubMed DOI

Mitchell TJ, et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell. 2018;173:611–623.e17. doi: 10.1016/j.cell.2018.02.020. PubMed DOI PMC

Campbell PJ, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. doi: 10.1038/s41586-020-1969-6. PubMed DOI PMC

Degasperi A, et al. A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies. Nat. Cancer. 2020;1:249–263. doi: 10.1038/s43018-020-0027-5. PubMed DOI PMC

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–49. doi: 10.1038/nature12222. PubMed DOI PMC

Mutographs. Cancer Grand Challengeshttps://cancergrandchallenges.org/teams (2023).

Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2021;71:209–249. PubMed

Nik-Zainal S, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–993. doi: 10.1016/j.cell.2012.04.024. PubMed DOI PMC

Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477. PubMed DOI PMC

Drost J, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science. 2017;358:234–238. doi: 10.1126/science.aao3130. PubMed DOI PMC

Hoang ML, et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 2013;5:197ra102. doi: 10.1126/scitranslmed.3006200. PubMed DOI PMC

Poon SL, et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 2013;5:197ra101. doi: 10.1126/scitranslmed.3006086. PubMed DOI

Grollman AP. Aristolochic acid nephropathy: harbinger of a global iatrogenic disease. Environ. Mol. Mutagen. 2013;54:1–7. doi: 10.1002/em.21756. PubMed DOI

Turesky RJ, et al. Aristolochic acid exposure in Romania and implications for renal cell carcinoma. Br. J. Cancer. 2016;114:76–80. doi: 10.1038/bjc.2015.402. PubMed DOI PMC

Wang X-M, et al. Integrative genomic study of Chinese clear cell renal cell carcinoma reveals features associated with thrombus. Nat. Commun. 2020;11:739. doi: 10.1038/s41467-020-14601-9. PubMed DOI PMC

Stefanovic V, Radovanovic Z. Balkan endemic nephropathy and associated urothelial cancer. Nat. Clin. Pract. Urol. 2008;5:105–112. doi: 10.1038/ncpuro1019. PubMed DOI

Huang MN, et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 2017;27:1475–1486. doi: 10.1101/gr.220038.116. PubMed DOI PMC

Haradhvala NJ, et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell. 2016;164:538–549. doi: 10.1016/j.cell.2015.12.050. PubMed DOI PMC

Otlu B, et al. Topography of mutational signatures in human cancer. Cell Rep. 2023;42:112930. doi: 10.1016/j.celrep.2023.112930. PubMed DOI PMC

Nik-Zainal S. The genome as a record of environmental exposure. Mutagenesis. 2015;30:763–770. PubMed PMC

Sato Y, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 2013;45:860–867. doi: 10.1038/ng.2699. PubMed DOI

Dempsey D, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther. 2004;76:64–72. doi: 10.1016/j.clpt.2004.02.011. PubMed DOI

Velenosi TJ, et al. Untargeted metabolomics reveals N,N,N-trimethyl-l-alanyl-l-proline betaine (TMAP) as a novel biomarker of kidney function. Sci. Rep. 2019;9:6831. doi: 10.1038/s41598-019-42992-3. PubMed DOI PMC

Nik-Zainal S, et al. The life history of 21 breast cancers. Cell. 2012;149:994–1007. doi: 10.1016/j.cell.2012.04.023. PubMed DOI PMC

Dentro SC, Wedge DC, van Loo P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 2017;7:a026625. doi: 10.1101/cshperspect.a026625. PubMed DOI PMC

Shearer JJ, et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. J. Natl Cancer Inst. 2021;113:580–587. doi: 10.1093/jnci/djaa143. PubMed DOI PMC

Kucab JE, et al. A compendium of mutational signatures of environmental agents. Cell. 2019;177:821–836.e16. doi: 10.1016/j.cell.2019.03.001. PubMed DOI PMC

Gabriel AAG, et al. Genetic analysis of lung cancer and the germline impact on somatic mutation burden. J. Natl Cancer Inst. 2022;114:1159–1166. doi: 10.1093/jnci/djac087. PubMed DOI PMC

Liu Y, Gusev A, Heng YJ, Alexandrov LB, Kraft P. Somatic mutational profiles and germline polygenic risk scores in human cancer. Genome Med. 2022;14:14. doi: 10.1186/s13073-022-01016-y. PubMed DOI PMC

Moody S, et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat. Genet. 2021;53:1553–1563. doi: 10.1038/s41588-021-00928-6. PubMed DOI

Abascal F, et al. Somatic mutation landscapes at single-molecule resolution. Nature. 2021;593:405–410. doi: 10.1038/s41586-021-03477-4. PubMed DOI

Robinson PS, et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat. Genet. 2021;53:1434–1442. doi: 10.1038/s41588-021-00930-y. PubMed DOI PMC

Robinson PS, et al. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat. Commun. 2022;13:3949. doi: 10.1038/s41467-022-31341-0. PubMed DOI PMC

Fowler JC, Jones PH. Somatic mutation: what shapes the mutational landscape of normal epithelia? Cancer Discov. 2022;12:1642–1655. doi: 10.1158/2159-8290.CD-22-0145. PubMed DOI PMC

Whalley JP, et al. Framework for quality assessment of whole genome cancer sequences. Nat. Commun. 2020;11:5040. doi: 10.1038/s41467-020-18688-y. PubMed DOI PMC

Bergmann EA, Chen B-J, Arora K, Vacic V, Zody MC. Conpair: concordance and contamination estimator for matched tumor–normal pairs. Bioinformatics. 2016;32:3196–3198. doi: 10.1093/bioinformatics/btw389. PubMed DOI PMC

Van Loo P, et al. Allele-specific copy number analysis of tumors. Proc. Natl Acad. Sci. USA. 2010;107:16910–16915. doi: 10.1073/pnas.1009843107. PubMed DOI PMC

Jones D, et al. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinform. 2016;56:15.10.1–15.10.18. doi: 10.1002/cpbi.20. PubMed DOI PMC

Raine KM, et al. cgpPindel: identifying somatically acquired insertion and deletion events from paired end sequencing. Curr. Protoc. Bioinform. 2015;52:15.7.1–15.7.12. doi: 10.1002/0471250953.bi1507s52. PubMed DOI PMC

Kim S, et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods. 2018;15:591–594. doi: 10.1038/s41592-018-0051-x. PubMed DOI

Bergstrom EN, et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genom. 2019;20:685. doi: 10.1186/s12864-019-6041-2. PubMed DOI PMC

Liu M, Wu Y, Jiang N, Boot A, Rozen SG. mSigHdp: hierarchical Dirichlet process mixture modeling for mutational signature discovery. NAR Genom. Bioinform. 2023;5:lqad005. doi: 10.1093/nargab/lqad005. PubMed DOI PMC

Islam SMA, et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom. 2022;2:100179. doi: 10.1016/j.xgen.2022.100179. PubMed DOI PMC

Senkin S. MSA: reproducible mutational signature attribution with confidence based on simulations. BMC Bioinform. 2021;22:540. doi: 10.1186/s12859-021-04450-8. PubMed DOI PMC

Martincorena I, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171:1029–1041.e21. doi: 10.1016/j.cell.2017.09.042. PubMed DOI PMC

Tamborero D, et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 2018;10:25. doi: 10.1186/s13073-018-0531-8. PubMed DOI PMC

Gao J, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013;6:pl1. doi: 10.1126/scisignal.2004088. PubMed DOI PMC

Díaz-Gay M, et al. Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment. Bioinformatics. 2023;39:btad756. doi: 10.1093/bioinformatics/btad756. PubMed DOI PMC

Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bull. 1945;1:80. doi: 10.2307/3001968. DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Dušek, L. et al. Epidemiology of Malignant Tumours in the Czech Republic, Version 7.0. Masaryk Universityhttp://www.svod.cz (2007).

Liu M, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019;51:237–244. doi: 10.1038/s41588-018-0307-5. PubMed DOI PMC

Yengo L, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 2018;27:3641–3649. doi: 10.1093/hmg/ddy271. PubMed DOI PMC

Lagou V, et al. Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat. Commun. 2021;12:24. doi: 10.1038/s41467-020-19366-9. PubMed DOI PMC

Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 10.1038/s41586-018-0579-z. PubMed DOI PMC

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC

Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC

Shim H, et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE. 2015;10:e0120758. doi: 10.1371/journal.pone.0120758. PubMed DOI PMC

Choi SW, O’Reilly PF. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience. 2019;8:giz082. doi: 10.1093/gigascience/giz082. PubMed DOI PMC

Loftfield E, et al. Novel biomarkers of habitual alcohol intake and associations with risk of pancreatic and liver cancers and liver disease mortality. J. Natl Cancer Inst. 2021;113:1542–1550. doi: 10.1093/jnci/djab078. PubMed DOI PMC

Gao J, Meyer K, Borucki K, Ueland PM. Multiplex Immuno-MALDI-TOF MS for targeted quantification of protein biomarkers and their proteoforms related to inflammation and renal dysfunction. Anal. Chem. 2018;90:3366–3373. doi: 10.1021/acs.analchem.7b04975. PubMed DOI

R Core Team. R: A Language and Environment for Statistical Computing.https://www.r-project.org/ (R Foundation for Statistical Computing, 2022).

Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 10.18637/jss.v067.i01 (2015).

Bengtsson H. matrixStats: Functions that apply to rows and columns of matrices (and to vectors). https://cran.r-project.org/web/packages/matrixStats/index.html (2023).

Bates, D. et al. Matrix: Sparse and dense matrix classes and methods. https://matrix.r-forge.r-project.org/ (2023).

Chamberlain, S., Teucher, A. & Mahoney, M. geojsonio. https://github.com/ropensci/geojsonio (2023).

Hijmans, R. J. raster. https://github.com/rspatial/raster (2024).

Bivand, R. & Rundel, C. rgeos. https://github.com/cran/rgeos/ (2023).

Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).

Tennekes, M. tmaptools: Thematic map tools. https://github.com/r-tmap/tmaptools (2021).

Lin Pedersen, T. patchwork: The composer of plots. https://github.com/thomasp85/patchwork (2024).

Cheng, J. Leaflet. https://github.com/rstudio/leaflet (2023).

Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org (2023).

Wickham, H., Miller, E. & Smith, D. haven: Import and export ‘SPSS’, ‘Stata’ and ‘SAS’ files. https://haven.tidyverse.org (2023).

Harrell Jr F. Hmisc: Harrell Miscellaneous. R package version 5.1-1. https://hbiostat.org/r/hmisc/ (2023).

Schauberger, P. & Walker, A. openxlsx: Read, write and edit xlsx files. https://github.com/ycphs/openxlsx (2022).

Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ data abstraction library. https://rgdal.r-forge.r-project.org (2023).

Wickham, H., Pedersen, T. L. & Seidel, D. scales: Scale functions for visualization. https://scales.r-lib.org (2023).

Wickham, H. stringr: Simple, consistent wrappers for common string operations. https://stringr.tidyverse.org (2023).

Wickham, H., Vaughan, D. & Girlich, M. tidyr: Tidy messy data. https://tidyr.tidyverse.org (2024).

Müller, K. & Wickham, H. tibble: Simple data frames. https://tibble.tidyverse.org/ (2023).

Dragulescu, A. & Arendt, C. xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files. https://github.com/colearendt/xlsx (2022).

Archer, E. rfPermute. https://github.com/EricArcher/rfPermute (2023).

Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI

Wickham, H. forcats: Tools for working with categorical variables (factors). https://forcats.tidyverse.org/ (2023).

The pandas development team. pandas-dev/pandas: Pandas. 10.5281/zenodo.7093122 (2022).

Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC

Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC

Seabold, S. & Perktold, J. statsmodels: Econometric and statistical modeling with Python. In 9th Python in Science Conference10.25080/Majora-92bf1922-011 (2010).

Luo, J. firthlogist. https://github.com/jzluo/firthlogist (2022).

Smith, N. J. et al. pydata/patsy. 10.5281/zenodo.5529350 (2021).

Kluyver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Schmidt, B.) 87–90 (2016).

Wickham, H. ggplot2: Elegant graphics for data analysis. https://ggplot2.tidyverse.org (2016).

Campitelli, E. ggnewscale: Multiple fill and color scales in ggplot2. 10.5281/zenodo.7971612 (2023).

Mike, F. C., Davis, T. L. & ggplot2 authors. ggpattern: ‘ggplot2’ pattern geoms. https://github.com/trevorld/ggpattern (2022).

Slowikowski, K. ggrepel: Automatically position non-overlapping text labels with ‘ggplot2’. https://github.com/slowkow/ggrepel (2024).

Yutani, H. ggsflabel. https://yutannihilation.github.io/ggsflabel/ (2023).

Dunnington, D. ggspatial: Spatial data framework for ggplot2. https://paleolimbot.github.io/ggspatial/ (2023).

Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. https://rpkgs.datanovia.com/ggpubr/ (2023).

Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. https://wilkelab.org/cowplot/ (2024).

Hunter JD. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Waskom M. L. seaborn: statistical data visualization. J. Open Source Softw. 2021;6:3021. doi: 10.21105/joss.03021. DOI

He, Y. TMB_plotter. https://github.com/AlexandrovLab/TMB_plotter (2020).

Global Administrative Areas. GADM v4.1. https://gadm.org (2022).

Patterson, T. & Nathaniel, V. World Countries, 1:10 million. Natural Earth v5.1.1. https://www.naturalearthdata.com (2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace