Geographic and age-related variations in mutational processes in colorectal cancer
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
R01 ES032547
NIEHS NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
U01 CA290479
NCI NIH HHS - United States
Wellcome Trust - United Kingdom
R01 CA269919
NCI NIH HHS - United States
T32 CA067754
NCI NIH HHS - United States
PubMed
40034755
PubMed Central
PMC11875255
DOI
10.1101/2025.02.13.25322219
PII: 2025.02.13.25322219
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Preprint MeSH
Colorectal cancer incidence rates vary geographically and have changed over time. Notably, in the past two decades, the incidence of early-onset colorectal cancer, affecting individuals under the age of 50 years, has doubled in many countries. The reasons for this increase are unknown. Here, we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown etiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia, and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals diagnosed before age 40 than in those over 70, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that early-life mutagenic exposure to colibactin-producing bacteria may contribute to the rising incidence of early-onset colorectal cancer.
Biomedical Sciences Graduate Program University of California San Diego La Jolla CA USA
Cancer Ageing and Somatic Mutation Wellcome Sanger Institute Cambridge UK
Centre for Biodiversity Genomics University of Guelph Guelph ON Canada
Clinical Center ISCARE Prague Czech Republic
Clinical Epidemiology N N Blokhin National Medical Research Centre of Oncology Moscow Russia
Colon Cancer Reference Center A C Camargo Cancer Center Sao Paulo Brazil
Department of Bioengineering University of California San Diego La Jolla CA USA
Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA
Department of Colorectal Oncology Surgery Barretos Cancer Hospital Barretos Brazil
Department of Endoscopy Barretos Cancer Hospital Barretos Brazil
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Łódź Poland
Department of Epidemiology A C Camargo Cancer Center Sao Paulo Brazil
Department of Genetics Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
Department of Internal Medicine Faculty of Medicine Chiang Mai University Chiang Mai Thailand
Department of Pathology Barretos Cancer Hospital Barretos Brazil
Department of Pathology University Clinical Centre of Serbia Belgrade Serbia
Department of Surgery Faculty of Medicine Prince of Songkla University Hat Yai Thailand
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD USA
Division of Cancer Genomics National Cancer Center Research Institute Chuo ku Japan
Evidence Synthesis and Classification Branch International Agency for Research on Cancer Lyon France
Faculty of Medicine Charles University and Motol University Hospital Prague Czech Republic
Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France
Institute of Animal Physiology and Genetics Czech Academy of Science Libechov Czech Republic
Instituto de Medicina Traslacional e Ingeniería Biomédica Buenos Aires Argentina
International Organization for Cancer Prevention and Research Belgrade Serbia
Life and Health Sciences Research Institute School of Medicine Minho University Braga Portugal
Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto ON Canada
Medical Genetics Service Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil
Molecular Oncology Research Center Barretos Cancer Hospital Barretos Brazil
Moores Cancer Center University of California San Diego La Jolla CA USA
National Cancer Institute Bangkok Thailand
Oncological pathology group Terry Fox National Tumor Bank National Cancer Institute Bogotá Colombia
Ontario Tumour Bank Ontario Institute for Cancer Research Toronto ON Canada
Parasites and Microbes Wellcome Sanger Institute Cambridge UK
Sanford Stem Cell Institute University of California San Diego La Jolla CA USA
The Maria Sklodowska Cure National Research Institute of Oncology Warsaw Poland
See more in PubMed
Bray F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74, 229–263 (2024). 10.3322/caac.21834 PubMed DOI
Brennan P. & Davey-Smith G. Identifying Novel Causes of Cancers to Enhance Cancer Prevention: New Strategies Are Needed. J Natl Cancer Inst 114, 353–360 (2022). 10.1093/jnci/djab204 PubMed DOI PMC
Kucab J. E. et al. A Compendium of Mutational Signatures of Environmental Agents. Cell 177, 821–836 e816 (2019). 10.1016/j.cell.2019.03.001 PubMed DOI PMC
Ames B. N., Durston W. E., Yamasaki E. & Lee F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70, 2281–2285 (1973). 10.1073/pnas.70.8.2281 PubMed DOI PMC
Senkin S. et al. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature (2024). 10.1038/s41586-024-07368-2 PubMed DOI PMC
Moody S. et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet 53, 1553–1563 (2021). 10.1038/s41588-021-00928-6 PubMed DOI
Zhang T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics 53, 1348–1359 (2021). 10.1038/s41588-021-00920-0 PubMed DOI PMC
Perdomo S. et al. The Mutographs biorepository: A unique genomic resource to study cancer around the world. Cell Genom 4, 100500 (2024). 10.1016/j.xgen.2024.100500 PubMed DOI PMC
Torrens L. et al. The Complexity of Tobacco Smoke-Induced Mutagenesis in Head and Neck Cancer. medRxiv, 2024.2004.2015.24305006 (2024). 10.1101/2024.04.15.24305006 PubMed DOI PMC
Patel S. G., Karlitz J. J., Yen T., Lieu C. H. & Boland C. R. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol 7, 262–274 (2022). 10.1016/S2468-1253(21)00426-X PubMed DOI
Siegel R. L. et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 68, 2179–2185 (2019). 10.1136/gutjnl-2019-319511 PubMed DOI
Siegel R. L., Jemal A. & Ward E. M. Increase in incidence of colorectal cancer among young men and women in the United States. Cancer Epidemiol Biomarkers Prev 18, 1695–1698 (2009). 10.1158/1055-9965.EPI-09-0186 PubMed DOI
Sinicrope F. A. Increasing Incidence of Early-Onset Colorectal Cancer. N Engl J Med 386, 1547–1558 (2022). 10.1056/NEJMra2200869 PubMed DOI
Vuik F. E. et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 68, 1820–1826 (2019). 10.1136/gutjnl-2018-317592 PubMed DOI PMC
Spaander M. C. W. et al. Young-onset colorectal cancer. Nat Rev Dis Primers 9, 21 (2023). 10.1038/s41572-023-00432-7 PubMed DOI PMC
Stigliano V., Sanchez-Mete L., Martayan A. & Anti M. Early-onset colorectal cancer: a sporadic or inherited disease? World J Gastroenterol 20, 12420–12430 (2014). 10.3748/wjg.v20.i35.12420 PubMed DOI PMC
You Y. N., Xing Y., Feig B. W., Chang G. J. & Cormier J. N. Young-onset colorectal cancer: is it time to pay attention? Arch Intern Med 172, 287–289 (2012). 10.1001/archinternmed.2011.602 PubMed DOI
Venugopal A. & Carethers J. M. Epidemiology and biology of early onset colorectal cancer. EXCLI J 21, 162–182 (2022). 10.17179/excli2021-4456 PubMed DOI PMC
Alexandrov L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). 10.1038/s41586-020-1943-3 PubMed DOI PMC
Cancer Genome Atlas N. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012). 10.1038/nature11252 PubMed DOI PMC
Degasperi A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, abl9283 (2022). 10.1126/science.abl9283 PubMed DOI PMC
Cornish A. J. et al. The genomic landscape of 2,023 colorectal cancers. Nature (2024). 10.1038/s41586-024-07747-9 PubMed DOI PMC
Priestley P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019). 10.1038/s41586-019-1689-y PubMed DOI PMC
Martinez-Jimenez F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023). 10.1038/s41586-023-06054-z PubMed DOI PMC
Mendelaar P. A. J. et al. Whole genome sequencing of metastatic colorectal cancer reveals prior treatment effects and specific metastasis features. Nat Commun 12, 574 (2021). 10.1038/s41467-020-20887-6 PubMed DOI PMC
Rosendahl Huber A. et al. Improved detection of colibactin-induced mutations by genotoxic E. coli in organoids and colorectal cancer. Cancer Cell 42, 487–496 (2024). 10.1016/j.ccell.2024.02.009 PubMed DOI
Nunes L. et al. Prognostic genome and transcriptome signatures in colorectal cancers. Nature (2024). 10.1038/s41586-024-07769-3 PubMed DOI PMC
Díaz-Gay M. & Alexandrov L. B. in Advances in Cancer Research Vol. 151 (eds Berger Franklin G. & Boland C. Richard) 385–424 (Academic Press, 2021). PubMed
Helleday T., Eshtad S. & Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 15, 585–598 (2014). 10.1038/nrg3729 PubMed DOI PMC
Pich O. et al. The mutational footprints of cancer therapies. Nat Genet 51, 1732–1740 (2019). 10.1038/s41588-019-0525-5 PubMed DOI PMC
Nik-Zainal S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012). 10.1016/j.cell.2012.04.024 PubMed DOI PMC
Alexandrov L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). 10.1038/nature12477 PubMed DOI PMC
Pleguezuelos-Manzano C. et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 580, 269–273 (2020). 10.1038/s41586-020-2080-8 PubMed DOI PMC
Lee-Six H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019). 10.1038/s41586-019-1672-7 PubMed DOI
Islam S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom 2, 100179 (2022). 10.1016/j.xgen.2022.100179 PubMed DOI PMC
Alexandrov L. B. et al. Clock-like mutational processes in human somatic cells. Nat Genet 47, 1402–1407 (2015). 10.1038/ng.3441 PubMed DOI PMC
Dentro S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254 (2021). 10.1016/j.cell.2021.03.009 PubMed DOI PMC
Gerstung M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020). 10.1038/s41586-019-1907-7 PubMed DOI PMC
Chen B. et al. Contribution of pks(+) E. coli mutations to colorectal carcinogenesis. Nat Commun 14, 7827 (2023). 10.1038/s41467-023-43329-5 PubMed DOI PMC
Martinez-Jimenez F. et al. A compendium of mutational cancer driver genes. Nat Rev Cancer 20, 555–572 (2020). 10.1038/s41568-020-0290-x PubMed DOI
Kim J. E. et al. High prevalence of TP53 loss and whole-genome doubling in early-onset colorectal cancer. Exp Mol Med 53, 446–456 (2021). 10.1038/s12276-021-00583-1 PubMed DOI PMC
Díaz-Gay M. et al. Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment. Bioinformatics 39, btad756 (2023). 10.1093/bioinformatics/btad756 PubMed DOI PMC
Terlouw D. et al. Recurrent APC Splice Variant c.835–8A>G in Patients With Unexplained Colorectal Polyposis Fulfilling the Colibactin Mutational Signature. Gastroenterology 159, 1612–1614 e1615 (2020). 10.1053/j.gastro.2020.06.055 PubMed DOI
Fearon E. R. & Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990). 10.1016/0092-8674(90)90186-i PubMed DOI
Carethers J. M. & Jung B. H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology 149, 1177–1190 e1173 (2015). 10.1053/j.gastro.2015.06.047 PubMed DOI PMC
Perdomo S. Mutational signatures in five cancer types across five continents. Standard Operating Procedures (SOPs). Zenodo (2024). 10.5281/zenodo.11836372 DOI
Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). 10.1093/bioinformatics/btp324 PubMed DOI PMC
Whalley J. P. et al. Framework for quality assessment of whole genome cancer sequences. Nat Commun 11, 5040 (2020). 10.1038/s41467-020-18688-y PubMed DOI PMC
Bergmann E. A., Chen B. J., Arora K., Vacic V. & Zody M. C. Conpair: concordance and contamination estimator for matched tumor-normal pairs. Bioinformatics 32, 3196–3198 (2016). 10.1093/bioinformatics/btw389 PubMed DOI PMC
Kim S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15, 591–594 (2018). 10.1038/s41592-018-0051-x PubMed DOI
Wang K., Li M. & Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010). 10.1093/nar/gkq603 PubMed DOI PMC
Van Loo P. et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A 107, 16910–16915 (2010). 10.1073/pnas.1009843107 PubMed DOI PMC
Nik-Zainal S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). 10.1016/j.cell.2012.04.023 PubMed DOI PMC
Jones D. et al. cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data. Curr Protoc Bioinformatics 56, 15 10 11–15 10 18 (2016). 10.1002/cpbi.20 PubMed DOI PMC
Raine K. M. et al. cgpPindel: Identifying Somatically Acquired Insertion and Deletion Events from Paired End Sequencing. Curr Protoc Bioinformatics 52, 15 17 11–15 17 12 (2015). 10.1002/0471250953.bi1507s52 PubMed DOI PMC
Khandekar A. et al. Visualizing and exploring patterns of large mutational events with SigProfilerMatrixGenerator. BMC Genomics 24, 469 (2023). 10.1186/s12864-023-09584-y PubMed DOI PMC
Bergstrom E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019). 10.1186/s12864-019-6041-2 PubMed DOI PMC
Gilson P. et al. Evaluation of 3 molecular-based assays for microsatellite instability detection in formalin-fixed tissues of patients with endometrial and colorectal cancers. Sci Rep 10, 16386 (2020). 10.1038/s41598-020-73421-5 PubMed DOI PMC
Liu M., Wu Y., Jiang N., Boot A. & Rozen S. G. mSigHdp: hierarchical Dirichlet process mixture modeling for mutational signature discovery. NAR Genom Bioinform 5, lqad005 (2023). 10.1093/nargab/lqad005 PubMed DOI PMC
Alexandrov L. B., Nik-Zainal S., Wedge D. C., Campbell P. J. & Stratton M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3, 246–259 (2013). 10.1016/j.celrep.2012.12.008 PubMed DOI PMC
Steele C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022). 10.1038/s41586-022-04738-6 PubMed DOI PMC
Everall A. et al. Comprehensive repertoire of the chromosomal alteration and mutational signatures across 16 cancer types from 10,983 cancer patients. medRxiv, 2023.2006.2007.23290970 (2023). 10.1101/2023.06.07.23290970 DOI
Sondka Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res 52, D1210–D1217 (2024). 10.1093/nar/gkad986 PubMed DOI PMC
Senkin S. MSA: reproducible mutational signature attribution with confidence based on simulations. BMC Bioinformatics 22, 540 (2021). 10.1186/s12859-021-04450-8 PubMed DOI PMC
Martincorena I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 171, 1029–1041 (2017). 10.1016/j.cell.2017.09.042 PubMed DOI PMC
Sondka Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 18, 696–705 (2018). 10.1038/s41568-018-0060-1 PubMed DOI PMC
Chakravarty D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017, 1–16 (2017). 10.1200/PO.17.00011 PubMed DOI PMC
Bailey M. H. et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173, 371–385 e318 (2018). 10.1016/j.cell.2018.02.060 PubMed DOI PMC
Muiños F., Martinez-Jimenez F., Pich O., Gonzalez-Perez A. & Lopez-Bigas N. In silico saturation mutagenesis of cancer genes. Nature 596, 428–432 (2021). 10.1038/s41586-021-03771-1 PubMed DOI
Cheng J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023). 10.1126/science.adg7492 PubMed DOI
Benjamini Y. & Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Statistical Methodology 57, 289–300 (1995). 10.1111/j.2517-6161.1995.tb02031.x DOI
Goncearenco A. et al. Exploring background mutational processes to decipher cancer genetic heterogeneity. Nucleic Acids Res 45, W514–W522 (2017). 10.1093/nar/gkx367 PubMed DOI PMC
Langmead B. & Salzberg S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012). 10.1038/nmeth.1923 PubMed DOI PMC
Chen S., Zhou Y., Chen Y. & Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018). 10.1093/bioinformatics/bty560 PubMed DOI PMC
Liao W. W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023). 10.1038/s41586-023-05896-x PubMed DOI PMC
Gu Z., Gu L., Eils R., Schlesner M. & Brors B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014). 10.1093/bioinformatics/btu393 PubMed DOI
Mansournia M. A., Geroldinger A., Greenland S. & Heinze G. Separation in Logistic Regression: Causes, Consequences, and Control. Am J Epidemiol 187, 864–870 (2018). 10.1093/aje/kwx299 PubMed DOI