• This record comes from PubMed

Geographic and age-related variations in mutational processes in colorectal cancer

. 2025 Feb 21 ; () : . [epub] 20250221

Status PubMed-not-MEDLINE Language English Country United States Media electronic

Document type Journal Article, Preprint

Grant support
R01 ES032547 NIEHS NIH HHS - United States
U01 CA167551 NCI NIH HHS - United States
U01 CA290479 NCI NIH HHS - United States
Wellcome Trust - United Kingdom
R01 CA269919 NCI NIH HHS - United States
T32 CA067754 NCI NIH HHS - United States

Links

PubMed 40034755
PubMed Central PMC11875255
DOI 10.1101/2025.02.13.25322219
PII: 2025.02.13.25322219
Knihovny.cz E-resources

Colorectal cancer incidence rates vary geographically and have changed over time. Notably, in the past two decades, the incidence of early-onset colorectal cancer, affecting individuals under the age of 50 years, has doubled in many countries. The reasons for this increase are unknown. Here, we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown etiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia, and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals diagnosed before age 40 than in those over 70, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that early-life mutagenic exposure to colibactin-producing bacteria may contribute to the rising incidence of early-onset colorectal cancer.

Biomedical Sciences Graduate Program University of California San Diego La Jolla CA USA

Cancer Ageing and Somatic Mutation Wellcome Sanger Institute Cambridge UK

Centre for Biodiversity Genomics University of Guelph Guelph ON Canada

Clinic for Digestive Surgery 1st Surgical Clinic University Clinical Centre of Serbia Belgrade Serbia

Clinical Center ISCARE Prague Czech Republic

Clinical Epidemiology N N Blokhin National Medical Research Centre of Oncology Moscow Russia

Colon Cancer Reference Center A C Camargo Cancer Center Sao Paulo Brazil

Department of Bioengineering University of California San Diego La Jolla CA USA

Department of Biomedical Sciences and Biomedical Engineering Faculty of Medicine Prince of Songkla University Hat Yai Thailand

Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA

Department of Colorectal Oncology Surgery Barretos Cancer Hospital Barretos Brazil

Department of Endoscopy Barretos Cancer Hospital Barretos Brazil

Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Łódź Poland

Department of Epidemiology A C Camargo Cancer Center Sao Paulo Brazil

Department of Genetics Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

Department of Health Informatics Graduate School of Informatics Middle East Technical University Ankara Turkey

Department of Internal Medicine Faculty of Medicine Chiang Mai University Chiang Mai Thailand

Department of Oncology 2 Faculty of Medicine Charles University and Motol University Hospital Prague Czech Republic

Department of Pathology Anatomic Pathology Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil

Department of Pathology Barretos Cancer Hospital Barretos Brazil

Department of Pathology The Maria Sklodowska Cure National Research Institute of Oncology Warsaw Poland

Department of Pathology University Clinical Centre of Serbia Belgrade Serbia

Department of Surgery Division of Colorectal Surgery Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil

Department of Surgery Faculty of Medicine Prince of Songkla University Hat Yai Thailand

Digestive Oncology Research Center Digestive Disease Research Institute Tehran University of Medical Sciences Tehran Iran

Digital Genomics Group Structural Biology Program Spanish National Cancer Research Center Madrid Spain

Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD USA

Division of Cancer Genomics National Cancer Center Research Institute Chuo ku Japan

Evidence Synthesis and Classification Branch International Agency for Research on Cancer Lyon France

Faculty of Medicine Charles University and Motol University Hospital Prague Czech Republic

Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France

Golestan Research Center of Gastroenterology and Hepatology Golestan University of Medical Sciences Gorgan Iran

Institute of Animal Physiology and Genetics Czech Academy of Science Libechov Czech Republic

Institute of Public Health and Preventive Medicine 2 Faculty of Medicine Charles University Prague Czech Republic

Instituto de Medicina Traslacional e Ingeniería Biomédica Buenos Aires Argentina

International Organization for Cancer Prevention and Research Belgrade Serbia

Laboratory of Molecular Medicine The Institute of Medical Science The University of Tokyo Minato ku Japan

Life and Health Sciences Research Institute School of Medicine Minho University Braga Portugal

Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto ON Canada

Medical Genetics Service Hospital de Clínicas de Porto Alegre Porto Alegre Rio Grande do Sul Brazil

Molecular Oncology Research Center Barretos Cancer Hospital Barretos Brazil

Moores Cancer Center University of California San Diego La Jolla CA USA

National Cancer Institute Bangkok Thailand

Oncological pathology group Terry Fox National Tumor Bank National Cancer Institute Bogotá Colombia

Ontario Tumour Bank Ontario Institute for Cancer Research Toronto ON Canada

Parasites and Microbes Wellcome Sanger Institute Cambridge UK

Sanford Stem Cell Institute University of California San Diego La Jolla CA USA

Surgery Department 2 Faculty of Medicine Charles University and Central Military Hospital Prague Czech Republic

The Maria Sklodowska Cure National Research Institute of Oncology Warsaw Poland

Translational Medicine Research Center Faculty of Medicine Prince of Songkla University Hat Yai Thailand

Update In

PubMed

See more in PubMed

Bray F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74, 229–263 (2024). 10.3322/caac.21834 PubMed DOI

Brennan P. & Davey-Smith G. Identifying Novel Causes of Cancers to Enhance Cancer Prevention: New Strategies Are Needed. J Natl Cancer Inst 114, 353–360 (2022). 10.1093/jnci/djab204 PubMed DOI PMC

Kucab J. E. et al. A Compendium of Mutational Signatures of Environmental Agents. Cell 177, 821–836 e816 (2019). 10.1016/j.cell.2019.03.001 PubMed DOI PMC

Ames B. N., Durston W. E., Yamasaki E. & Lee F. D. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70, 2281–2285 (1973). 10.1073/pnas.70.8.2281 PubMed DOI PMC

Senkin S. et al. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature (2024). 10.1038/s41586-024-07368-2 PubMed DOI PMC

Moody S. et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat Genet 53, 1553–1563 (2021). 10.1038/s41588-021-00928-6 PubMed DOI

Zhang T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics 53, 1348–1359 (2021). 10.1038/s41588-021-00920-0 PubMed DOI PMC

Perdomo S. et al. The Mutographs biorepository: A unique genomic resource to study cancer around the world. Cell Genom 4, 100500 (2024). 10.1016/j.xgen.2024.100500 PubMed DOI PMC

Torrens L. et al. The Complexity of Tobacco Smoke-Induced Mutagenesis in Head and Neck Cancer. medRxiv, 2024.2004.2015.24305006 (2024). 10.1101/2024.04.15.24305006 PubMed DOI PMC

Patel S. G., Karlitz J. J., Yen T., Lieu C. H. & Boland C. R. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol 7, 262–274 (2022). 10.1016/S2468-1253(21)00426-X PubMed DOI

Siegel R. L. et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 68, 2179–2185 (2019). 10.1136/gutjnl-2019-319511 PubMed DOI

Siegel R. L., Jemal A. & Ward E. M. Increase in incidence of colorectal cancer among young men and women in the United States. Cancer Epidemiol Biomarkers Prev 18, 1695–1698 (2009). 10.1158/1055-9965.EPI-09-0186 PubMed DOI

Sinicrope F. A. Increasing Incidence of Early-Onset Colorectal Cancer. N Engl J Med 386, 1547–1558 (2022). 10.1056/NEJMra2200869 PubMed DOI

Vuik F. E. et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 68, 1820–1826 (2019). 10.1136/gutjnl-2018-317592 PubMed DOI PMC

Spaander M. C. W. et al. Young-onset colorectal cancer. Nat Rev Dis Primers 9, 21 (2023). 10.1038/s41572-023-00432-7 PubMed DOI PMC

Stigliano V., Sanchez-Mete L., Martayan A. & Anti M. Early-onset colorectal cancer: a sporadic or inherited disease? World J Gastroenterol 20, 12420–12430 (2014). 10.3748/wjg.v20.i35.12420 PubMed DOI PMC

You Y. N., Xing Y., Feig B. W., Chang G. J. & Cormier J. N. Young-onset colorectal cancer: is it time to pay attention? Arch Intern Med 172, 287–289 (2012). 10.1001/archinternmed.2011.602 PubMed DOI

Venugopal A. & Carethers J. M. Epidemiology and biology of early onset colorectal cancer. EXCLI J 21, 162–182 (2022). 10.17179/excli2021-4456 PubMed DOI PMC

Alexandrov L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). 10.1038/s41586-020-1943-3 PubMed DOI PMC

Cancer Genome Atlas N. et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012). 10.1038/nature11252 PubMed DOI PMC

Degasperi A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, abl9283 (2022). 10.1126/science.abl9283 PubMed DOI PMC

Cornish A. J. et al. The genomic landscape of 2,023 colorectal cancers. Nature (2024). 10.1038/s41586-024-07747-9 PubMed DOI PMC

Priestley P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019). 10.1038/s41586-019-1689-y PubMed DOI PMC

Martinez-Jimenez F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 618, 333–341 (2023). 10.1038/s41586-023-06054-z PubMed DOI PMC

Mendelaar P. A. J. et al. Whole genome sequencing of metastatic colorectal cancer reveals prior treatment effects and specific metastasis features. Nat Commun 12, 574 (2021). 10.1038/s41467-020-20887-6 PubMed DOI PMC

Rosendahl Huber A. et al. Improved detection of colibactin-induced mutations by genotoxic E. coli in organoids and colorectal cancer. Cancer Cell 42, 487–496 (2024). 10.1016/j.ccell.2024.02.009 PubMed DOI

Nunes L. et al. Prognostic genome and transcriptome signatures in colorectal cancers. Nature (2024). 10.1038/s41586-024-07769-3 PubMed DOI PMC

Díaz-Gay M. & Alexandrov L. B. in Advances in Cancer Research Vol. 151 (eds Berger Franklin G. & Boland C. Richard) 385–424 (Academic Press, 2021). PubMed

Helleday T., Eshtad S. & Nik-Zainal S. Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 15, 585–598 (2014). 10.1038/nrg3729 PubMed DOI PMC

Pich O. et al. The mutational footprints of cancer therapies. Nat Genet 51, 1732–1740 (2019). 10.1038/s41588-019-0525-5 PubMed DOI PMC

Nik-Zainal S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012). 10.1016/j.cell.2012.04.024 PubMed DOI PMC

Alexandrov L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). 10.1038/nature12477 PubMed DOI PMC

Pleguezuelos-Manzano C. et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 580, 269–273 (2020). 10.1038/s41586-020-2080-8 PubMed DOI PMC

Lee-Six H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019). 10.1038/s41586-019-1672-7 PubMed DOI

Islam S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom 2, 100179 (2022). 10.1016/j.xgen.2022.100179 PubMed DOI PMC

Alexandrov L. B. et al. Clock-like mutational processes in human somatic cells. Nat Genet 47, 1402–1407 (2015). 10.1038/ng.3441 PubMed DOI PMC

Dentro S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254 (2021). 10.1016/j.cell.2021.03.009 PubMed DOI PMC

Gerstung M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020). 10.1038/s41586-019-1907-7 PubMed DOI PMC

Chen B. et al. Contribution of pks(+) E. coli mutations to colorectal carcinogenesis. Nat Commun 14, 7827 (2023). 10.1038/s41467-023-43329-5 PubMed DOI PMC

Martinez-Jimenez F. et al. A compendium of mutational cancer driver genes. Nat Rev Cancer 20, 555–572 (2020). 10.1038/s41568-020-0290-x PubMed DOI

Kim J. E. et al. High prevalence of TP53 loss and whole-genome doubling in early-onset colorectal cancer. Exp Mol Med 53, 446–456 (2021). 10.1038/s12276-021-00583-1 PubMed DOI PMC

Díaz-Gay M. et al. Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment. Bioinformatics 39, btad756 (2023). 10.1093/bioinformatics/btad756 PubMed DOI PMC

Terlouw D. et al. Recurrent APC Splice Variant c.835–8A>G in Patients With Unexplained Colorectal Polyposis Fulfilling the Colibactin Mutational Signature. Gastroenterology 159, 1612–1614 e1615 (2020). 10.1053/j.gastro.2020.06.055 PubMed DOI

Fearon E. R. & Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990). 10.1016/0092-8674(90)90186-i PubMed DOI

Carethers J. M. & Jung B. H. Genetics and Genetic Biomarkers in Sporadic Colorectal Cancer. Gastroenterology 149, 1177–1190 e1173 (2015). 10.1053/j.gastro.2015.06.047 PubMed DOI PMC

Perdomo S. Mutational signatures in five cancer types across five continents. Standard Operating Procedures (SOPs). Zenodo (2024). 10.5281/zenodo.11836372 DOI

Li H. & Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). 10.1093/bioinformatics/btp324 PubMed DOI PMC

Whalley J. P. et al. Framework for quality assessment of whole genome cancer sequences. Nat Commun 11, 5040 (2020). 10.1038/s41467-020-18688-y PubMed DOI PMC

Bergmann E. A., Chen B. J., Arora K., Vacic V. & Zody M. C. Conpair: concordance and contamination estimator for matched tumor-normal pairs. Bioinformatics 32, 3196–3198 (2016). 10.1093/bioinformatics/btw389 PubMed DOI PMC

Kim S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15, 591–594 (2018). 10.1038/s41592-018-0051-x PubMed DOI

Wang K., Li M. & Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164 (2010). 10.1093/nar/gkq603 PubMed DOI PMC

Van Loo P. et al. Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A 107, 16910–16915 (2010). 10.1073/pnas.1009843107 PubMed DOI PMC

Nik-Zainal S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). 10.1016/j.cell.2012.04.023 PubMed DOI PMC

Jones D. et al. cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data. Curr Protoc Bioinformatics 56, 15 10 11–15 10 18 (2016). 10.1002/cpbi.20 PubMed DOI PMC

Raine K. M. et al. cgpPindel: Identifying Somatically Acquired Insertion and Deletion Events from Paired End Sequencing. Curr Protoc Bioinformatics 52, 15 17 11–15 17 12 (2015). 10.1002/0471250953.bi1507s52 PubMed DOI PMC

Khandekar A. et al. Visualizing and exploring patterns of large mutational events with SigProfilerMatrixGenerator. BMC Genomics 24, 469 (2023). 10.1186/s12864-023-09584-y PubMed DOI PMC

Bergstrom E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019). 10.1186/s12864-019-6041-2 PubMed DOI PMC

Gilson P. et al. Evaluation of 3 molecular-based assays for microsatellite instability detection in formalin-fixed tissues of patients with endometrial and colorectal cancers. Sci Rep 10, 16386 (2020). 10.1038/s41598-020-73421-5 PubMed DOI PMC

Liu M., Wu Y., Jiang N., Boot A. & Rozen S. G. mSigHdp: hierarchical Dirichlet process mixture modeling for mutational signature discovery. NAR Genom Bioinform 5, lqad005 (2023). 10.1093/nargab/lqad005 PubMed DOI PMC

Alexandrov L. B., Nik-Zainal S., Wedge D. C., Campbell P. J. & Stratton M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep 3, 246–259 (2013). 10.1016/j.celrep.2012.12.008 PubMed DOI PMC

Steele C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022). 10.1038/s41586-022-04738-6 PubMed DOI PMC

Everall A. et al. Comprehensive repertoire of the chromosomal alteration and mutational signatures across 16 cancer types from 10,983 cancer patients. medRxiv, 2023.2006.2007.23290970 (2023). 10.1101/2023.06.07.23290970 DOI

Sondka Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res 52, D1210–D1217 (2024). 10.1093/nar/gkad986 PubMed DOI PMC

Senkin S. MSA: reproducible mutational signature attribution with confidence based on simulations. BMC Bioinformatics 22, 540 (2021). 10.1186/s12859-021-04450-8 PubMed DOI PMC

Martincorena I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 171, 1029–1041 (2017). 10.1016/j.cell.2017.09.042 PubMed DOI PMC

Sondka Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 18, 696–705 (2018). 10.1038/s41568-018-0060-1 PubMed DOI PMC

Chakravarty D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017, 1–16 (2017). 10.1200/PO.17.00011 PubMed DOI PMC

Bailey M. H. et al. Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell 173, 371–385 e318 (2018). 10.1016/j.cell.2018.02.060 PubMed DOI PMC

Muiños F., Martinez-Jimenez F., Pich O., Gonzalez-Perez A. & Lopez-Bigas N. In silico saturation mutagenesis of cancer genes. Nature 596, 428–432 (2021). 10.1038/s41586-021-03771-1 PubMed DOI

Cheng J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023). 10.1126/science.adg7492 PubMed DOI

Benjamini Y. & Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Statistical Methodology 57, 289–300 (1995). 10.1111/j.2517-6161.1995.tb02031.x DOI

Goncearenco A. et al. Exploring background mutational processes to decipher cancer genetic heterogeneity. Nucleic Acids Res 45, W514–W522 (2017). 10.1093/nar/gkx367 PubMed DOI PMC

Langmead B. & Salzberg S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012). 10.1038/nmeth.1923 PubMed DOI PMC

Chen S., Zhou Y., Chen Y. & Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018). 10.1093/bioinformatics/bty560 PubMed DOI PMC

Liao W. W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023). 10.1038/s41586-023-05896-x PubMed DOI PMC

Gu Z., Gu L., Eils R., Schlesner M. & Brors B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014). 10.1093/bioinformatics/btu393 PubMed DOI

Mansournia M. A., Geroldinger A., Greenland S. & Heinze G. Separation in Logistic Regression: Causes, Consequences, and Control. Am J Epidemiol 187, 864–870 (2018). 10.1093/aje/kwx299 PubMed DOI

Find record

Citation metrics

Loading data ...