Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa

. 2024 Jul 27 ; 14 (1) : 17303. [epub] 20240727

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39068252

Grantová podpora
GA20-11321S Grantová Agentura České Republiky

Odkazy

PubMed 39068252
PubMed Central PMC11283573
DOI 10.1038/s41598-024-68266-1
PII: 10.1038/s41598-024-68266-1
Knihovny.cz E-zdroje

Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.

Zobrazit více v PubMed

VanEpps, J. S. & Younger, J. G. Implantable device-related infection. Shock46, 597–608 (2016). 10.1097/SHK.0000000000000692 PubMed DOI PMC

Esteban, J. & Gómez-Barrena, E. An update about molecular biology techniques to detect orthopaedic implant-related infections. EFORT Open Rev.6, 93–100 (2021). 10.1302/2058-5241.6.200118 PubMed DOI PMC

Cyphert, E. L., Zhang, N., Learn, G. D., Hernandez, C. J. & von Recum, H. A. Recent advances in the evaluation of antimicrobial materials for resolution of orthopedic implant-associated infections in vivo. ACS Infect. Dis.7, 3125–3160 (2021). 10.1021/acsinfecdis.1c00465 PubMed DOI PMC

Natsuhara, K. M., Shelton, T. J., Meehan, J. P. & Lum, Z. C. Mortality during total hip periprosthetic joint infection. J. Arthroplasty34, S337–S342 (2019). 10.1016/j.arth.2018.12.024 PubMed DOI

Drain, N. P. et al. High mortality after total knee arthroplasty periprosthetic joint infection is related to preoperative morbidity and the disease process but not treatment. J. Arthroplasty37, 1383–1389 (2022). 10.1016/j.arth.2022.03.046 PubMed DOI

Fischbacher, A. & Borens, O. Prosthetic-joint Infections: Mortality over the last 10 years. J. Bone Jt. Infect.4, 198–202 (2019). 10.7150/jbji.35428 PubMed DOI PMC

Pirisi, L., Pennestrì, F., Viganò, M. & Banfi, G. Prevalence and burden of orthopaedic implantable-device infections in Italy: A hospital-based national study. BMC Infect. Dis.20, 337 (2020). 10.1186/s12879-020-05065-9 PubMed DOI PMC

Mponponsuo, K. et al. Economic burden of surgical management of prosthetic joint infections following hip and knee replacements in Alberta, Canada: An analysis and comparison of two major urban centers. J. Hosp. Infect.S0195–6701(22), 00132–00133 (2022). PubMed

Premkumar, A. et al. Projected economic burden of periprosthetic joint infection of the hip and knee in the United States. J. Arthroplasty36, 1484-1489.e3 (2021). 10.1016/j.arth.2020.12.005 PubMed DOI

Shichman, I. et al. Projections and epidemiology of primary hip and knee arthroplasty in medicare patients to 2040–2060. JB JS Open Access8, e22.00112 (2023). PubMed PMC

Matsuoka, H., Nanmo, H., Nojiri, S., Nagao, M. & Nishizaki, Y. Projected numbers of knee and hip arthroplasties up to the year 2030 in Japan. J. Orthop. Sci.28, 161–166 (2023). 10.1016/j.jos.2021.09.002 PubMed DOI

Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol.15, 288–298 (2019). 10.1038/s41574-019-0176-8 PubMed DOI

Powell, A., Teichtahl, A. J., Wluka, A. E. & Cicuttini, F. M. Obesity: A preventable risk factor for large joint osteoarthritis which may act through biomechanical factors. Br. J. Sports Med.39, 4–5 (2005). 10.1136/bjsm.2004.011841 PubMed DOI PMC

Hernigou, P. & Scarlat, M. M. Growth in musculoskeletal pathology worldwide: The role of Société Internationale de Chirurgie Orthopédique et de Traumatologie and publications. Int. Orthop.46, 1913–1920 (2022). 10.1007/s00264-022-05512-z PubMed DOI

Izakovicova, P., Borens, O. & Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev.4, 482–494 (2019). 10.1302/2058-5241.4.180092 PubMed DOI PMC

Rakow, A., Perka, C., Trampuz, A. & Renz, N. Origin and characteristics of haematogenous periprosthetic joint infection. Clin. Microbiol. Infect.25, 845–850 (2019). 10.1016/j.cmi.2018.10.010 PubMed DOI

Staats, A., Li, D., Sullivan, A. C. & Stoodley, P. Biofilm formation in periprosthetic joint infections. Ann. Jt.6, 43 (2021). 10.21037/aoj-20-85 PubMed DOI PMC

Davidson, D. J., Spratt, D. & Liddle, A. D. Implant materials and prosthetic joint infection: The battle with the biofilm. EFORT Open Rev.4, 633–639 (2019). 10.1302/2058-5241.4.180095 PubMed DOI PMC

Visperas, A., Santana, D., Klika, A. K., Higuera-Rueda, C. A. & Piuzzi, N. S. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J. Orthop. Res.40, 1477–1491 (2022). 10.1002/jor.25345 PubMed DOI PMC

Peng, H.-M. et al. Microbiology of periprosthetic hip and knee infections in surgically revised cases from 34 centers in Mainland China. Infect. Drug Resist.14, 2411–2418 (2021). 10.2147/IDR.S305205 PubMed DOI PMC

Benito, N. et al. The different microbial etiology of prosthetic joint infections according to route of acquisition and time after prosthesis implantation, including the role of multidrug-resistant organisms. J. Clin. Med.8, 673 (2019). 10.3390/jcm8050673 PubMed DOI PMC

Fröschen, F. S., Randau, T. M., Franz, A., Molitor, E. & Hischebeth, G. T. R. Microbiological profiles of patients with periprosthetic joint infection of the hip or knee. Diagnostics12, 1654 (2022). 10.3390/diagnostics12071654 PubMed DOI PMC

Papalini, C. et al. Prosthetic joint infection diagnosis applying the three-level European Bone and Joint Infection Society (EBJIS) approach. Eur. J. Clin. Microbiol. Infect. Dis.41, 771–778 (2022). 10.1007/s10096-022-04410-x PubMed DOI PMC

Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol.16, 397–409 (2018). 10.1038/s41579-018-0019-y PubMed DOI

Seebach, E. & Kubatzky, K. F. Chronic implant-related bone infections—Can immune modulation be a therapeutic strategy?. Front. Immunol.10, 1724 (2019). 10.3389/fimmu.2019.01724 PubMed DOI PMC

Shiels, S. M., Mangum, L. H. & Wenke, J. C. Revisiting the “race for the surface” in a pre-clinical model of implant infection. Eur. Cell Mater.39, 77–95 (2020). 10.22203/eCM.v039a05 PubMed DOI

Chu, L. et al. Preferential colonization of osteoblasts over co-cultured bacteria on a bifunctional biomaterial surface. Front. Microbiol.9, 2219 (2018). 10.3389/fmicb.2018.02219 PubMed DOI PMC

Gobbi, S. J., Gobbi, V. J. & Rocha, Y. Requirements for selection/development of a biomaterial. Biomed. J. Sci. Tech. Res.14, 10674–10679 (2019).

Huzum, B. et al. Biocompatibility assessment of biomaterials used in orthopedic devices: An overview (Review). Exp. Ther. Med.22, 1315 (2021). 10.3892/etm.2021.10750 PubMed DOI PMC

Ma, C., Du, T., Niu, X. & Fan, Y. Biomechanics and mechanobiology of the bone matrix. Bone Res.10, 59 (2022). 10.1038/s41413-022-00223-y PubMed DOI PMC

Bohara, S. & Suthakorn, J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: A review. Biomater. Res.26, 26 (2022). 10.1186/s40824-022-00269-3 PubMed DOI PMC

Han, X. et al. Surface modification techniques of titanium and titanium alloys for biomedical orthopaedics applications: A review. Colloids Surf. B: Biointerfaces227, 113339 (2023). 10.1016/j.colsurfb.2023.113339 PubMed DOI

Zhu, G., Wang, G. & Li, J. J. Advances in implant surface modifications to improve osseointegration. Mater. Adv.2, 6901–6927 (2021).10.1039/D1MA00675D DOI

Uneputty, A. et al. Strategies applied to modify structured and smooth surfaces: A step closer to reduce bacterial adhesion and biofilm formation. Colloid Interface Sci. Commun.46, 100560 (2022).10.1016/j.colcom.2021.100560 DOI

Zhang, L. et al. Infection-responsive long-term antibacterial bone plates for open fracture therapy. Bioact. Mater.25, 1–12 (2023). PubMed PMC

Sun, T. et al. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioact. Mater.21, 44–56 (2023). PubMed PMC

Chopra, D., Gulati, K. & Ivanovski, S. Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater.127, 80–101 (2021). 10.1016/j.actbio.2021.03.027 PubMed DOI

Ge, X. et al. Cicada-inspired fluoridated hydroxyapatite nanostructured surfaces synthesized by electrochemical additive manufacturing. Mater. Des.193, 108790 (2020).10.1016/j.matdes.2020.108790 DOI

Jenkins, J. et al. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat. Commun.11, 1626 (2020). 10.1038/s41467-020-15471-x PubMed DOI PMC

Ge, X. et al. Bacterial responses to periodic micropillar array: Bacterial responses to periodic micropillar array. J. Biomed. Mater. Res.103, 384–396 (2015).10.1002/jbm.a.35182 PubMed DOI

Ge, X. et al. Micro/nano-structured TiO2 surface with dual-functional antibacterial effects for biomedical applications. Bioact. Mater.4, 346–357 (2019). PubMed PMC

Georgakopoulos-Soares, I., Papazoglou, E. L., Karmiris-Obratański, P., Karkalos, N. E. & Markopoulos, A. P. Surface antibacterial properties enhanced through engineered textures and surface roughness: A review. Colloids Surf. B: Biointerfaces231, 113584 (2023). 10.1016/j.colsurfb.2023.113584 PubMed DOI

Linklater, D. P. et al. High aspect ratio nanostructures kill bacteria via storage and release of mechanical energy. ACS Nano12, 6657–6667 (2018). 10.1021/acsnano.8b01665 PubMed DOI

Sarraf, M., Rezvani Ghomi, E., Alipour, S., Ramakrishna, S. & Liana, S. N. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-des Manuf.5, 371–395 (2022).10.1007/s42242-021-00170-3 PubMed DOI PMC

Szczęsny, G. et al. A review on biomaterials for orthopaedic surgery and traumatology: From past to present. Materials15, 3622 (2022). 10.3390/ma15103622 PubMed DOI PMC

Kaur, M. & Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C.102, 844–862 (2019).10.1016/j.msec.2019.04.064 PubMed DOI

Kim, K. T., Eo, M. Y., Nguyen, T. T. H. & Kim, S. M. General review of titanium toxicity. Int. J. Implant Dent.5, 10 (2019). 10.1186/s40729-019-0162-x PubMed DOI PMC

Hanawa, T. Titanium-tissue interface reaction and its control with surface treatment. Front. Bioeng. Biotechnol.7, 170 (2019). 10.3389/fbioe.2019.00170 PubMed DOI PMC

Wu, B., Tang, Y., Wang, K., Zhou, X. & Xiang, L. Nanostructured titanium implant surface facilitating osseointegration from protein adsorption to osteogenesis: The example of TiO2 NTAs. IJN17, 1865–1879 (2022). 10.2147/IJN.S362720 PubMed DOI PMC

Su, E. P. et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Jt. J.100-B, 9–16 (2018).10.1302/0301-620X.100B1.BJJ-2017-0551.R1 PubMed DOI PMC

Zheng, S. et al. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol.9, 643722 (2021). 10.3389/fbioe.2021.643722 PubMed DOI PMC

Zhai, S. et al. Overview of strategies to improve the antibacterial property of dental implants. Front. Bioeng. Biotechnol.11, 1267128 (2023). 10.3389/fbioe.2023.1267128 PubMed DOI PMC

Singhatanadgit, W., Toso, M., Pratheepsawangwong, B., Pimpin, A. & Srituravanich, W. Titanium dioxide nanotubes of defined diameter enhance mesenchymal stem cell proliferation via JNK- and ERK-dependent up-regulation of fibroblast growth factor-2 by T lymphocytes. J. Biomater. Appl.33, 997–1010 (2019). 10.1177/0885328218816565 PubMed DOI

Oh, S. et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA106, 2130–2135 (2009). 10.1073/pnas.0813200106 PubMed DOI PMC

Voltrova, B. et al. Different diameters of titanium dioxide nanotubes modulate Saos-2 osteoblast-like cell adhesion and osteogenic differentiation and nanomechanical properties of the surface. RSC Adv.9, 11341–11355 (2019). 10.1039/C9RA00761J PubMed DOI PMC

Wang, F., Li, C., Zhang, S. & Liu, H. Role of TiO2 nanotubes on the surface of implants in osseointegration in animal models: A systematic review and meta-analysis. J. Prosthodont.29, 501–510 (2020). 10.1111/jopr.13163 PubMed DOI

Wang, N. et al. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials32, 6900–6911 (2011). 10.1016/j.biomaterials.2011.06.023 PubMed DOI

Lv, L. et al. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials39, 193–205 (2015). 10.1016/j.biomaterials.2014.11.002 PubMed DOI

Alves-Rezende, M. C. R. et al. The role of TiO2 nanotube surface on osseointegration of titanium implants: Biomechanical and histological study in rats. Microscopy Res. Tech.83, 817–823 (2020).10.1002/jemt.23473 PubMed DOI

Sterzenbach, T., Helbig, R., Hannig, C. & Hannig, M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin. Oral Invest.24, 4237–4260 (2020).10.1007/s00784-020-03646-1 PubMed DOI PMC

Verran, J., Packer, A., Kelly, P. J. & Whitehead, K. A. Use of the atomic force microscope to determine the strength of bacterial attachment to grooved surface features. J. Adhes. Sci. Technol.24, 2271–2285 (2010).10.1163/016942410X508019 DOI

Crawford, R. J., Webb, H. K., Truong, V. K., Hasan, J. & Ivanova, E. P. Surface topographical factors influencing bacterial attachment. Adv. Colloid Interface Sci.179–182, 142–149 (2012). 10.1016/j.cis.2012.06.015 PubMed DOI

Wu, S., Zhang, B., Liu, Y., Suo, X. & Li, H. Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases13, 060801 (2018). 10.1116/1.5054057 PubMed DOI

Wassmann, T., Kreis, S., Behr, M. & Buergers, R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J. Implant Dent.3, 32 (2017). 10.1186/s40729-017-0093-3 PubMed DOI PMC

Kingsak, M., Maturavongsadit, P., Jiang, H. & Wang, Q. Cellular responses to nanoscale substrate topography of TiO2 nanotube arrays: Cell morphology and adhesion. Biomater. Transl.3, 221–233 (2022). PubMed PMC

Kummer, K. M. et al. Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth. J. Biomed. Mater. Res.101B, 677–688 (2013).10.1002/jbm.b.32870 PubMed DOI

Stolzoff, M. et al. Decreased bacterial growth on titanium nanoscale topographies created by ion beam assisted evaporation. IJN12, 1161–1169 (2017). 10.2147/IJN.S119750 PubMed DOI PMC

Sbricoli, L. et al. Bacterial adhesion to grade 4 and grade 5 turned and mildly acid-etched titanium implant surfaces: An in vitro and ex vivo study. Appl. Sci.11, 7185 (2021).10.3390/app11167185 DOI

Fu, Y. & Mo, A. A review on the electrochemically self-organized titania nanotube arrays: Synthesis, modifications, and biomedical applications. Nanoscale Res. Lett.13, 187 (2018). 10.1186/s11671-018-2597-z PubMed DOI PMC

Zakir, O. et al. A review on TiO2 nanotubes: Synthesis strategies, modifications, and applications. J. Solid State Electrochem.27, 2289–2307 (2023).10.1007/s10008-023-05538-2 DOI

Khudhair, D. et al. Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mater. Sci. Eng.: C59, 1125–1142 (2016).10.1016/j.msec.2015.10.042 PubMed DOI

Aguirre Ocampo, R. et al. Effect of surface characteristics on the antibacterial properties of titanium dioxide nanotubes produced in aqueous electrolytes with carboxymethyl cellulose. J. Biomed. Mater. Res.109, 104–121 (2021).10.1002/jbm.a.37010 PubMed DOI

Vrchovecká, K., Kuta, J., Uher, M., Přibyl, J. & Pávková, G. M. Effect of titanium nanostructured surface on fibroblast behavior. J. Biomed. Mater. Res.111, 1333–1343 (2023).10.1002/jbm.a.37531 PubMed DOI

Vrchovecká, K. et al. A release of Ti-ions from nanostructured titanium oxide surfaces. Surf. Interfaces29, 101699 (2022).10.1016/j.surfin.2021.101699 DOI

Pesode, P. A. & Barve, S. B. Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process. Mater. Today: Proc.47, 5652–5662 (2021).

Liu, J. et al. Nano-modified titanium implant materials: A way toward improved antibacterial properties. Front. Bioeng. Biotechnol.8, 576969 (2020). 10.3389/fbioe.2020.576969 PubMed DOI PMC

Li, Y. et al. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: A review of current techniques. IJN14, 7217–7236 (2019). 10.2147/IJN.S216175 PubMed DOI PMC

Ivanova, E. P. et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir26, 1973–1982 (2010). 10.1021/la902623c PubMed DOI

Kreve, S. & Reis, A. C. D. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn. Dent. Sci. Rev.57, 85–96 (2021). 10.1016/j.jdsr.2021.05.003 PubMed DOI PMC

Ramachandran, B., & Muthuvijayan, V. Surface engineering approaches for controlling biofilms and wound infections. In ACS Symposium Series (eds Rathinam, N. K., Sani, R. K.) 101–123 (American Chemical Society, 2019) [cited 2023 Dec 18]. 10.1021/bk-2019-1323.ch005

Yang, X. et al. Antibacterial surfaces: Strategies and applications. Sci. China Technol. Sci.65, 1000–1010 (2022). 10.1007/s11431-021-1962-x PubMed DOI PMC

Puckett, S. D., Taylor, E., Raimondo, T. & Webster, T. J. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials31, 706–713 (2010). 10.1016/j.biomaterials.2009.09.081 PubMed DOI

Li, H. et al. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition. Appl. Surf. Sci.284, 179–183 (2013).10.1016/j.apsusc.2013.07.076 DOI

Mazare, A. et al. Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corros. Sci.103, 215–222 (2016).10.1016/j.corsci.2015.11.021 DOI

Xue, J. et al. The surface wettability of TiO2 nanotube arrays: Which is more important—Morphology or chemical composition?. J. Porous Mater.26, 91–98 (2019).10.1007/s10934-018-0616-1 DOI

Ercan, B., Taylor, E., Alpaslan, E. & Webster, T. J. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology22, 295102 (2011). 10.1088/0957-4484/22/29/295102 PubMed DOI

Zhang, X. et al. Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. Environ. Sci. Technol.49, 6164–6171 (2015). 10.1021/es5050425 PubMed DOI PMC

Ji, X. et al. Different antibacterial mechanisms of titania nanotube arrays at various growth phases of E. coli. Trans. Nonferrous Met. Soc. China31, 3821–3830 (2021).10.1016/S1003-6326(21)65767-9 DOI

Yu, J., Zhou, M., Zhang, L. & Wei, H. Antibacterial adhesion strategy for dental titanium implant surfaces: From mechanisms to application. JFB13, 169 (2022). 10.3390/jfb13040169 PubMed DOI PMC

Pacha-Olivenza, M. Á. et al. Relevance of topographic parameters on the adhesion and proliferation of human gingival fibroblasts and oral bacterial strains. BioMed Res. Int.2019, 1–13 (2019). PubMed PMC

Wiessner, A. et al. In vivo biofilm formation on novel PEEK, titanium, and zirconia implant abutment materials. IJMS24, 1779 (2023). 10.3390/ijms24021779 PubMed DOI PMC

Annunziata, M. et al. Bacterial adhesion to direct laser metal formed and mildly acid etched implant surfaces. Surf. Coat. Technol.328, 390–397 (2017).10.1016/j.surfcoat.2017.09.011 DOI

Pawlus, P., Reizer, R. & Wieczorowski, M. Functional importance of surface texture parameters. Materials14, 5326 (2021). 10.3390/ma14185326 PubMed DOI PMC

Souza, J. G. S. et al. Targeting implant-associated infections: Titanium surface loaded with antimicrobial. iScience24, 102008 (2021). 10.1016/j.isci.2020.102008 PubMed DOI PMC

Lüdecke, C. et al. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf. B: Biointerfaces145, 617–625 (2016). 10.1016/j.colsurfb.2016.05.049 PubMed DOI

Świercz, R. & Oniszczuk-Świercz, D. Experimental investigation of surface layer properties of high thermal conductivity tool steel after electrical discharge machining. Metals7, 550 (2017).10.3390/met7120550 DOI

Pawlus, P., Reizer, R. & Zelasko, W. Prediction of parameters of equivalent sum rough surfaces. Materials13, 4898 (2020). 10.3390/ma13214898 PubMed DOI PMC

Dudás, I. & Varga, G. 3D topography for environmentally friendly machined surfaces. J. Phys.: Conf. Ser.13, 24–27 (2005).

D’Ercole, S. et al. A novel 3D titanium surface produced by selective laser sintering to counteract Streptococcus oralis Biofilm Formation. Appl. Sci.11, 11915 (2021).10.3390/app112411915 DOI

Cheng, Y., Feng, G. & Moraru, C. I. Micro- and nanotopography sensitive bacterial attachment mechanisms: A review. Front. Microbiol.10, 191 (2019). 10.3389/fmicb.2019.00191 PubMed DOI PMC

Whitehead, K. A. & Verran, J. The effect of surface topography on the retention of microorganisms. Food Bioproducts Process.84, 253–259 (2006).10.1205/fbp06035 DOI

Whitehead, K. A., Colligon, J. & Verran, J. Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf. B: Biointerfaces41, 129–138 (2005). 10.1016/j.colsurfb.2004.11.010 PubMed DOI

Lorenzetti, M. et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl. Mater. Interfaces7, 1644–1651 (2015). 10.1021/am507148n PubMed DOI

Seddiki, O., Harnagea, C., Levesque, L., Mantovani, D. & Rosei, F. Evidence of antibacterial activity on titanium surfaces through nanotextures. Appl. Surf. Sci.308, 275–284 (2014).10.1016/j.apsusc.2014.04.155 DOI

Katsikogianni, M. & Missirlis, Y. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. ECM8, 37–57 (2004). 10.22203/eCM.v008a05 PubMed DOI

Meinshausen, A.-K. et al. Aspect ratio of nano/microstructures determines Staphylococcus aureus adhesion on PET and titanium surfaces. J. Appl. Microbiol.131, 1498–1514 (2021). 10.1111/jam.15033 PubMed DOI

Akanbi, O. E., Njom, H. A., Fri, J., Otigbu, A. C. & Clarke, A. M. Antimicrobial susceptibility of Staphylococcus aureus isolated from recreational waters and beach sand in Eastern Cape Province of South Africa. IJERPH14, 1001 (2017). 10.3390/ijerph14091001 PubMed DOI PMC

Diggle, S. P. & Whiteley, M. Microbe profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat: This article is part of the Microbe Profiles collection. Microbiology166, 30–33 (2020). 10.1099/mic.0.000860 PubMed DOI PMC

Whitehead, K. A. & Verran, J. The effect of surface properties and application method on the retention of Pseudomonas aeruginosa on uncoated and titanium-coated stainless steel. Int. Biodeterior. Biodegrad.60, 74–80 (2007).10.1016/j.ibiod.2006.11.009 DOI

Pellegrino, L., Kriem, L. S., Robles, E. S. J. & Cabral, J. T. Microbial response to micrometer-scale multiaxial wrinkled surfaces. ACS Appl. Mater. Interfaces14, 31463–31473 (2022). 10.1021/acsami.2c08768 PubMed DOI PMC

Whitehead, K. A. & Verran, J. Formation, architecture and functionality of microbial biofilms in the food industry. Curr. Opin. Food Sci.2, 84–91 (2015).10.1016/j.cofs.2015.02.003 DOI

Flausino, J. S. et al. Biofilm formation on different materials for tooth restoration: Analysis of surface characteristics. J. Mater. Sci.49, 6820–6829 (2014).10.1007/s10853-014-8384-z DOI

Gross, M., Cramton, S. E., Götz, F. & Peschel, A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect. Immun.69, 3423–3426 (2001). 10.1128/IAI.69.5.3423-3426.2001 PubMed DOI PMC

Whitehead, S. A., Shearer, A. C., Watts, D. C. & Wilson, N. H. F. Comparison of methods for measuring surface roughness of ceramic. J. Oral Rehabilit.22, 421–427 (1995).10.1111/j.1365-2842.1995.tb00795.x PubMed DOI

Whitehead, S. A., Shearer, A. C., Watts, D. C. & Wilson, N. H. F. Comparison of two stylus methods for measuring surface texture. Dent. Mater.15, 79–86 (1999). 10.1016/S0109-5641(99)00017-2 PubMed DOI

Braz, J. K. F. S. et al. Plasma nitriding under low temperature improves the endothelial cell biocompatibility of 316L stainless steel. Biotechnol. Lett.41, 503–510 (2019). 10.1007/s10529-019-02657-7 PubMed DOI

Nunes Filho, A. et al. Titanium surface chemical composition interferes in the Pseudomonas aeruginosa biofilm formation. Artif. Organs42, 193–199 (2018). 10.1111/aor.12983 PubMed DOI

Peng, Z. et al. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. IJN8, 3093 (2013). PubMed PMC

Liu, P. et al. Early antimicrobial evaluation of nanostructured surfaces based on bacterial biological properties. ACS Biomater. Sci. Eng.8, 4976–4986 (2022). 10.1021/acsbiomaterials.2c00559 PubMed DOI

Anitha, V. C. et al. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability. Nanotechnology26, 065102 (2015). 10.1088/0957-4484/26/6/065102 PubMed DOI

Xu, Z. et al. Enhanced human gingival fibroblast response and reduced Porphyromonas gingivalis adhesion with titania nanotubes. BioMed Res. Int.2020, 1–10 (2020).10.1155/2020/2094320 PubMed DOI PMC

Simi, V. S. & Rajendran, N. Influence of tunable diameter on the electrochemical behavior and antibacterial activity of titania nanotube arrays for biomedical applications. Mater. Charact.129, 67–79 (2017).10.1016/j.matchar.2017.04.019 DOI

Kobayashi, M. et al. The effect of ultraviolet treatment on TiO2 nanotubes: A study of surface characteristics, bacterial adhesion, and gingival fibroblast response. Metals12, 80 (2022).10.3390/met12010080 DOI

Shin, D. H., Shokuhfar, T., Choi, C. K., Lee, S.-H. & Friedrich, C. Wettability changes of TiO2 nanotube surfaces. Nanotechnology22, 315704 (2011). 10.1088/0957-4484/22/31/315704 PubMed DOI

Draghi, L., Preda, V., Moscatelli, M., Santin, M. & Chiesa, R. Gentamicin-loaded TiO2 nanotubes as improved antimicrobial surfaces for orthopedic implants. Front. Mater.7, 233 (2020).10.3389/fmats.2020.00233 DOI

Rajeswari, S., Nandini, V., Perumal, A. & Gowda, T. Influence of titania nanotubes diameter on its antibacterial efficacy against periodontal pathogens: An In vitro analysis. J. Pharm. Bioallied Sci.13, 284 (2021).10.4103/jpbs.JPBS_743_20 PubMed DOI PMC

Lin, W. et al. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. IJN9, 1215–1230 (2014). PubMed PMC

Xu, Z. et al. Increased mesenchymal stem cell response and decreased Staphylococcus aureus adhesion on titania nanotubes without pharmaceuticals. BioMed Res. Int.2015, 1–9 (2015). PubMed PMC

İzmir, M. & Ercan, B. Anodization of titanium alloys for orthopedic applications. Front. Chem. Sci. Eng.13, 28–45 (2019).10.1007/s11705-018-1759-y DOI

Narendrakumar, K. et al. Adherence of oral streptococci to nanostructured titanium surfaces. Dent. Mater.31, 1460–1468 (2015). 10.1016/j.dental.2015.09.011 PubMed DOI

Kulkarni, M. et al. Interaction of nanostructured TiO2 biointerfaces with stem cells and biofilm-forming bacteria. Mater. Sci. Eng.: C.77, 500–507 (2017).10.1016/j.msec.2017.03.174 PubMed DOI

Shi, X. et al. Antibacterial activities of TiO2 nanotubes on Porphyromonas gingivalis. RSC Adv.5, 34237–34242 (2015).10.1039/C5RA00804B DOI

Lewandowska, Ż et al. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. J. Mater. Sci.: Mater. Med.26, 163 (2015). PubMed PMC

Zhao, C. et al. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light. Appl. Surf. Sci.280, 8–14 (2013).10.1016/j.apsusc.2013.04.057 DOI

Song, R. et al. Facile construction of structural gradient of TiO2 nanotube arrays on medical titanium for high throughput evaluation of biocompatibility and antibacterial property. ACS Appl. Bio Mater.1, 1056–1065 (2018). 10.1021/acsabm.8b00288 PubMed DOI

Feng, E. et al. Improved osteogenic activity and inhibited bacterial biofilm formation on andrographolide-loaded titania nanotubes. Ann. Transl. Med.8, 987–987 (2020). 10.21037/atm-20-4901 PubMed DOI PMC

Li, W., Thian, E. S., Wang, M., Wang, Z. & Ren, L. Surface design for antibacterial materials: From fundamentals to advanced strategies. Adv. Sci.8, 2100368 (2021).10.1002/advs.202100368 PubMed DOI PMC

Wandiyanto, J. V. et al. Outsmarting superbugs: Bactericidal activity of nanostructured titanium surfaces against methicillin- and gentamicin-resistant Staphylococcus aureus ATCC 33592. J. Mater. Chem. B7, 4424–4431 (2019).10.1039/C9TB00102F DOI

Lee, S. W., Phillips, K. S., Gu, H., Kazemzadeh-Narbat, M. & Ren, D. How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials268, 120595 (2021). 10.1016/j.biomaterials.2020.120595 PubMed DOI

Yang, X. et al. Recent progress on bioinspired antibacterial surfaces for biomedical application. Biomimetics7, 88 (2022). 10.3390/biomimetics7030088 PubMed DOI PMC

Song, F., Koo, H. & Ren, D. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res.94, 1027–1034 (2015). 10.1177/0022034515587690 PubMed DOI

San-Martin-Galindo, P. et al. Modulation of virulence factors of Staphylococcus aureus by nanostructured surfaces. Mater. Des.208, 109879 (2021).10.1016/j.matdes.2021.109879 DOI

Ghilini, F., Pissinis, D. E., Miñán, A., Schilardi, P. L. & Diaz, C. How functionalized surfaces can inhibit bacterial adhesion and viability. ACS Biomater. Sci. Eng.5, 4920–4936 (2019). 10.1021/acsbiomaterials.9b00849 PubMed DOI

Harper, C. E. & Hernandez, C. J. Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities. APL Bioeng.4, 021501 (2020). 10.1063/1.5135585 PubMed DOI PMC

Morales-García, A. L. et al. The role of extracellular DNA in microbial attachment to oxidized silicon surfaces in the presence of Ca2+ and Na+. Langmuir37, 9838–9850 (2021). 10.1021/acs.langmuir.1c01410 PubMed DOI PMC

Desai, S., Sanghrajka, K. & Gajjar, D. High adhesion and increased cell death contribute to strong biofilm formation in Klebsiella pneumoniae. Pathogens8, 277 (2019). 10.3390/pathogens8040277 PubMed DOI PMC

Biguetti, C. C. et al. Effects of titanium corrosion products on in vivo biological response: A basis for the understanding of osseointegration failures mechanisms. Front. Mater.8, 651970 (2021).10.3389/fmats.2021.651970 DOI

Weller, J. et al. The role of bacterial corrosion on recolonization of titanium implant surfaces: An in vitro study. Clin. Implant Dent. Relat. Res.24, 664–675 (2022). 10.1111/cid.13114 PubMed DOI

Vaidya, M., McBain, A. J., Banks, C. E. & Whitehead, K. A. Single and combined antimicrobial efficacies for nine metal ion solutions against Klebsiella pneumoniae, Acinetobacter baumannii and Enterococcus faecium. Int. Biodeterior. Biodegrad.141, 39–43 (2019).10.1016/j.ibiod.2018.06.017 DOI

Yu, T. S. Effect of titanium-ion on the growth of various bacterial species. J. Microbiol.42, 47–50 (2004). PubMed

Park, S. M., Kim, H. S. & Yu, T. S. Effect of titanium ion and resistance encoding plasmid of Pseudomonas aeruginosa ATCC 10145. J. Microbiol.44, 255–262 (2006). PubMed

Punset, M. et al. Citric acid passivation of titanium dental implants for minimizing bacterial colonization impact. Coatings11, 214 (2021).10.3390/coatings11020214 DOI

Gil, F. J., Sánchez, L. A., Espías, A. & Planell, J. A. In vitro corrosion behaviour and metallic ion release of different prosthodontic alloys. Int. Dent. J.49, 361–367 (1999). 10.1111/j.1875-595X.1999.tb00538.x PubMed DOI

Joseph, L. A., Israel, O. K. & Edet, E. J. Comparative evaluation of metal ions release from titanium and Ti–6Al–7Nb into bio-fluids. Dent. Res. J.6, 7–11 (2009). PubMed PMC

Mutlu-Sagesen, L., Ergun, G. & Karabulut, E. Ion release from metal-ceramic alloys in three different media. Dent. Mater. J.30, 598–610 (2011). 10.4012/dmj.2011-031 PubMed DOI

Fage, S. W., Muris, J., Jakobsen, S. S. & Thyssen, J. P. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat.74, 323–345 (2016).10.1111/cod.12565 PubMed DOI

Hirayama, T. et al. Ion release from casts of commercially pure titanium in mixed solutions of organic acids contained in human saliva. J. Jpn. Prosthodont. Soc.52, 501–506 (2008).10.2186/jjps.52.501 PubMed DOI

Strietzel, R., Hösch, A., Kalbfleisch, H. & Buch, D. In vitro corrosion of titanium. Biomaterials19, 1495–1499 (1998). 10.1016/S0142-9612(98)00065-9 PubMed DOI

Koike, M. & Fujii, H. The corrosion resistance of pure titanium in organic acids. Biomaterials22, 2931–2936 (2001). 10.1016/S0142-9612(01)00040-0 PubMed DOI

Koike, M. & Fujii, H. In vitro assessment of corrosive properties of titanium as a biomaterial. J. Oral Rehabilit.28, 540–548 (2001).10.1046/j.1365-2842.2001.00690.x PubMed DOI

Nakagawa, M., Matsuya, S. & Udoh, K. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent. Mater. J.20, 305–314 (2001). 10.4012/dmj.20.305 PubMed DOI

Okazaki, Y. & Gotoh, E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials26, 11–21 (2005). 10.1016/j.biomaterials.2004.02.005 PubMed DOI

Yu, F., Addison, O., Baker, S. J. & Davenport, A. J. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity. Int. J. Oral Sci.7, 179–186 (2015). 10.1038/ijos.2014.76 PubMed DOI PMC

Yu, X. et al. Osteoclast-mediated biocorrosion of pure titanium in an inflammatory microenvironment. Mater. Sci. Eng.: C.119, 111610 (2021).10.1016/j.msec.2020.111610 PubMed DOI

Noumbissi, S., Scarano, A. & Gupta, S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials12, 368 (2019). 10.3390/ma12030368 PubMed DOI PMC

Dini, C. et al. Progression of bio-tribocorrosion in implant dentistry. Front. Mech. Eng.6, 1 (2020).10.3389/fmech.2020.00001 DOI

Xu, L., Yu, X., Chen, W., Zhang, S. & Qiu, J. Biocorrosion of pure and SLA titanium surfaces in the presence of Porphyromonas gingivalis and its effects on osteoblast behavior. RSC Adv.10, 8198–8206 (2020). 10.1039/D0RA00154F PubMed DOI PMC

Costa, R. C. et al. Correction to: Microbial corrosion in titanium-based dental implants: How tiny bacteria can create a big problem?. J. Bio Tribo. Corros.7, 151 (2021).10.1007/s40735-021-00590-9 DOI

Kulkarni, M. et al. Wettability studies of topologically distinct titanium surfaces. Colloids Surf. B: Biointerfaces129, 47–53 (2015). 10.1016/j.colsurfb.2015.03.024 PubMed DOI

Kulkarni, M. et al. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence. Acta Biomater.45, 357–366 (2016). 10.1016/j.actbio.2016.08.050 PubMed DOI

Kulkarni, M. et al. Binding of plasma proteins to titanium dioxide nanotubes with different diameters. IJN10, 1359 (2015). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...