Different diameters of titanium dioxide nanotubes modulate Saos-2 osteoblast-like cell adhesion and osteogenic differentiation and nanomechanical properties of the surface

. 2019 Apr 09 ; 9 (20) : 11341-11355. [epub] 20190411

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35520235

The formation of nanostructures on titanium implant surfaces is a promising strategy to modulate cell adhesion and differentiation, which are crucial for future application in bone regeneration. The aim of this study was to investigate how the nanotube diameter and/or nanomechanical properties alter human osteoblast like cell (Saos-2) adhesion, growth and osteogenic differentiation in vitro. Nanotubes, with diameters ranging from 24 to 66 nm, were fabricated on a commercially pure titanium (cpTi) surface using anodic oxidation with selected end potentials of 10 V, 15 V and 20 V. The cell response was studied in vitro on untreated and nanostructured samples using a measurement of metabolic activity, cell proliferation, alkaline phosphatase activity and qRT-PCR, which was used for the evaluation of osteogenic marker expression (collagen type I, osteocalcin, RunX2). Early cell adhesion was investigated using SEM and ELISA. Adhesive molecules (vinculin, talin), collagen and osteocalcin were also visualized using confocal microscopy. Moreover, the reduced elastic modulus and indentation hardness of nanotubes were assessed using a TriboIndenter™. Smooth and nanostructured cpTi both supported cell adhesion, proliferation and bone-specific mRNA expression. The nanotubes enhanced collagen type I and osteocalcin synthesis, compared to untreated cpTi, and the highest synthesis was observed on samples modified with 20 V nanotubes. Significant differences were found in the cell adhesion, where the vinculin and talin showed a dot-like distribution. Both the lowest reduced elastic modulus and indentation hardness were assessed from 20 V samples. The nanotubes of mainly 20 V samples showed a high potential for their use in bone implantation.

Zobrazit více v PubMed

Longand M. Racks H. J. Biomaterials. 1998;19:1621–1639. doi: 10.1016/S0142-9612(97)00146-4. PubMed DOI

Okabe T. Hero H. Cells Mater. 1995;5:211–230.

Su E. P. Justin D. E. Pratt C. R. Sarin V. K. Nguyen V. S. Oh S. Bone Joint J. 2018;100B:9–16. doi: 10.1302/0301-620X.100B1.BJJ-2017-0551.R1. PubMed DOI PMC

Salou L. Hoornaert A. Louarn G. Layrolle P. Acta Biomater. 2015;11:494–502. doi: 10.1016/j.actbio.2014.10.017. PubMed DOI

Bjursten L. M. Rasmusson L. Oh S. Smith G. C. Brammer K. S. Jin S. J. Biomed. Mater. Res., Part A. 2010;92A:1218–1224. PubMed

Popat K. C. Leoni L. Grimes C. A. Desai T. A. Biomaterials. 2007;28:3188–3197. doi: 10.1016/j.biomaterials.2007.03.020. PubMed DOI

Tang H. Li Y. Ma J. W. Zhang X. Li B. Liu S. Dai F. Zhang X. Bio-Med. Mater. Eng. 2016;27:485–494. PubMed

Levingstone T. J. Barron N. Ardhaoui M. Benyounis K. Looney L. Stokes J. Surf. Coat. Technol. 2017;313:307–318. doi: 10.1016/j.surfcoat.2017.01.113. DOI

Balasundaram G. Storey D. M. Webster T. J. Int. J. Nanomed. 2015;10:527–535. PubMed PMC

Hao J. Z. Li Y. Li B. E. Wang X X. Li H. Liu S. Lian C. Wang H. Appl. Biochem. Biotechnol. 2017;183:280–292. doi: 10.1007/s12010-017-2444-1. PubMed DOI

Queiroz T. P. de Molon R. S. Souza F. A. Margonar R. Thomazini A. H. Guastaldi A. C. Hochuli-Vieira E. Clinical Oral Investigations. 2017;21:685–699. doi: 10.1007/s00784-016-1936-7. PubMed DOI

Bonse J. Kirner S. V. Griepentrog M. Spaltmann D. Krüger J. Materials. 2018;11:801. doi: 10.3390/ma11050801. PubMed DOI PMC

Kheradmandfard M. Kashani-Bozorg S. F. Kim C. L. Hanzaki A. Z. Pyoun Y. S. Kim J. H. Amanov A. Kim D. E. Ultrason. Sonochem. 2017;39:698–706. doi: 10.1016/j.ultsonch.2017.03.061. PubMed DOI

Li N. B. Sun S. J. Bai H. Y. Xiao G. Y. Xu W. H. Zhao J. H. Chen X. Lu Y. P. Zhang Y. L. Nanotechnology. 2018;29:045101. doi: 10.1088/1361-6528/aa9daa. PubMed DOI

Shin V. S. Yoon I. K. Lee G. S. Jang W. C. Knowles J. C. Kim H. W. J. Tissue Eng. 2011;2011:674287. PubMed PMC

Ahn H. S. Hwang J. Y. Kim M. S. Lee J. Y. Kim J. W. Kim H. S. Shin U. S. Knowles J. C. Kim H. W. Hyun J. K. Acta Biomater. 2015;13:324–334. doi: 10.1016/j.actbio.2014.11.026. PubMed DOI

Zwilling V. Aucouturier M. Darque-Ceretti E. Electrochim. Acta. 1999;45:921–929. doi: 10.1016/S0013-4686(99)00283-2. DOI

Roy P. Berger S. Schmuki P. Angew. Chem., Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI

Minagar S. Wang J. Berndt C. C. Ivanova E. P. Wen C. J. Biomed. Mater. Res., Part A. 2013;101:2726–2739. doi: 10.1002/jbm.a.34575. PubMed DOI

Wang Q. Huang J. Y. Li H. Q. Zhao A. Z. Wang Y. Zhang K. Q. Sun H. T. Lai Y. K. Int. J. Nanomed. 2016;12:151–165. doi: 10.2147/IJN.S117498. PubMed DOI PMC

Ionita D. Bajenaru-Georgescu D. Totea G. Mazare A. Schmuki P. Demetrescu I. Int. J. Pharm. 2017;517:296–302. doi: 10.1016/j.ijpharm.2016.11.062. PubMed DOI

Liu W. W. Su P. L. Chen S. Wang N. Ma Y. Liu Y. Wang J. Zhang Z. Li H. Webster T. J. Nanoscale. 2014;6:9050–9062. doi: 10.1039/C4NR01531B. PubMed DOI

Esfandiari N. Simchi A. Bagheri R. J. Biomed. Mater. Res., Part A. 2014;102:2625–2635. doi: 10.1002/jbm.a.34934. PubMed DOI

Niinomi M. Nakai M. Int. J. Biomater. 2011:836587. PubMed PMC

Crawford G. Chawla N. Das K. Bose S. Bandyopadhyay A. Acta Biomater. 2007;3:359–367. doi: 10.1016/j.actbio.2006.08.004. PubMed DOI

Alice R. M., Fluorescent Image Analyser (ver 1.0), software available at http://alice.fbmi.cvut.cz

Vlcak P. Cerny F. Drahokoupil J. Sepitka J. Tolde Z. J. Alloys Compd. 2015;620:48–54. doi: 10.1016/j.jallcom.2014.09.125. DOI

Vlcak P. Sepitka J. Drahokoupi J. Horazdovsky T. Tolde Z. J. Nanomater. 2016;2016:1–7.

Oliver W. C. Pharr G. M. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

ISO 14577-4: 2007, Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 4: Test method for metallic and non-metallic coatings

Cordeiro J. M. Beline T T. Ribeiro A. L. R. Rangel E. C. da Cruz N. C. Landers R. Faverani L. P. Vaz L. G. Fais L. M. G. Vicente F. B. Grandini C. R. Mathew M. T. Sukotjo C. Barão V. A. R. Dent. Biomater. 2017;33:1244–1257. doi: 10.1016/j.dental.2017.07.013. PubMed DOI

Vlcak P. Drahokoupil J. Vertat P. Sepitka J. Duchon J. J. Alloys Compd. 2018;746:490–495. doi: 10.1016/j.jallcom.2018.02.301. DOI

Brammer K. S. Oh S. Cobb C. J. Bjursten L. M. van der Heyde H. Jin S. Acta Biomater. 2009;5:3215–3223. doi: 10.1016/j.actbio.2009.05.008. PubMed DOI

Oh S. Brammer K. S. Li S. J. Teng D. Engler A. J. Chien S. Jin S. Proc. Natl. Acad. Sci. U. S. A. 2009;106:2130–2135. doi: 10.1073/pnas.0813200106. PubMed DOI PMC

Shokuhfar T. Hamlekhan A. Chang J. Y. Choi C. K. Sukotjo C. Friedrich C. Int. J. Nanomed. 2014;9:3737–3748. PubMed PMC

Filova E. Fojt J. Kryslova M. Moravec H. Joska L. Bacakova L. Int. J. Nanomed. 2015;10:7145–7163. doi: 10.2147/IJN.S87474. PubMed DOI PMC

Kulkarni M. Mazare A. Gongadze E. Perutkova Š. Kralj-Iglič V. Milošev I. Schmuki P. Iglič A. Mozetič M. Nanotechnology. 2015;26:062002. doi: 10.1088/0957-4484/26/6/062002. PubMed DOI

Lv L. W. Liu Y. S. Zhang P. Zhang X. Liu J. Chen T. Su P. Li H. Zhou Y. Biomaterials. 2015;39:193–205. doi: 10.1016/j.biomaterials.2014.11.002. PubMed DOI

Gongadze E. Kabaso D. Bauer S. Slivnik T. Schmuki P. van Rienen U. Iglič A. Int. J. Nanomed. 2011;6:1801–1816. PubMed PMC

Tian A. Qin X. F. Wu A. H. Zhang H. Xu Q. Xing D. Yang H. Qiu B. Xue X. Zhang D. Dong C. Int. J. Nanomed. 2015;10:2423–2439. doi: 10.2147/IJN.S71622. PubMed DOI PMC

Hausser H. J. Brenner R. E. RSC Adv. 2005;333:216–222. PubMed

Czekanska E. M. Stoddart M. J. Ralphs J. R. Richards R. G. Hayes J. S. J. Biomed. Mater. Res., Part A. 2014;102:2636–2643. doi: 10.1002/jbm.a.34937. PubMed DOI

Czekanska E. M. Stoddart M. J. Richards R. G. Hayes J. S. Eur. Cells Mater. 2012;24:1–17. doi: 10.22203/eCM.v024a01. PubMed DOI

Das K. Bose S. Bandyopadhyay A. J. Biomed. Mater. Res., Part A. 2009;90:225–237. doi: 10.1002/jbm.a.32088. PubMed DOI

Park J. Bauer S. Schlegel K. A. Neukam F. W. von der Mark K. Schmuki P. Small. 2009;5:666–671. doi: 10.1002/smll.200801476. PubMed DOI

Zhang H. Cooper L. F. Zhang X. N. Zhang Y. Deng F. Song J. L. Yang S. RSC Adv. 2016;6:44062–44069. doi: 10.1039/C6RA04002K. DOI

Zhang Y. Luo R. Tan J J. Wang J. X. Lu X. Qu S. X. Weng J. Feng B. Regener. Biomater. 2017;4:81–87. doi: 10.1093/rb/rbx006. PubMed DOI PMC

Zhang R. Wu H. Ni J. Zhao C. Chen Y. Zheng C. Zhang X. Mater. Sci. Eng., C. 2015;53:272–279. doi: 10.1016/j.msec.2015.04.046. PubMed DOI

Di Cio S. Gautrot J. E. Acta Biomater. 2016;30:26–48. doi: 10.1016/j.actbio.2015.11.027. PubMed DOI

Liu J. R. Wang Y. L. Goh W. I. Goh H. Baird M. A. Ruehland S. Teo S. Bate N. Critchley D. R. Davidson M. W. Kanchanawong P. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E4864–E4873. doi: 10.1073/pnas.1512025112. PubMed DOI PMC

Bershadsky A. D. Ballestrem C. Carramusa L. Zilberman Y. Gilquin B. Khochbin S. Alexandrova A. Y. Verkhovsky A. B. Shemesh T. Kozlov M. M. Eur. J. Cell Biol. 2006;85:165–173. doi: 10.1016/j.ejcb.2005.11.001. PubMed DOI

Saha S. Kumar R. Pramanik K. Biswas A. Appl. Surf. Sci. 2018;449:152–165. doi: 10.1016/j.apsusc.2018.01.160. DOI

Moravec H. Vandrovcova M. Chotova K. Fojt J. Pruchova E. Joska L. Bacakova L. Mater. Sci. Eng., C. 2016;65:313–322. doi: 10.1016/j.msec.2016.04.037. PubMed DOI

Park J. Bauer S. von der Mark K. Schmuki P. Nano Lett. 2007;7:1686–1691. doi: 10.1021/nl070678d. PubMed DOI

Lai M. Jin Z. Y. Su Z. G. Mater. Sci. Eng., C. 2017;73:490–497. doi: 10.1016/j.msec.2016.12.083. PubMed DOI

Yu Y. Shen X. Luo Z. Hu Y. Li M. Ma P. Ran Q. Dai L. He Y. Cai K. Biomaterials. 2018;167:44–57. doi: 10.1016/j.biomaterials.2018.03.024. PubMed DOI

Roguska A. Pisarek M. Belcarz A. Marcon L. Holdynski M. Andrzejczuk M. Janik-Czachor M. Appl. Surf. Sci. 2016;388(part B):775–785. doi: 10.1016/j.apsusc.2016.03.128. DOI

Oliveira W. F. Arruda I. R. S. Silva G. M. M. Machado G. Coelho L. C. B. B. Correia M. T. S. Mater. Sci. Eng., C. 2017;81:597–606. doi: 10.1016/j.msec.2017.08.017. PubMed DOI

Butz F. Aita H. Wang C. J. Ogawa T. J. Dent. Res. 2006;85:560–565. doi: 10.1177/154405910608500616. PubMed DOI

Korsa R. Lukes J. Sepitka J. Mares T. J. Biomech. Eng. 2015;137:081002. doi: 10.1115/1.4030407. PubMed DOI

Wu D. Isaksson P. Ferguson S. J. Persson C. Acta Biomater. 2018;78:1–12. doi: 10.1016/j.actbio.2018.08.001. PubMed DOI

Sugiura T. Yamamoto K. Horita S. Murakami K. Kirita T. Clin. Implant Dent. Relat. Res. 2018;20:43–49. doi: 10.1111/cid.12573. PubMed DOI

Crawford G. Chawla N. Das K. Bose S. Bandyopadhyay A. Acta Biomater. 2007;3:359–367. doi: 10.1016/j.actbio.2006.08.004. PubMed DOI

Xu Y. Liu M. Wang M. Oloyede A. Bell J. Yan C. J. Appl. Phys. 2015;118:145301. doi: 10.1063/1.4932213. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...