Different diameters of titanium dioxide nanotubes modulate Saos-2 osteoblast-like cell adhesion and osteogenic differentiation and nanomechanical properties of the surface
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35520235
PubMed Central
PMC9062999
DOI
10.1039/c9ra00761j
PII: c9ra00761j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The formation of nanostructures on titanium implant surfaces is a promising strategy to modulate cell adhesion and differentiation, which are crucial for future application in bone regeneration. The aim of this study was to investigate how the nanotube diameter and/or nanomechanical properties alter human osteoblast like cell (Saos-2) adhesion, growth and osteogenic differentiation in vitro. Nanotubes, with diameters ranging from 24 to 66 nm, were fabricated on a commercially pure titanium (cpTi) surface using anodic oxidation with selected end potentials of 10 V, 15 V and 20 V. The cell response was studied in vitro on untreated and nanostructured samples using a measurement of metabolic activity, cell proliferation, alkaline phosphatase activity and qRT-PCR, which was used for the evaluation of osteogenic marker expression (collagen type I, osteocalcin, RunX2). Early cell adhesion was investigated using SEM and ELISA. Adhesive molecules (vinculin, talin), collagen and osteocalcin were also visualized using confocal microscopy. Moreover, the reduced elastic modulus and indentation hardness of nanotubes were assessed using a TriboIndenter™. Smooth and nanostructured cpTi both supported cell adhesion, proliferation and bone-specific mRNA expression. The nanotubes enhanced collagen type I and osteocalcin synthesis, compared to untreated cpTi, and the highest synthesis was observed on samples modified with 20 V nanotubes. Significant differences were found in the cell adhesion, where the vinculin and talin showed a dot-like distribution. Both the lowest reduced elastic modulus and indentation hardness were assessed from 20 V samples. The nanotubes of mainly 20 V samples showed a high potential for their use in bone implantation.
Charles University Prague 2nd Faculty of Medicine 5 Úvalu 84 150 06 Prague Czech Republic
Charles University Prague Faculty of Science Albertov 2038 6 128 00 Prague Czech Republic
Zobrazit více v PubMed
Longand M. Racks H. J. Biomaterials. 1998;19:1621–1639. doi: 10.1016/S0142-9612(97)00146-4. PubMed DOI
Okabe T. Hero H. Cells Mater. 1995;5:211–230.
Su E. P. Justin D. E. Pratt C. R. Sarin V. K. Nguyen V. S. Oh S. Bone Joint J. 2018;100B:9–16. doi: 10.1302/0301-620X.100B1.BJJ-2017-0551.R1. PubMed DOI PMC
Salou L. Hoornaert A. Louarn G. Layrolle P. Acta Biomater. 2015;11:494–502. doi: 10.1016/j.actbio.2014.10.017. PubMed DOI
Bjursten L. M. Rasmusson L. Oh S. Smith G. C. Brammer K. S. Jin S. J. Biomed. Mater. Res., Part A. 2010;92A:1218–1224. PubMed
Popat K. C. Leoni L. Grimes C. A. Desai T. A. Biomaterials. 2007;28:3188–3197. doi: 10.1016/j.biomaterials.2007.03.020. PubMed DOI
Tang H. Li Y. Ma J. W. Zhang X. Li B. Liu S. Dai F. Zhang X. Bio-Med. Mater. Eng. 2016;27:485–494. PubMed
Levingstone T. J. Barron N. Ardhaoui M. Benyounis K. Looney L. Stokes J. Surf. Coat. Technol. 2017;313:307–318. doi: 10.1016/j.surfcoat.2017.01.113. DOI
Balasundaram G. Storey D. M. Webster T. J. Int. J. Nanomed. 2015;10:527–535. PubMed PMC
Hao J. Z. Li Y. Li B. E. Wang X X. Li H. Liu S. Lian C. Wang H. Appl. Biochem. Biotechnol. 2017;183:280–292. doi: 10.1007/s12010-017-2444-1. PubMed DOI
Queiroz T. P. de Molon R. S. Souza F. A. Margonar R. Thomazini A. H. Guastaldi A. C. Hochuli-Vieira E. Clinical Oral Investigations. 2017;21:685–699. doi: 10.1007/s00784-016-1936-7. PubMed DOI
Bonse J. Kirner S. V. Griepentrog M. Spaltmann D. Krüger J. Materials. 2018;11:801. doi: 10.3390/ma11050801. PubMed DOI PMC
Kheradmandfard M. Kashani-Bozorg S. F. Kim C. L. Hanzaki A. Z. Pyoun Y. S. Kim J. H. Amanov A. Kim D. E. Ultrason. Sonochem. 2017;39:698–706. doi: 10.1016/j.ultsonch.2017.03.061. PubMed DOI
Li N. B. Sun S. J. Bai H. Y. Xiao G. Y. Xu W. H. Zhao J. H. Chen X. Lu Y. P. Zhang Y. L. Nanotechnology. 2018;29:045101. doi: 10.1088/1361-6528/aa9daa. PubMed DOI
Shin V. S. Yoon I. K. Lee G. S. Jang W. C. Knowles J. C. Kim H. W. J. Tissue Eng. 2011;2011:674287. PubMed PMC
Ahn H. S. Hwang J. Y. Kim M. S. Lee J. Y. Kim J. W. Kim H. S. Shin U. S. Knowles J. C. Kim H. W. Hyun J. K. Acta Biomater. 2015;13:324–334. doi: 10.1016/j.actbio.2014.11.026. PubMed DOI
Zwilling V. Aucouturier M. Darque-Ceretti E. Electrochim. Acta. 1999;45:921–929. doi: 10.1016/S0013-4686(99)00283-2. DOI
Roy P. Berger S. Schmuki P. Angew. Chem., Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI
Minagar S. Wang J. Berndt C. C. Ivanova E. P. Wen C. J. Biomed. Mater. Res., Part A. 2013;101:2726–2739. doi: 10.1002/jbm.a.34575. PubMed DOI
Wang Q. Huang J. Y. Li H. Q. Zhao A. Z. Wang Y. Zhang K. Q. Sun H. T. Lai Y. K. Int. J. Nanomed. 2016;12:151–165. doi: 10.2147/IJN.S117498. PubMed DOI PMC
Ionita D. Bajenaru-Georgescu D. Totea G. Mazare A. Schmuki P. Demetrescu I. Int. J. Pharm. 2017;517:296–302. doi: 10.1016/j.ijpharm.2016.11.062. PubMed DOI
Liu W. W. Su P. L. Chen S. Wang N. Ma Y. Liu Y. Wang J. Zhang Z. Li H. Webster T. J. Nanoscale. 2014;6:9050–9062. doi: 10.1039/C4NR01531B. PubMed DOI
Esfandiari N. Simchi A. Bagheri R. J. Biomed. Mater. Res., Part A. 2014;102:2625–2635. doi: 10.1002/jbm.a.34934. PubMed DOI
Niinomi M. Nakai M. Int. J. Biomater. 2011:836587. PubMed PMC
Crawford G. Chawla N. Das K. Bose S. Bandyopadhyay A. Acta Biomater. 2007;3:359–367. doi: 10.1016/j.actbio.2006.08.004. PubMed DOI
Alice R. M., Fluorescent Image Analyser (ver 1.0), software available at http://alice.fbmi.cvut.cz
Vlcak P. Cerny F. Drahokoupil J. Sepitka J. Tolde Z. J. Alloys Compd. 2015;620:48–54. doi: 10.1016/j.jallcom.2014.09.125. DOI
Vlcak P. Sepitka J. Drahokoupi J. Horazdovsky T. Tolde Z. J. Nanomater. 2016;2016:1–7.
Oliver W. C. Pharr G. M. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
ISO 14577-4: 2007, Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 4: Test method for metallic and non-metallic coatings
Cordeiro J. M. Beline T T. Ribeiro A. L. R. Rangel E. C. da Cruz N. C. Landers R. Faverani L. P. Vaz L. G. Fais L. M. G. Vicente F. B. Grandini C. R. Mathew M. T. Sukotjo C. Barão V. A. R. Dent. Biomater. 2017;33:1244–1257. doi: 10.1016/j.dental.2017.07.013. PubMed DOI
Vlcak P. Drahokoupil J. Vertat P. Sepitka J. Duchon J. J. Alloys Compd. 2018;746:490–495. doi: 10.1016/j.jallcom.2018.02.301. DOI
Brammer K. S. Oh S. Cobb C. J. Bjursten L. M. van der Heyde H. Jin S. Acta Biomater. 2009;5:3215–3223. doi: 10.1016/j.actbio.2009.05.008. PubMed DOI
Oh S. Brammer K. S. Li S. J. Teng D. Engler A. J. Chien S. Jin S. Proc. Natl. Acad. Sci. U. S. A. 2009;106:2130–2135. doi: 10.1073/pnas.0813200106. PubMed DOI PMC
Shokuhfar T. Hamlekhan A. Chang J. Y. Choi C. K. Sukotjo C. Friedrich C. Int. J. Nanomed. 2014;9:3737–3748. PubMed PMC
Filova E. Fojt J. Kryslova M. Moravec H. Joska L. Bacakova L. Int. J. Nanomed. 2015;10:7145–7163. doi: 10.2147/IJN.S87474. PubMed DOI PMC
Kulkarni M. Mazare A. Gongadze E. Perutkova Š. Kralj-Iglič V. Milošev I. Schmuki P. Iglič A. Mozetič M. Nanotechnology. 2015;26:062002. doi: 10.1088/0957-4484/26/6/062002. PubMed DOI
Lv L. W. Liu Y. S. Zhang P. Zhang X. Liu J. Chen T. Su P. Li H. Zhou Y. Biomaterials. 2015;39:193–205. doi: 10.1016/j.biomaterials.2014.11.002. PubMed DOI
Gongadze E. Kabaso D. Bauer S. Slivnik T. Schmuki P. van Rienen U. Iglič A. Int. J. Nanomed. 2011;6:1801–1816. PubMed PMC
Tian A. Qin X. F. Wu A. H. Zhang H. Xu Q. Xing D. Yang H. Qiu B. Xue X. Zhang D. Dong C. Int. J. Nanomed. 2015;10:2423–2439. doi: 10.2147/IJN.S71622. PubMed DOI PMC
Hausser H. J. Brenner R. E. RSC Adv. 2005;333:216–222. PubMed
Czekanska E. M. Stoddart M. J. Ralphs J. R. Richards R. G. Hayes J. S. J. Biomed. Mater. Res., Part A. 2014;102:2636–2643. doi: 10.1002/jbm.a.34937. PubMed DOI
Czekanska E. M. Stoddart M. J. Richards R. G. Hayes J. S. Eur. Cells Mater. 2012;24:1–17. doi: 10.22203/eCM.v024a01. PubMed DOI
Das K. Bose S. Bandyopadhyay A. J. Biomed. Mater. Res., Part A. 2009;90:225–237. doi: 10.1002/jbm.a.32088. PubMed DOI
Park J. Bauer S. Schlegel K. A. Neukam F. W. von der Mark K. Schmuki P. Small. 2009;5:666–671. doi: 10.1002/smll.200801476. PubMed DOI
Zhang H. Cooper L. F. Zhang X. N. Zhang Y. Deng F. Song J. L. Yang S. RSC Adv. 2016;6:44062–44069. doi: 10.1039/C6RA04002K. DOI
Zhang Y. Luo R. Tan J J. Wang J. X. Lu X. Qu S. X. Weng J. Feng B. Regener. Biomater. 2017;4:81–87. doi: 10.1093/rb/rbx006. PubMed DOI PMC
Zhang R. Wu H. Ni J. Zhao C. Chen Y. Zheng C. Zhang X. Mater. Sci. Eng., C. 2015;53:272–279. doi: 10.1016/j.msec.2015.04.046. PubMed DOI
Di Cio S. Gautrot J. E. Acta Biomater. 2016;30:26–48. doi: 10.1016/j.actbio.2015.11.027. PubMed DOI
Liu J. R. Wang Y. L. Goh W. I. Goh H. Baird M. A. Ruehland S. Teo S. Bate N. Critchley D. R. Davidson M. W. Kanchanawong P. Proc. Natl. Acad. Sci. U. S. A. 2015;112:E4864–E4873. doi: 10.1073/pnas.1512025112. PubMed DOI PMC
Bershadsky A. D. Ballestrem C. Carramusa L. Zilberman Y. Gilquin B. Khochbin S. Alexandrova A. Y. Verkhovsky A. B. Shemesh T. Kozlov M. M. Eur. J. Cell Biol. 2006;85:165–173. doi: 10.1016/j.ejcb.2005.11.001. PubMed DOI
Saha S. Kumar R. Pramanik K. Biswas A. Appl. Surf. Sci. 2018;449:152–165. doi: 10.1016/j.apsusc.2018.01.160. DOI
Moravec H. Vandrovcova M. Chotova K. Fojt J. Pruchova E. Joska L. Bacakova L. Mater. Sci. Eng., C. 2016;65:313–322. doi: 10.1016/j.msec.2016.04.037. PubMed DOI
Park J. Bauer S. von der Mark K. Schmuki P. Nano Lett. 2007;7:1686–1691. doi: 10.1021/nl070678d. PubMed DOI
Lai M. Jin Z. Y. Su Z. G. Mater. Sci. Eng., C. 2017;73:490–497. doi: 10.1016/j.msec.2016.12.083. PubMed DOI
Yu Y. Shen X. Luo Z. Hu Y. Li M. Ma P. Ran Q. Dai L. He Y. Cai K. Biomaterials. 2018;167:44–57. doi: 10.1016/j.biomaterials.2018.03.024. PubMed DOI
Roguska A. Pisarek M. Belcarz A. Marcon L. Holdynski M. Andrzejczuk M. Janik-Czachor M. Appl. Surf. Sci. 2016;388(part B):775–785. doi: 10.1016/j.apsusc.2016.03.128. DOI
Oliveira W. F. Arruda I. R. S. Silva G. M. M. Machado G. Coelho L. C. B. B. Correia M. T. S. Mater. Sci. Eng., C. 2017;81:597–606. doi: 10.1016/j.msec.2017.08.017. PubMed DOI
Butz F. Aita H. Wang C. J. Ogawa T. J. Dent. Res. 2006;85:560–565. doi: 10.1177/154405910608500616. PubMed DOI
Korsa R. Lukes J. Sepitka J. Mares T. J. Biomech. Eng. 2015;137:081002. doi: 10.1115/1.4030407. PubMed DOI
Wu D. Isaksson P. Ferguson S. J. Persson C. Acta Biomater. 2018;78:1–12. doi: 10.1016/j.actbio.2018.08.001. PubMed DOI
Sugiura T. Yamamoto K. Horita S. Murakami K. Kirita T. Clin. Implant Dent. Relat. Res. 2018;20:43–49. doi: 10.1111/cid.12573. PubMed DOI
Crawford G. Chawla N. Das K. Bose S. Bandyopadhyay A. Acta Biomater. 2007;3:359–367. doi: 10.1016/j.actbio.2006.08.004. PubMed DOI
Xu Y. Liu M. Wang M. Oloyede A. Bell J. Yan C. J. Appl. Phys. 2015;118:145301. doi: 10.1063/1.4932213. DOI