Transcriptional Silencing of 35S rDNA in Tragopogon porrifolius Correlates with Cytosine Methylation in Sequence-Specific Manner
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39062783
PubMed Central
PMC11276851
DOI
10.3390/ijms25147540
PII: ijms25147540
Knihovny.cz E-zdroje
- Klíčová slova
- 35S rDNA copy number variations, CCGs and CHHs, CWGs, Tragopogon porrifolius ssp. porrifolius, bidirectional nucleolar dominance, methylation dynamics of CGs, transcriptional silencing/activation,
- MeSH
- chromozomy rostlin genetika MeSH
- cytosin * metabolismus MeSH
- epigeneze genetická MeSH
- genetická transkripce MeSH
- metylace DNA * MeSH
- regulace genové exprese u rostlin MeSH
- ribozomální DNA * genetika MeSH
- umlčování genů * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytosin * MeSH
- ribozomální DNA * MeSH
Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two T. porrifolius lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs. Moreover, two (L and S) prominent rDNA variants, differing in the repetitive organization of intergenic spacers, were detected in por2, while only the S-rDNA variant was detected in por1. Transcriptional activity of S-rDNA in por1 was associated with secondary constriction of both A-NORs. In contrast, silencing of S-rDNA in por2 was accompanied by condensation of A-NORs, secondary constriction on D-NORs, and L-rDNA transcriptional activity, suggesting (i) bidirectional nucleolar dominance and (ii) association of S-rDNAs with A-NORs and L-rDNAs with D-NORs in T. porrifolius. Each S- and L-rDNA array was formed of several sub-variants differentiating both genetically (specific SNPs) and epigenetically (transcriptional efficiency and cytosine methylation). The most significant correlations between rDNA silencing and methylation were detected for symmetric CWG motifs followed by CG motifs. No correlations were detected for external cytosine in CCGs or asymmetric CHHs, where methylation was rather position-dependent, particularly for AT-rich variants. We conclude that variations in rDNA copy numbers in plant diploids can be accompanied by prompt epigenetic responses to maintain an appropriate number of active rDNAs. The methylation dynamics of CWGs are likely to be the most responsible for regulating silent and active rDNA states.
Zobrazit více v PubMed
Garcia S., Kovarik A., Leitch A.R., Garnatje T. Cytogenetic features of rRNA genes across land plants: Analysis of the Plant rDNA database. Plant J. 2017;89:1020–1030. doi: 10.1111/tpj.13442. PubMed DOI
Rosato M., Kovarik A., Garilleti R., Rossello J.A. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants. PLoS ONE. 2016;11:e0162544. doi: 10.1371/journal.pone.0162544. PubMed DOI PMC
Kobayashi T. A new role of the rDNA and nucleolus in the nucleus-rDNA instability maintains genome integrity. Bioessays. 2008;30:267–272. doi: 10.1002/bies.20723. PubMed DOI
Kobayashi T., Ganley A.R.D. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science. 2005;309:1581–1584. doi: 10.1126/science.1116102. PubMed DOI
Sims J., Copenhaver G.P., Schlogelhofer P. Meiotic DNA Repair in the Nucleolus Employs a Nonhomologous End-Joining Mechanism. Plant Cell. 2019;31:2259–2275. doi: 10.1105/tpc.19.00367. PubMed DOI PMC
Tsang E., Carr A.M. Replication fork arrest, recombination and the maintenance of ribosomal DNA stability. DNA Repair. 2008;7:1613–1623. doi: 10.1016/j.dnarep.2008.06.010. PubMed DOI
Long Q., Rabanal F.A., Meng D.Z., Huber C.D., Farlow A., Platzer A., Zhang Q.R., Vilhjalmsson B.J., Korte A., Nizhynska V., et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 2013;45:884–890. doi: 10.1038/ng.2678. PubMed DOI PMC
Waters E.R., Schaal B.A. Heat shock induces a loss of rRNA-encoding DNA repeats in Brassica nigra. Proc. Natl. Acad. Sci. USA. 1996;93:1449–1452. doi: 10.1073/pnas.93.4.1449. PubMed DOI PMC
Kobayashi T. Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell. Mol. Life Sci. 2011;68:1395–1403. doi: 10.1007/s00018-010-0613-2. PubMed DOI PMC
Paredes S., Branco A.T., Hartl D.L., Maggert K.A., Lemos B. Ribosomal DNA Deletions Modulate Genome-Wide Gene Expression: “rDNA-Sensitive” Genes and Natural Variation. PLoS Genet. 2011;7:e1001376. doi: 10.1371/journal.pgen.1001376. PubMed DOI PMC
Ganley A.R.D., Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 2007;17:184–191. doi: 10.1101/gr.5457707. PubMed DOI PMC
Copenhaver G.P., Pikaard C.S. Two-dimensional RFLP analyses reveal megabase-sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. Plant J. 1996;9:273–282. doi: 10.1046/j.1365-313X.1996.09020273.x. PubMed DOI
Havlova K., Dvorackova M., Peiro R., Abia D., Mozgova I., Vansacova L., Gutierrez C., Fajkus J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol. Biol. 2016;92:457–471. doi: 10.1007/s11103-016-0524-1. PubMed DOI
Matyasek R., Kuderova A., Kutilkova E., Kucera M., Kovarik A. Intragenomic heterogeneity of intergenic ribosomal DNA spacers in Cucurbita moschata is determined by DNA minisatellites with variable potential to form non-canonical DNA conformations. DNA Res. 2019;26:273–286. doi: 10.1093/dnares/dsz008. PubMed DOI PMC
Galian J.A., Rosato M., Rossello J.A. Incomplete sequence homogenization in 45S rDNA multigene families: Intermixed IGS heterogeneity within the single NOR locus of the polyploid species Medicago arborea (Fabaceae) Ann. Bot. 2014;114:243–251. doi: 10.1093/aob/mcu115. PubMed DOI PMC
Sims J., Sestini G., Elgert C., von Haeseler A., Schlogelhofer P. Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nat. Commun. 2021;12:387. doi: 10.1038/s41467-020-20728-6. PubMed DOI PMC
Saez-Vasquez J., Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. Plant Cell. 2019;31:1945–1967. doi: 10.1105/tpc.18.00874. PubMed DOI PMC
Hemleben V., Zentgraf U. Structural organization and regulation of transcription by RNA polymerase I of plant nuclear ribosomal RNA genes. Plant Promot. Transcr. Factors. 1994;20:3–24. PubMed
Grummt I. The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma. 2013;122:487–497. doi: 10.1007/s00412-013-0430-0. PubMed DOI
Tucker S., Vitins A., Pikaard C.S. Nucleolar dominance and ribosomal RNA gene silencing. Curr. Opin. Cell Biol. 2010;22:351–356. doi: 10.1016/j.ceb.2010.03.009. PubMed DOI PMC
Xie W.B., Ling T., Zhou Y.G., Feng W.J., Zhu Q.Y., Stunnenberg H.G., Grummt I., Tao W. The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc. Natl. Acad. Sci. USA. 2012;109:8161–8166. doi: 10.1073/pnas.1201262109. PubMed DOI PMC
Durut N., Abou-Ellail M., Pontvianne F., Das S., Kojima H., Ukai S., de Bures A., Comella P., Nidelet S., Rialle S., et al. A Duplicated Nucleolin Gene with Antagonistic Activity Is Required for Chromatin Organization of Silent 45S rDNA in Arabidopsis. Plant Cell. 2014;26:1330–1344. doi: 10.1105/tpc.114.123893. PubMed DOI PMC
Earley K., Lawrence R.J., Pontes O., Reuther R., Enciso A.J., Silva M., Neves N., Gross M., Viegas W., Pikaard C.S. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 2006;20:1283–1293. doi: 10.1101/gad.1417706. PubMed DOI PMC
Pontvianne F., Blevins T., Chandrasekhara C., Feng W., Stroud H., Jacobsen S.E., Michaels S.D., Pikaard C.S. Histone methyltransferases regulating rRNA gene dose and dosage control in Arabidopsis. Genes Dev. 2012;26:945–957. doi: 10.1101/gad.182865.111. PubMed DOI PMC
Preuss S.B., Costa-Nunes P., Tucker S., Pontes O., Lawrence R.J., Mosher R., Kasschau K.D., Carrington J.C., Baulcombe D.C., Viegas W., et al. Multimegabase Silencing in Nucleolar Dominance Involves siRNA-Directed DNA Methylation and Specific Methylcytosine-Binding Proteins. Mol. Cell. 2008;32:673–684. doi: 10.1016/j.molcel.2008.11.009. PubMed DOI PMC
Santoro R., Schmitz K.M., Sandoval J., Grummt I. Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep. 2010;11:52–58. doi: 10.1038/embor.2009.254. PubMed DOI PMC
Pikaard C.S., Chandrasekhara C., McKinlay A., Enganti R., Fultz D. Reaching for the off switch in nucleolar dominance. Plant J. 2023;115:1185–1192. doi: 10.1111/tpj.16318. PubMed DOI PMC
Tseng H. Cell-type-specific regulation of RNA polymerase I transcription: A new frontier. Bioessays. 2006;28:719–725. doi: 10.1002/bies.20430. PubMed DOI
Shiba H., Takayania S. RNA silencing systems and their relevance to allele-specific DNA methylation in plants. Biosci. Biotechnol. Biochem. 2007;71:2632–2646. doi: 10.1271/bbb.70339. PubMed DOI
Schmitz R.J., Lewis Z.A., Galli M.G. DNA Methylation: Shared and Divergent Features across Eukaryotes. Trends Genet. 2019;35:818–827. doi: 10.1016/j.tig.2019.07.007. PubMed DOI PMC
Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010;11:204–220. doi: 10.1038/nrg2719. PubMed DOI PMC
Disteche C.M., Berletch J.B. X-chromosome inactivation and escape. J. Genet. 2015;94:591–599. doi: 10.1007/s12041-015-0574-1. PubMed DOI PMC
Satyaki P.R.V., Gehring M. DNA methylation and imprinting in plants: Machinery and mechanisms. Crit. Rev. Biochem. Mol. Biol. 2017;52:163–175. doi: 10.1080/10409238.2017.1279119. PubMed DOI
Dhayalan A., Rajavelu A., Rathert P., Tamas R., Jurkowska R.Z., Ragozin S., Jeltsch A. The Dnmt3a PWWP Domain Reads Histone 3 Lysine 36 Trimethylation and Guides DNA Methylation. J. Biol. Chem. 2010;285:26114–26120. doi: 10.1074/jbc.M109.089433. PubMed DOI PMC
Du J.M., Johnson L.M., Jacobsen S.E., Patel D.J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 2015;16:519–532. doi: 10.1038/nrm4043. PubMed DOI PMC
Gladyshev E., Kleckner N. DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat. Genet. 2017;49:887–894. doi: 10.1038/ng.3857. PubMed DOI PMC
Matzke M.A., Mosher R.A. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014;15:394–408. doi: 10.1038/nrg3683. PubMed DOI
Zhu H., Wang G.H., Qian J. Transcription factors as readers and effectors of DNA methylation. Nat. Rev. Genet. 2016;17:551–565. doi: 10.1038/nrg.2016.83. PubMed DOI PMC
Li Y., Kumar S., Qian W.Q. Active DNA demethylation: Mechanism and role in plant development. Plant Cell Rep. 2018;37:77–85. doi: 10.1007/s00299-017-2215-z. PubMed DOI PMC
Mavrodiev E.V., Soltis P.S., Gitzendanner M.A., Baldini R.M., Soltis D.E. Polyphyly of Tragopogon porrifolius L. (asteraceae), a European native with intercontinental disjuncts. Int. J. Plant Sci. 2007;168:889–904. doi: 10.1086/518258. DOI
Ownbey M., McCollum G.D. The chromosomes of Tragopogon. Rhodora. 1954;56:7–21.
Wilson F.D. Karyotypes of Tragopogon (Compositae, Lactuceae) Brittonia. 1983;35:341–350. doi: 10.2307/2805981. DOI
Pires J.C., Lim K.Y., Kovarik A., Matyasek R., Boyd A., Leitch A.R., Leitch I.J., Bennett M.D., Soltis P.S., Soltis D.E. Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am. J. Bot. 2004;91:1022–1035. doi: 10.3732/ajb.91.7.1022. PubMed DOI
Chen Z.J., Pikaard C.S. Epigenetic silencing of RNA polymerase I transcription: A role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 1997;11:2124–2136. doi: 10.1101/gad.11.16.2124. PubMed DOI PMC
Gultepe M., Coskuncelebi K., Makbul S., Vladimirov V. Chromosome counts of Tragopogon L. (Asteraceae) from Turkey. Caryologia. 2015;68:193–199. doi: 10.1080/00087114.2015.1032608. DOI
Mavrodiev E.V., Tancig M., Sherwood A.M., Gitzendanner M.A., Rocca J., Soltis P.S., Soltis D.E. Phylogeny of Tragopogon L. (Asteraceae) based on internal and external transcribed spacer sequence data. Int. J. Plant Sci. 2005;166:117–133. doi: 10.1086/425206. DOI
Matyasek R., Tate J.A., Lim Y.K., Srubarova H., Koh J., Leitch A.R., Soltis D.E., Soltis P.S., Kovarik A. Concerted evolution of rDNA in recently formed tragopogon allotetraploids is typically associated with an inverse correlation between gene copy number and expression. Genetics. 2007;176:2509–2519. doi: 10.1534/genetics.107.072751. PubMed DOI PMC
Dobesova E., Malinska H., Matyasek R., Leitch A.R., Soltis D.E., Soltis P.S., Kovarik A. Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae) Heredity. 2015;114:356–365. doi: 10.1038/hdy.2014.111. PubMed DOI PMC
Subrahmanyam N.C., Azad A.A. Nucleoli and Ribosomal-Rna Cistron Numbers in Hordeum Species and Interspecific Hybrids Exhibiting Suppression of Secondary Constriction. Chromosoma. 1978;69:265–273. doi: 10.1007/BF00329924. DOI
Maroof M.A.S., Allard R.W., Zhang Q.F. Genetic Diversity and Ecogeographical Differentiation among Ribosomal DNA Alleles in Wild and Cultivated Barley. Proc. Natl. Acad. Sci. USA. 1990;87:8486–8490. doi: 10.1073/pnas.87.21.8486. PubMed DOI PMC
Felle M., Exler J.H., Merkl R., Dachauer K., Brehm A., Grummt I., Langst G. DNA sequence encoded repression of rRNA gene transcription in chromatin. Nucleic Acids Res. 2010;38:5304–5314. doi: 10.1093/nar/gkq263. PubMed DOI PMC
Manelyte L., Strohner R., Gross T., Langst G. Chromatin Targeting Signals, Nucleosome Positioning Mechanism and Non-Coding RNA-Mediated Regulation of the Chromatin Remodeling Complex NoRC. PLoS Genet. 2014;10:e1004157. doi: 10.1371/journal.pgen.1004157. PubMed DOI PMC
Putnam C.D., Pikaard C.S. Cooperative Binding of the Xenopus Rna Polymerase-I Transcription Factor Xubf to Repetitive Ribosomal Gene Enhancers. Mol. Cell Biol. 1992;12:4970–4980. doi: 10.1128/Mcb.12.11.4970. PubMed DOI PMC
Pikaard C.S. Ribosomal Gene Promoter Domains Can Function as Artificial Enhancers of Rna-Polymerase-I Transcription, Supporting a Promoter Origin for Natural Enhancers in Xenopus. Proc. Natl. Acad. Sci. USA. 1994;91:464–468. doi: 10.1073/pnas.91.2.464. PubMed DOI PMC
Caudy A.A., Pikaard C.S. Xenopus ribosomal RNA gene Intergenic Spacer elements conferring transcriptional enhancement and nucleolar dominance-like competition in oocytes. J. Biol. Chem. 2002;277:31577–31584. doi: 10.1074/jbc.M202737200. PubMed DOI
Reeder R.H., Roan J.G. The Mechanism of Nucleolar Dominance in Xenopus Hybrids. Cell. 1984;38:39–44. doi: 10.1016/0092-8674(84)90524-5. PubMed DOI
Zentgraf U., Hemleben V. Complex-Formation of Nuclear Proteins with the Rna Polymerase-I Promoter and Repeated Elements in the External Transcribed Spacer of Cucumis-Sativus Ribosomal DNA. Nucleic Acids Res. 1992;20:3685–3691. doi: 10.1093/nar/20.14.3685. PubMed DOI PMC
Komarova N.Y., Grimm G.W., Hemleben V., Volkov R.A. Molecular evolution of 35S rDNA and taxonomic status of Lycopersicon within Solanum sect. Petota. Plant Syst. Evol. 2008;276:59–71. doi: 10.1007/s00606-008-0091-2. DOI
Martini G., Odell M., Flavell R.B. Partial Inactivation of Wheat Nucleolus Organizers by the Nucleolus Organizer Chromosomes from Aegilops-Umbellulata. Chromosoma. 1982;84:687–700. doi: 10.1007/BF00286334. DOI
Silva M., Pereira H.S., Bento M., Santos A.P., Shaw P., Delgado M., Neves N., Viegas W. Interplay of Ribosomal DNA Loci in Nucleolar Dominance: Dominant NORs are Up-Regulated by Chromatin Dynamics in the Wheat-Rye System. PLoS ONE. 2008;3:e3824. doi: 10.1371/journal.pone.0003824. PubMed DOI PMC
Matyasek R., Dobesova E., Huska D., Jezkova I., Soltis P.S., Soltis D.E., Kovarik A. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus. Plant J. 2016;85:362–377. doi: 10.1111/tpj.13110. PubMed DOI
Komarova N.Y., Grabe T., Huigen D.J., Hemleben V., Volkov R.A. Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Plant Mol. Biol. 2004;56:439–463. doi: 10.1007/s11103-004-4678-x. PubMed DOI
Chen Z.J., Pikaard C.S. Transcriptional analysis of nucleolar dominance in polyploid plants: Biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. USA. 1997;94:3442–3447. doi: 10.1073/pnas.94.7.3442. PubMed DOI PMC
Wanzenbock E.M., Schofer C., Schweizer D., Bachmair A. Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J. 1997;11:1007–1016. doi: 10.1046/j.1365-313X.1997.11051007.x. PubMed DOI
Lopez F.B., Fort A., Tadini L., Probst A.V., McHale M., Friel J., Ryder P., Pontvianne F., Pesaresi P., Sulpice R., et al. Gene dosage compensation of rRNA transcript levels in Arabidopsis thaliana lines with reduced ribosomal gene copy number. Plant Cell. 2021;33:1135–1150. doi: 10.1093/plcell/koab020. PubMed DOI PMC
Matzke M., Kanno T., Claxinger L., Huettel B., Matzke A.J.M. RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol. 2009;21:367–376. doi: 10.1016/j.ceb.2009.01.025. PubMed DOI
Abou-Ellail M., Cooke R., Saez-Vasquez J. Variations on a team Major and minor variants of Arabidopsis thaliana rDNA genes. Nucleus. 2011;2:294–299. doi: 10.4161/nucl.2.4.16561. PubMed DOI
Earley K.W., Pontvianne F., Wierzbicki A.T., Blevins T., Tucker S., Costa-Nunes P., Pontes O., Pikaard C.S. Mechanisms of HDA6-mediated rRNA gene silencing: Suppression of intergenic Pol II transcription and differential effects on maintenance versus siRNA-directed cytosine methylation. Genes Dev. 2010;24:1119–1132. doi: 10.1101/gad.1914110. PubMed DOI PMC
Vydzhak O., Luke B., Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA-DNA Hybrids and Beyond. J. Mol. Biol. 2020;432:4287–4304. doi: 10.1016/j.jmb.2020.05.011. PubMed DOI
Fujisawa M., Yamagata H., Kamiya K., Nakamura M., Saji S., Kanamori H., Wu J.Z., Matsumoto T., Sasaki T. Sequence comparison of distal and proximal ribosomal DNA arrays in rice (Oryza sativa L.) chromosome 9S and analysis of their flanking regions. Theor. Appl. Genet. 2006;113:419–428. doi: 10.1007/s00122-006-0307-1. PubMed DOI
Chester M., Sykorova E., Fajkus J., Leitch A.R. Single Integration and Spread of a Copia-Like Sequence Nested in rDNA Intergenic Spacers of Allium cernuum (Alliaceae) Cytogenet. Genome Res. 2010;129:35–46. doi: 10.1159/000312959. PubMed DOI
Wang W.C., Zhang X.Z., Garcia S., Leitch A.R., Kovarik A. Intragenomic rDNA variation-the product of concerted evolution, mutation, or something in between? Heredity. 2023;131:179–188. doi: 10.1038/s41437-023-00634-5. PubMed DOI PMC
Kovarik A., Dadejova M., Lim Y.K., Chase M.W., Clarkson J.J., Knapp S., Leitch A.R. Evolution of rDNA in allopolyploids: A potential link between rDNA homogenization and epigenetics. Ann. Bot. 2008;101:815–823. doi: 10.1093/aob/mcn019. PubMed DOI PMC
Liu Z.W., Liu J., Liu F.Q., Zhong X.H. Depositing centromere repeats induces heritable intragenic heterochromatin establishment and spreading in Arabidopsis. Nucleic Acids Res. 2023;51:6039–6054. doi: 10.1093/nar/gkad306. PubMed DOI PMC
Fultz D., Mckinlay A., Enganti R., Pikaard C.S. Sequence and epigenetic landscapes of active and silent nucleolus organizer regions in. Sci. Adv. 2023;9:eadj4509. doi: 10.1126/sciadv.adj4509. PubMed DOI PMC
Guo X., Han F.P. Asymmetric Epigenetic Modification and Elimination of rDNA Sequences by Polyploidization in Wheat. Plant Cell. 2014;26:4311–4327. doi: 10.1105/tpc.114.129841. PubMed DOI PMC
Domb K., Katz A., Harris K.D., Yaari R., Kaisler E., Nguyen V.H., Hong U.V.T., Griess O., Heskiau K.G., Ohad N., et al. DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation. Proc. Natl. Acad. Sci. USA. 2020;117:33700–33710. doi: 10.1073/pnas.2011361117. PubMed DOI PMC
Zabet N.R., Catoni M., Prischi F., Paszkowski J. Cytosine methylation at CpCpG sites triggers accumulation of non-CpG methylation in gene bodies. Nucleic Acids Res. 2017;45:3777–3784. doi: 10.1093/nar/gkw1330. PubMed DOI PMC
Bewick A.J., Ji L.X., Niederhuth C.E., Willing E.M., Hofmeister B.T., Shi X.L., Wang L., Lu Z.F., Rohr N.A., Hartwig B., et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl. Acad. Sci. USA. 2016;113:9111–9116. doi: 10.1073/pnas.1604666113. PubMed DOI PMC
Lei M.G., Zhang H.M., Julian R., Tang K., Xie S.J., Zhu J.K. Regulatory link between DNA methylation and active demethylation in. Proc. Natl. Acad. Sci. USA. 2015;112:3553–3557. doi: 10.1073/pnas.1502279112. PubMed DOI PMC
Cao X.F., Jacobsen S.E. Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 2002;12:1138–1144. doi: 10.1016/S0960-9822(02)00925-9. PubMed DOI
Zhong X.H., Du J.M., Hale C.J., Gallego-Bartolome J., Feng S.H., Vashisht A.A., Chory J., Wohlschlegel J.A., Patel D.J., Jacobsen S.E. Molecular Mechanism of Action of Plant DRM De Novo DNA Methyltransferases. Cell. 2014;157:1050–1060. doi: 10.1016/j.cell.2014.03.056. PubMed DOI PMC
Saze H., Scheid O.M., Paszkowski J. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat. Genet. 2003;34:65–69. doi: 10.1038/ng1138. PubMed DOI
Borges F., Donoghue M.T.A., LeBlanc C., Wear E.E., Tanurdzic M., Berube B., Brooks A., Thompson W.F., Hanley-Bowdoin L., Martienssen R.A. Loss of Small-RNA-Directed DNA Methylation in the Plant Cell Cycle Promotes Germline Reprogramming and Somaclonal Variation. Curr. Biol. 2021;31:591–600.e4.. doi: 10.1016/j.cub.2020.10.098. PubMed DOI PMC
Liu X.C., Yu C.W., Duan J., Luo M., Wang K.C., Tian G., Cui Y.H., Wu K.Q. HDA6 Directly Interacts with DNA Methyltransferase MET1 and Maintains Transposable Element Silencing in Arabidopsis. Plant Physiol. 2012;158:119–129. doi: 10.1104/pp.111.184275. PubMed DOI PMC
Du J.M., Zhong X.H., Bernatavichute Y.V., Stroud H., Feng S.H., Caro E., Vashisht A.A., Terragni J., Chin H.G., Tu A., et al. Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants. Cell. 2012;151:167–180. doi: 10.1016/j.cell.2012.07.034. PubMed DOI PMC
Inagaki S., Miura-Kamio A., Nakamura Y., Lu F.L., Cui X., Cao X.F., Kimura H., Saze H., Kakutani T. Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. EMBO J. 2010;29:3496–3506. doi: 10.1038/emboj.2010.227. PubMed DOI PMC
Widman N., Feng S., Jacobsen S.E., Pellegrini M. Epigenetic differences between shoots and roots in Arabidopsis reveals tissue-specific regulation. Epigenetics. 2014;9:236–242. doi: 10.4161/epi.26869. PubMed DOI PMC
Gouil Q., Baulcombe D.C. DNA Methylation Signatures of the Plant Chromomethyltransferases. PLoS Genet. 2016;12:e1006526. doi: 10.1371/journal.pgen.1006526. PubMed DOI PMC
Yaari R., Noy-Malka C., Wiedemann G., Gershovitz N.A., Reski R., Katz A., Ohad N. DNA Methyltransferase 1 is involved in (m)CG and (m)CCG DNA methylation and is essential for sporophyte development in Physcomitrella patens. Plant. Mol. Biol. 2015;88:387–400. doi: 10.1007/s11103-015-0328-8. PubMed DOI
Stroud H., Do T., Du J.M., Zhong X.H., Feng S.H., Johnson L., Patel D.J., Jacobsen S.E. Non-CG methylation patterns shape the epigenetic landscape in. Nat. Struct. Mol. Biol. 2014;21:64–72. doi: 10.1038/nsmb.2735. PubMed DOI PMC
Li Q., Eichten S.R., Hermanson P.J., Zaunbrecher V.M., Song J.W., Wendt J., Rosenbaum H., Madzima T.F., Sloan A.E., Huang J., et al. Genetic Perturbation of the Maize Methylome. Plant Cell. 2014;26:4602–4616. doi: 10.1105/tpc.114.133140. PubMed DOI PMC
Kovarik A., Van Houdt H., Holy A., Depicker A. Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett. 2000;467:47–51. doi: 10.1016/S0014-5793(00)01077-2. PubMed DOI
Xu Y., Miao Y.X., Cai B.T., Yi Q.P., Tian X.J., Wang Q.H., Ma D., Luo Q., Tan F., Hu Y.F. A histone deacetylase inhibitor enhances rice immunity by derepressing the expression of defense-related genes. Front. Plant Sci. 2022;13:1041095. doi: 10.3389/fpls.2022.1041095. PubMed DOI PMC
Matyasek R., Fulnecek J., Leitch A.R., Kovarik A. Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. New Phytol. 2011;192:747–759. doi: 10.1111/j.1469-8137.2011.03827.x. PubMed DOI
Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Jenkins G., Hasterok R. BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2007;2:88–98. doi: 10.1038/nprot.2006.490. PubMed DOI