methylation dynamics of CGs Dotaz Zobrazit nápovědu
BACKGROUND: Methylation of cytosines is an evolutionarily conserved epigenetic mark that is essential for the control of chromatin activity in many taxa. It acts mainly repressively, causing transcriptional gene silencing. In plants, de novo DNA methylation is established mainly by RNA-directed DNA-methylation pathway. Even though the protein machinery involved is relatively well-described, the course of the initial phases remains covert. RESULTS: We show the first detailed description of de novo DNA-methylation dynamics. Since prevalent plant model systems do not provide the possibility to collect homogenously responding material in time series with short intervals, we developed a convenient system based on tobacco BY-2 cell lines with inducible production of siRNAs (from an RNA hairpin) guiding the methylation machinery to the CaMV 35S promoter controlling GFP reporter. These lines responded very synchronously, and a high level of promoter-specific siRNAs triggered rapid promoter methylation with the first increase observed already 12 h after the induction. The previous presence of CG methylation in the promoter did not affect the methylation dynamics. The individual cytosine contexts reacted differently. CHH methylation peaked at about 80% in 2 days and then declined, whereas CG and CHG methylation needed more time with CHG reaching practically 100% after 10 days. Spreading of methylation was only minimal outside the target region in accordance with the absence of transitive siRNAs. The low and stable proportion of 24-nt siRNAs suggested that Pol IV was not involved in the initial phases. CONCLUSIONS: Our results show that de novo DNA methylation is a rapid process initiated practically immediately with the appearance of promoter-specific siRNAs and independently of the prior presence of methylcytosines at the target locus. The methylation was precisely targeted, and its dynamics varied depending on the cytosine sequence context. The progressively increasing methylation resulted in a smooth, gradual inhibition of the promoter activity, which was entirely suppressed in 2 days.
- MeSH
- Caulimovirus genetika MeSH
- estradiol farmakologie MeSH
- malá interferující RNA genetika metabolismus MeSH
- metylace DNA * účinky léků MeSH
- plazmidy genetika metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- RNA interference MeSH
- rostlinné buňky metabolismus MeSH
- tabák cytologie MeSH
- zelené fluorescenční proteiny antagonisté a inhibitory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite the widely accepted involvement of DNA methylation in the regulation of rDNA transcription, the relative participation of different cytosine methylation pathways is currently described only for a few model plants. Using PacBio, Bisulfite, and RNA sequencing; PCR; Southern hybridizations; and FISH, the epigenetic consequences of rDNA copy number variation were estimated in two T. porrifolius lineages, por1 and por2, the latter with more than twice the rDNA copy numbers distributed approximately equally between NORs on chromosomes A and D. The lower rDNA content in por1 correlated with significantly reduced (>90%) sizes of both D-NORs. Moreover, two (L and S) prominent rDNA variants, differing in the repetitive organization of intergenic spacers, were detected in por2, while only the S-rDNA variant was detected in por1. Transcriptional activity of S-rDNA in por1 was associated with secondary constriction of both A-NORs. In contrast, silencing of S-rDNA in por2 was accompanied by condensation of A-NORs, secondary constriction on D-NORs, and L-rDNA transcriptional activity, suggesting (i) bidirectional nucleolar dominance and (ii) association of S-rDNAs with A-NORs and L-rDNAs with D-NORs in T. porrifolius. Each S- and L-rDNA array was formed of several sub-variants differentiating both genetically (specific SNPs) and epigenetically (transcriptional efficiency and cytosine methylation). The most significant correlations between rDNA silencing and methylation were detected for symmetric CWG motifs followed by CG motifs. No correlations were detected for external cytosine in CCGs or asymmetric CHHs, where methylation was rather position-dependent, particularly for AT-rich variants. We conclude that variations in rDNA copy numbers in plant diploids can be accompanied by prompt epigenetic responses to maintain an appropriate number of active rDNAs. The methylation dynamics of CWGs are likely to be the most responsible for regulating silent and active rDNA states.
- MeSH
- chromozomy rostlin genetika MeSH
- cytosin * metabolismus MeSH
- epigeneze genetická MeSH
- genetická transkripce MeSH
- metylace DNA * MeSH
- regulace genové exprese u rostlin MeSH
- ribozomální DNA * genetika MeSH
- umlčování genů * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Publikační typ
- časopisecké články MeSH