Genetic Analysis of Lung Cancer and the Germline Impact on Somatic Mutation Burden
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R03 CA256222
NCI NIH HHS - United States
29019
Cancer Research UK - United Kingdom
K99 CA246076
NCI NIH HHS - United States
C18281/A29019
Cancer Research UK - United Kingdom
U01 CA167462
NCI NIH HHS - United States
U19 CA203654
NCI NIH HHS - United States
001
World Health Organization - International
MR/T043202/1
Medical Research Council - United Kingdom
PubMed
35511172
PubMed Central
PMC9360465
DOI
10.1093/jnci/djac087
PII: 6576636
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie * MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- mutace MeSH
- nádory plic * epidemiologie genetika patologie MeSH
- zárodečné buňky patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Germline genetic variation contributes to lung cancer (LC) susceptibility. Previous genome-wide association studies (GWAS) have implicated susceptibility loci involved in smoking behaviors and DNA repair genes, but further work is required to identify susceptibility variants. METHODS: To identify LC susceptibility loci, a family history-based genome-wide association by proxy (GWAx) of LC (48 843 European proxy LC patients, 195 387 controls) was combined with a previous LC GWAS (29 266 patients, 56 450 controls) by meta-analysis. Colocalization was used to explore candidate genes and overlap with existing traits at discovered susceptibility loci. Polygenic risk scores (PRS) were tested within an independent validation cohort (1 666 LC patients vs 6 664 controls) using variants selected from the LC susceptibility loci and a novel selection approach using published GWAS summary statistics. Finally, the effects of the LC PRS on somatic mutational burden were explored in patients whose tumor resections have been profiled by exome (n = 685) and genome sequencing (n = 61). Statistical tests were 2-sided. RESULTS: The GWAx-GWAS meta-analysis identified 8 novel LC loci. Colocalization implicated DNA repair genes (CHEK1), metabolic genes (CYP1A1), and smoking propensity genes (CHRNA4 and CHRNB2). PRS analysis demonstrated that these variants, as well as subgenome-wide significant variants related to expression quantitative trait loci and/or smoking propensity, assisted in LC genetic risk prediction (odds ratio = 1.37, 95% confidence interval = 1.29 to 1.45; P < .001). Patients with higher genetic PRS loads of smoking-related variants tended to have higher mutation burdens in their lung tumors. CONCLUSIONS: This study has expanded the number of LC susceptibility loci and provided insights into the molecular mechanisms by which these susceptibility variants contribute to LC development.
1st Faculty of Medicine Charles University Prague Czech Republic
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Lodz Poland
Department of Hematology St Jude Children's Research Hospital Memphis TN USA
Faculty of Medicine Palacky University Olomouc Czech Republic
Fondation Synergie Lyon Cancer Plateforme de bioinformatique Gilles Thomas Lyon France
Inria Centre de Recherche Grenoble Rhone Alpes Grenoble France
Institute for Clinical and Translational Research Baylor College of Medicine Houston USA
International Organisation for Cancer Prevention and Research Belgrade Serbia
Lunenfeld Tanenbaum Research Institute Sinai Health Toronto Canada
MRC Integrative Epidemiology Unit University of Bristol Bristol UK
National Institute of Public Health Bucharest Romania
Population Health Sciences Bristol Medical School University of Bristol Bristol UK
Russian N N Blokhin Cancer Research Centre Moscow Russian Federation
Université Paris Saclay The French Alternative Energies and Atomic Energy Commission Evry France
Zobrazit více v PubMed
Tokuhata GK, Lilienfeld AM.. Familial aggregation of lung cancer in humans. J Natl Cancer Inst. 1963;30(2):289-312. PubMed
Schwartz AG, Yang P, Swanson GM.. Familial risk of lung cancer among nonsmokers and their relatives. Am J Epidemiol. 1996;144(6):554-562. doi:10.1093/oxfordjournals.aje.a008965 PubMed DOI
Ooi WL, Elston RC, Chen VW, Bailey-Wilson JE, Rothschild H.. Increased familial risk for lung cancer. J Natl Cancer Inst. 1986;76(2):217-222. doi:10.1093/jnci/76.2.217. PubMed DOI
Sellers TA, Bailey-Wilson JE, Elston RC, et al.Evidence for mendelian inheritance in the pathogenesis of lung cancer. J Natl Cancer Inst. 1990;82(15):1272-1279. doi:10.1093/jnci/82.15.1272. PubMed DOI
Mucci LA, Hjelmborg JB, Harris JR, et al.Familial risk and heritability of cancer among twins in Nordic countries. JAMA. 2016;315(1):68-76. doi:10.1001/jama.2015.17703. PubMed DOI PMC
Hung RJ, McKay JD, Gaborieau V, et al.A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633-637. doi:10.1038/nature06885. PubMed DOI
Amos CI, Wu X, Broderick P, et al.Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40(5):616-622. doi:10.1038/ng.109. PubMed DOI PMC
Patel YM, Park SL, Han Y, et al.Novel association of genetic markers affecting CYP2A6 activity and lung cancer risk. Cancer Res. 2016;76(19):5768-5776. doi:10.1158/0008-5472.CAN-16-0446 PubMed DOI PMC
Brennan P, McKay J, Moore L, et al.Uncommon CHEK2 mis-sense variant and reduced risk of tobacco-related cancers: case control study. Hum Mol Genet. 2007;16(15):1794-1801. doi:10.1093/hmg/ddm127 PubMed DOI
Wang Y, McKay JD, Rafnar T, et al.Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat Genet. 2014;46(7):736-741. doi:10.1038/ng.3002. PubMed DOI PMC
Ji X, Mukherjee S, Landi MT, et al.Protein-altering germline mutations implicate novel genes related to lung cancer development. Nat Commun. 2020;11(1):2220.doi:10.1038/s41467-020-15905-6. PubMed DOI PMC
McKay JD, Hung RJ, Gaborieau V, et al.Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40(12):1404-1406. doi:10.1038/ng.254. PubMed DOI PMC
McKay JD, Hung RJ, Han Y, et al.Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126-1132. doi:10.1038/ng.3892. PubMed DOI PMC
Liu JZ, Erlich Y, Pickrell JK.. Case-control association mapping by proxy using family history of disease. Nat Genet. 2017;49(3):325-331. doi:10.1038/ng.3766. PubMed DOI
Jansen IE, Savage JE, Watanabe K, et al.Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404-413. doi:10.1038/s41588-018-0311-9. PubMed DOI PMC
Han B, Eskin E.. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am J Hum Genet. 2011;88(5):586-598. doi:10.1016/j.ajhg.2011.04.014. PubMed DOI PMC
Bulik-Sullivan BK, Loh PR, Finucane HK, et al.LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291-295. doi:10.1038/ng.3211. PubMed DOI PMC
Giambartolomei C, Vukcevic D, Schadt EE, et al.Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383.doi:10.1371/journal.pgen.1004383. PubMed DOI PMC
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318-1330. doi:10.1126/science.aaz1776. PubMed DOI PMC
Sulem P, Gudbjartsson DF, Geller F, et al.Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption. Hum Mol Genet. 2011;20(10):2071-2077. doi:10.1093/hmg/ddr086. PubMed DOI PMC
Zheng J, Elsworth B, Wade KH, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408. doi:10.7554/eLife.34408. PubMed PMC
Purcell S, Neale B, Todd-Brown K, et al.PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-575. doi:10.1086/519795 PubMed DOI PMC
Choi SW, O’Reilly PF.. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience. 2019;8(7):giz082. doi:10.1093/gigascience/giz082. PubMed DOI PMC
Ellrott K, Bailey MH, Saksena G, et al.; for the Cancer Genome Atlas Research Network. Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines. Cell Syst. 2018;6(3):271-81.e7. doi:10.1016/j.cels.2018.03.002. PubMed DOI PMC
Liu M, Jiang Y, Wedow R, et al.; for the HUNT All-In Psychiatry. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237-244. doi:10.1038/s41588-018-0307-5. PubMed DOI PMC
McGranahan TM, Patzlaff NE, Grady SR, Heinemann SF, Booker TK.. Α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci. 2011;31(30):10891-10902. doi:10.1523/JNEUROSCI.0937-11.2011. PubMed DOI PMC
Walsh RM Jr, Roh SH, Gharpure A, Morales-Perez CL, Teng J, Hibbs RE.. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature. 2018;557(7704):261-265. doi:10.1038/s41586-018-0081-7. PubMed DOI PMC
Gonzales D, Rennard SI, Nides M, et al.Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):47-55. doi:10.1001/jama.296.1.47. PubMed DOI
Wang Y, Broderick P, Webb E, et al.Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet. 2008;40(12):1407-1409. doi:10.1038/ng.273. PubMed DOI PMC
Ferreiro-Iglesias A, Lesseur C, McKay J, et al.Fine mapping of MHC region in lung cancer highlights independent susceptibility loci by ethnicity. Nat Commun. 2018;9(1):3927.doi:10.1038/s41467-018-05890-2. PubMed DOI PMC
Broderick P, Wang Y, Vijayakrishnan J, et al.Deciphering the impact of common genetic variation on lung cancer risk: a genome-wide association study. Cancer Res. 2009;69(16):6633-6641. doi:10.1158/0008-5472.CAN-09-0680. PubMed DOI PMC
Melin BS, Barnholtz-Sloan JS, Wrensch MR, et al.; for the GliomaScan Consortium. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet. 2017;49(5):789-794. doi:10.1038/ng.3823. PubMed DOI PMC
Lesseur C, Ferreiro-Iglesias A, McKay JD, et al.Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers. PLoS Genet. 2021;17(3):e1009254.doi:10.1371/journal.pgen.1009254. PubMed DOI PMC
Kachuri L, Graff RE, Smith-Byrne K, et al.Pan-cancer analysis demonstrates that integrating polygenic risk scores with modifiable risk factors improves risk prediction. Nat Commun. 2020;11(1):6084.doi:10.1038/s41467-020-19600-4. PubMed DOI PMC
Hung RJ, Warkentin MT, Brhane Y, et al.Assessing lung cancer absolute risk trajectory based on a polygenic risk model. Cancer Res. 2021;81(6):1607-1615. doi:10.1158/0008-5472.CAN-20-1237. PubMed DOI PMC
Wang X, Ricciuti B, Nguyen T, et al.Association between smoking history and tumor mutation burden in advanced non-small cell lung cancer. Cancer Res. 2021;81(9):2566-2573. doi:10.1158/0008-5472.CAN-20-3991. PubMed DOI PMC