Molecular detection and identification of Trichobilharzia: development of a LAMP, qPCR, and multiplex PCR toolkit
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA24-11031S
Grantová Agentura České Republiky
GA24-11031S
Grantová Agentura České Republiky
GA24-11031S
Grantová Agentura České Republiky
GA24-11031S
Grantová Agentura České Republiky
GA24-11031S
Grantová Agentura České Republiky
SVV 260678/2023
Charles University institutional funding
UNCE24/SCI/011
Charles University institutional funding
UNCE24/SCI/011
Charles University institutional funding
SVV 260678/2023
Charles University institutional funding
UNCE24/SCI/011
Charles University institutional funding
PubMed
40448150
PubMed Central
PMC12124058
DOI
10.1186/s13071-025-06822-y
PII: 10.1186/s13071-025-06822-y
Knihovny.cz E-zdroje
- Klíčová slova
- Trichobilharzia, Bird schistosomes, Cercarial dermatitis, Detection, LAMP, Monitoring, Multiplex PCR, qPCR,
- MeSH
- diagnostické techniky molekulární * metody MeSH
- DNA helmintů genetika MeSH
- hlemýždi parazitologie MeSH
- infekce červy třídy Trematoda * diagnóza parazitologie veterinární MeSH
- kvantitativní polymerázová řetězová reakce * metody MeSH
- multiplexová polymerázová řetězová reakce * metody MeSH
- ptáci parazitologie MeSH
- Schistosomatidae * genetika izolace a purifikace klasifikace MeSH
- senzitivita a specificita MeSH
- techniky amplifikace nukleových kyselin * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA helmintů MeSH
BACKGROUND: Cercarial dermatitis (CD), or swimmer's itch, is a water-borne allergic skin reaction caused by the penetration of the larval stages of bird schistosomes (cercariae) into the skin. Members of the genus Trichobilharzia are the primary causative agents of CD worldwide. Due to the increasing number of cases, CD is regarded as a (re)emerging disease. Outbreaks in recreational waters can significantly impact public health and local economies. Environmental monitoring of Trichobilharzia is crucial for outbreak prediction and public health management. However, conventional methods, such as cercarial shedding and snail dissections, are labour-intensive and lack sensitivity. To overcome these limitations, we present a molecular toolkit that combines loop-mediated isothermal amplification (LAMP), quantitative polymerase chain reaction (qPCR), and multiplex PCR for rapid, sensitive, and accurate detection and identification of Trichobilharzia spp. from various biological samples. METHODS: Tricho-LAMP and Tricho-qPCR were designed and optimised for Trichobilharzia DNA detection. A multiplex PCR assay was also developed and optimised to identify the three main species causing CD in Europe (Trichobilharzia franki, T. szidati, and T. regenti). RESULTS: Tricho-LAMP specifically detected T. regenti and T. franki at 10-3 ng, and T. szidati at 10-2 ng per reaction with genomic DNA. Using gBlocks synthetic DNA, Tricho-LAMP achieved 100% amplification at 10,000 copies and 85% amplification at 1000 copies, with decreasing success at lower concentrations. Tricho-qPCR showed the highest sensitivity, detecting all species down to 10-4 ng per reaction and showing a limit of detection at 10 copies of synthetic DNA in the reaction. Multiplex PCR allowed reliable species differentiation via gel electrophoresis of the PCR products, but the assay had the lowest sensitivity. CONCLUSIONS: We provide a molecular toolkit consisting of LAMP, qPCR, and multiplex PCR. By exhibiting high sensitivity, Tricho-LAMP and Tricho-qPCR assays are potentially suitable for environmental DNA (eDNA)-based environmental monitoring of bird schistosomes, by both researchers and public health authorities. Multiplex PCR can be used for species determination without the need for further sequencing.
Zobrazit více v PubMed
Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28:165–90. PubMed PMC
Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res. 2018;117:3881–95. PubMed
Langenberg MCC, Hoogerwerf M-A, Koopman JPR, Janse JJ, Kos-van Oosterhoud J, Feijt C, et al. A controlled human Schistosoma mansoni infection model to advance novel drugs, vaccines and diagnostics. Nat Med. 2020;26:326–32. PubMed
Horák P, Kolářová L, Adema CM. Biology of the schistosome genus Trichobilharzia. Adv Parasitol. 2002;52:155–233. PubMed
Kouřilová P, Hogg KG, Kolářová L, Mountford AP. Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions. J Immunol. 2004;172:3766–74. PubMed
Kolářová L, Horák P, Skírnisson K, Marečková H, Doenhoff M. Cercarial dermatitis, a neglected allergic disease. Clin Rev Allergy Immunol. 2013;45:63–74. PubMed
Chamot E, Toscani L, Rougemont A. Public health importance and risk factors for cercarial dermatitis associated with swimming in Lake Leman at Geneva. Switzerland Epidemiol Infect. 1998;120:305–14. PubMed PMC
Schets FM, Lodder WJ, van Duynhoven YTHP, de Roda Husman AM. Cercarial dermatitis in the Netherlands caused by Trichobilharzia spp. J Water Health. 2008;6:187–95. PubMed
Tracz ES, Al-Jubury A, Buchmann K, Bygum A. Outbreak of swimmer’s itch in Denmark. Acta Derm Venereol. 2019;99:1116–20. PubMed
Gulyás K, Soldánová M, Orosová M, Oros M. Confirmation of the presence of zoonotic Trichobilharzia franki following a human cercarial dermatitis outbreak in recreational water in Slovakia. Parasitol Res. 2020;119:2531–7. PubMed
Caron Y, Cabaraux A, Marechal F, Losson B. Swimmer’s itch in Belgium: first recorded outbreaks, molecular identification of the parasite species and intermediate hosts. Vector-Borne Zoonotic Dis. 2017;17:190–4. PubMed
De Liberato C, Berrilli F, Bossù T, Magliano A, Montalbano Di Filippo M, Di Cave D, et al. Outbreak of swimmer’s itch in Central Italy: description, causative agent and preventive measures. Zoonoses Public Health. 2019;66:377–81. PubMed
Korycińska J, Rybak-d’obyrn J, Kubiak D, Kubiak K, Dzika E. Dermatological and molecular evidence of human cercarial dermatitis in north-eastern Poland. Vector Borne Zoonotic Dis Larchmt N. 2021;21:269–74. PubMed
Kerr O, Juhász A, Jones S, Stothard JR. Human cercarial dermatitis (HCD) in the UK: an overlooked and under-reported nuisance? Parasit Vectors. 2024;17:83. PubMed PMC
Bispo MT, Calado M, Maurício IL, Ferreira PM, Belo S. Zoonotic threats: the (re)emergence of cercarial dermatitis, its dynamics, and impact in Europe. Pathogens. 2024;13:282. PubMed PMC
Brant SV, Loker ES. Schistosomes in the southwest United States and their potential for causing cercarial dermatitis or ‘swimmer’s itch.’ J Helminthol. 2009;83:191–8. PubMed PMC
Gordy MA, Cobb TP, Hanington PC. Swimmer’s itch in Canada: a look at the past and a survey of the present to plan for the future. Environ Health. 2018;17:73. PubMed PMC
Gohardehi S, Fakhar M, Madjidaei M. Avian schistosomes and human cercarial dermatitis in a wildlife refuge in Mazandaran Province, northern Iran. Zoonoses Public Health. 2013;60:442–7. PubMed
Lawton SP, Lim RM, Dukes JP, Cook RT, Walker AJ, Kirk RS. Identification of a major causative agent of human cercarial dermatitis, Trichobilharzia franki (Müller and Kimmig 1994), in southern England and its evolutionary relationships with other European populations. Parasit Vectors. 2014;7:277. PubMed PMC
Kolářová L, Horák P, Skírnisson K. Methodical approaches in the identification of areas with a potential risk of infection by bird schistosomes causing cercarial dermatitis. J Helminthol. 2010;84:327–35. PubMed
Rudko SP, Reimink RL, Froelich K, Gordy MA, Blankespoor CL, Hanington PC. Use of qPCR-based cercariometry to assess swimmer’s itch in recreational lakes. EcoHealth. 2018;15:827–39. PubMed PMC
Schets FM, Lodder WJ, de Roda Husman AM. Confirmation of the presence of Trichobilharzia by examination of water samples and snails following reports of cases of cercarial dermatitis. Parasitology. 2010;137:77–83. PubMed
Helmer N, Hörweg C, Sattmann H, Reier S, Szucsich NU, Bulantová J, et al. DNA Barcoding of Trichobilharzia (Trematoda: Schistosomatidae) species and their detection in eDNA water samples. Diversity. 2023;15:104.
Mahittikorn A, Thammasonthijarern N, Roobthaisong A, Udonsom R, Popruk S, Siri S, et al. Development of a loop-mediated isothermal amplification technique and comparison with quantitative real-time PCR for the rapid visual detection of canine neosporosis. Parasit Vectors. 2017;10:394. PubMed PMC
Fernández-Soto P, Fernández-Medina C, Cruz-Fernández S, Crego-Vicente B, Febrer-Sendra B, García-Bernalt Diego J, et al. Whip-LAMP: a novel LAMP assay for the detection of Trichuris muris-derived DNA in stool and urine samples in a murine experimental infection model. Parasit Vectors. 2020;13:552. PubMed PMC
Fernández-Soto P, Arahuetes JG, Hernández AS, Abán JL, Santiago BV, Muro A. A loop-mediated isothermal amplification (LAMP) assay for early detection of Schistosoma mansoni in stool samples: a diagnostic approach in a murine model. PLoS Negl Trop Dis. 2014;8:e3126. PubMed PMC
Blin M, Senghor B, Boissier J, Mulero S, Rey O, Portela J. Development of environmental loop-mediated isothermal amplification (eLAMP) diagnostic tool for Bulinus truncatus field detection. Parasit Vectors. 2023;16:78. PubMed PMC
Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol. 2022;52:343–58. PubMed
Macháček T, Leontovyč R, Šmídová B, Majer M, Vondráček O, Vojtěchová I, et al. Mechanisms of the host immune response and helminth-induced pathology during Trichobilharzia regenti (Schistosomatidae) neuroinvasion in mice. PLoS Pathog. 2022;18:e1010302. PubMed PMC
Peterková K, Konečný L, Macháček T, Jedličková L, Winkelmann F, Sombetzki M, et al. Winners vs losers: Schistosomamansoni intestinal and liver eggs exhibit striking differences in gene expression and immunogenicity. PLoS Pathog. 2024;20:e1012268. PubMed PMC
Dvořák J, Vaňáčová Š, Hampl V, Flegr J, Horák P. Comparison of European Trichobilharzia species based on ITS1 and ITS2 sequences. Parasitology. 2002;124:307–13. PubMed
Gabrielli AF, Garba DA. Schistosomiasis in Europe. Curr Trop Med Rep. 2023;10:79–87.
Kane RA, Stothard JR, Rollinson D, Leclipteux T, Evraerts J, Standley CJ, et al. Detection and quantification of schistosome DNA in freshwater snails using either fluorescent probes in real-time PCR or oligochromatographic dipstick assays targeting the ribosomal intergenic spacer. Acta Trop. 2013;128:241–9. PubMed
Rudko SP, Turnbull A, Reimink RL, Froelich K, Hanington PC. Species-specific qPCR assays allow for high-resolution population assessment of four species avian schistosome that cause swimmer’s itch in recreational lakes. Int J Parasitol Parasites Wildl. 2019;9:122–9. PubMed PMC
Jothikumar N, Mull BJ, Brant SV, Loker ES, Collinson J, Secor WE, et al. Real-Time PCR and sequencing assays for rapid detection and identification of avian schistosomes in environmental samples. Appl Environ Microbiol. 2015;81:4207–15. PubMed PMC
Fernández-Soto P, Gandasegui J, Rodríguez CC, Pérez-Arellano JL, Crego-Vicente B, Diego JGB, et al. Detection of Schistosoma mansoni-derived DNA in human urine samples by loop-mediated isothermal amplification (LAMP). PLoS ONE. 2019;14:e0214125. PubMed PMC
Besuschio SA, Murcia ML, Benatar AF, Monnerat S, Cruz I, Picado A, et al. Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples. PLoS Negl Trop Dis. 2017;11:e0005779. PubMed PMC
Davis CN, Tyson F, Cutress D, Davies E, Jones DL, Brophy PM, et al. Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections. Parasit Vectors. 2020;13:496. PubMed PMC
Wang D-G, Brewster JD, Paul M, Tomasula PM. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules. 2015;20:6048–59. PubMed PMC
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, et al. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. Sci Total Environ. 2023;873:162322. PubMed
Podhorský M, Hůzová Z, Mikeš L, Horák P. Cercarial dimensions and surface structures as a tool for species determination of Trichobilharzia spp. Acta Parasitol. 2009;54:28–36.
Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda)1. Int J Parasitol. 2003;33:733–55. PubMed
Pennance T, Archer J, Lugli EB, Rostron P, Llanwarne F, Ali SM, et al. Development of a molecular snail xenomonitoring assay to detect Schistosoma haematobium and Schistosoma bovis infections in their Bulinus snail hosts. Molecules. 2020;25:4011. PubMed PMC
Schols R, Carolus H, Hammoud C, Mulero S, Mudavanhu A, Huyse T. A rapid diagnostic multiplex PCR approach for xenomonitoring of human and animal schistosomiasis in a “One Health” context. Trans R Soc Trop Med Hyg. 2019;113:722–9. PubMed
Pennance T, Lam Y, Bigot N, Trapp J, Spaan JM, Ogara G, et al. A rapid diagnostic PCR assay for the detection of Schistosoma mansoni in their snail vectors. J Parasitol. 2024;110:684–9. PubMed
Blin M, Dametto S, Agniwo P, Webster BL, Angora E, Dabo A, et al. A duplex tetra-primer ARMS-PCR assay to discriminate three species of the Schistosoma haematobium group: Schistosomacurassoni, S.bovis, S.haematobium and their hybrids. Parasit Vectors. 2023;16:121. PubMed PMC