Winners vs. losers: Schistosoma mansoni intestinal and liver eggs exhibit striking differences in gene expression and immunogenicity
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38814989
PubMed Central
PMC11166329
DOI
10.1371/journal.ppat.1012268
PII: PPATHOGENS-D-23-02093
Knihovny.cz E-resources
- MeSH
- Antigens, Helminth immunology MeSH
- Liver * parasitology immunology metabolism MeSH
- Mice MeSH
- Ovum metabolism immunology MeSH
- Helminth Proteins genetics metabolism immunology MeSH
- Schistosoma mansoni * immunology genetics MeSH
- Schistosomiasis mansoni * immunology parasitology MeSH
- Intestines parasitology immunology MeSH
- Egg Proteins MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antigens, Helminth MeSH
- IPSE protein, Schistosoma mansoni MeSH Browser
- Helminth Proteins MeSH
- Egg Proteins MeSH
The eggs of the blood fluke Schistosoma mansoni are the main cause of the clinical manifestations of chronic schistosomiasis. After laying, the egg "winners" attach to the endothelium of the mesenteric vein and, after a period of development, induce the growth of a small granuloma, which facilitates their passage to the intestinal lumen. Egg "losers" carried by the bloodstream to non-specific tissues also undergo full development and induce large granuloma formation, but their life ends there. Although these trapped eggs represent a dead end in the parasite life cycle, the vast majority of studies attempting to describe the biology of the S. mansoni eggs have studied these liver-trapped "losers" instead of migrating intestinal "winners". This raises the fundamental question of how these eggs differ. With robust comparative transcriptomic analysis performed on S. mansoni eggs isolated 7 weeks post infection, we show that gene expression is critically dependent on tissue localization, both in the early and late stages of development. While mitochondrial genes and venom allergen-like proteins are significantly upregulated in mature intestinal eggs, well-described egg immunomodulators IPSE/alpha-1 and omega-1, together with micro-exon genes, are predominantly expressed in liver eggs. In addition, several proteases and protease inhibitors previously implicated in egg-host interactions display clear tissue-specific gene expression patterns. These major differences in gene expression could be then reflected in the observed different ability of liver and intestinal soluble egg antigens to elicit host immune responses and in the shorter viability of miracidia hatched from liver eggs. Our comparative analysis provides a new perspective on the biology of parasite's eggs in the context of their development and tissue localization. These findings could contribute to a broader and more accurate understanding of parasite eggs interactions with the host, which have historically been often restricted to liver eggs and sometimes inaccurately generalized.
Department of Parasitology Faculty of Science Charles University Prague Czechia
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czechia
See more in PubMed
Moore D V., Sandground JH. The relative egg producing capacity of Schistosoma mansoni and Schistosoma japonicum. Am J Trop Med Hyg. 1956;5: 831–840. doi: 10.4269/ajtmh.1956.5.831 PubMed DOI
Michaels RM, Prata A. Evolution and characteristics of Schistosoma mansoni eggs laid in vitro. J Parasitol. 1968;54: 921–930. doi: 10.2307/3277120 PubMed DOI
Ashton PD, Harrop R, Shah B, Wilson RA. The schistosome egg: Development and secretions. Parasitology. 2001;122: 329–338. doi: 10.1017/s0031182001007351 PubMed DOI
Jurberg AD, Gonçalves T, Costa TA, Mattos ACA, Pascarelli BM, Manso PPA, et al.. The embryonic development of Schistosoma mansoni eggs: Proposal for a new staging system. Dev Genes Evol. 2009;219: 219–234. doi: 10.1007/s00427-009-0285-9 PubMed DOI
Takaki KK, Rinaldi G, Berriman M, Pagán AJ, Ramakrishnan L. Schistosoma mansoni Eggs Modulate the Timing of Granuloma Formation to Promote Transmission. Cell Host Microbe. 2021;29: 58–67.e5. doi: 10.1016/J.CHOM.2020.10.002 PubMed DOI PMC
Schwartz C, Fallon PG. Schistosoma “Eggs-Iting” the Host: Granuloma Formation and Egg Excretion. Frontiers in immunology. NLM (Medline); 2018. p. 2492. doi: 10.3389/fimmu.2018.02492 PubMed DOI PMC
Fan PC, Kang YC. Egg production capacity of one-pair worms of Schistosoma japonicum in albino mice. Southeast Asian J Trop Med Public Health. 2003;34: 708–12. Available: http://www.ncbi.nlm.nih.gov/pubmed/15115075 PubMed
Hams E, Aviello G, Fallon PG. The Schistosoma granuloma: Friend or foe? Front Immunol. 2013;4: 89. doi: 10.3389/fimmu.2013.00089 PubMed DOI PMC
Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. The Lancet. Lancet Publishing Group; 2014. pp. 2253–2264. doi: 10.1016/S0140-6736(13)61949-2 PubMed DOI PMC
Cass CL, Johnson JR, Califf LL, Xu T, Hernandez HJ, Stadecker MJ, et al.. Proteomic analysis of Schistosoma mansoni egg secretions. Mol Biochem Parasitol. 2007;155: 84. doi: 10.1016/j.molbiopara.2007.06.002 PubMed DOI PMC
Mathieson W, Wilson RA. A comparative proteomic study of the undeveloped and developed Schistosoma mansoni egg and its contents: The miracidium, hatch fluid and secretions. Int J Parasitol. 2010;40: 617–628. doi: 10.1016/j.ijpara.2009.10.014 PubMed DOI
Carson JP, Robinson MW, Hsieh MH, Cody J, Le L, You H, et al.. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol Biochem Parasitol. 2020;240: 111322. doi: 10.1016/j.molbiopara.2020.111322 PubMed DOI PMC
Schramm G, Gronow A, Knobloch J, Wippersteg V, Grevelding CG, Galle J, et al.. IPSE/alpha-1: A major immunogenic component secreted from Schistosoma mansoni eggs. Mol Biochem Parasitol. 2006;147: 9–19. doi: 10.1016/j.molbiopara.2006.01.003 PubMed DOI
Everts B, Perona-Wright G, Smits HH, Hokke CH, Van Der Ham AJ, Fitzsimmons CM, et al.. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J Exp Med. 2009;206: 1673–1680. doi: 10.1084/jem.20082460 PubMed DOI PMC
Fahel JS, MacEdo GC, Pinheiro CS, Caliari M V., Oliveira SC. IPSE/alpha-1 of Schistosoma mansoni egg induces enlargement of granuloma but does not alter Th2 balance after infection. Parasite Immunol. 2010;32: 345–353. doi: 10.1111/J.1365-3024.2009.01192.X PubMed DOI
Everts B, Hussaarts L, Driessen NN, Meevissen MHJ, Schramm G, van der Ham AJ, et al.. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J Exp Med. 2012;209: 1753. doi: 10.1084/jem.20111381 PubMed DOI PMC
Dunne DW, Jones FM, Doenhoff MJ. The purification, characterization, serological activity and hepatotoxic properties of two cationic glycoproteins (alpha 1 and omega 1) from Schistosoma mansoni eggs. Parasitology. 1991;103 Pt 2: 225–236. doi: 10.1017/S0031182000059503 PubMed DOI
Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D, et al.. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med. 2009;206: 1681–1690. doi: 10.1084/jem.20082462 PubMed DOI PMC
Lu Z, Berriman M. Meta-analysis of RNA-seq studies reveals genes responsible for life stage-dominant functions in Schistosoma mansoni. bioRxiv. 2018; 308189. doi: 10.1101/308189 DOI
Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, et al.. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. Jex AR, editor. PLoS Negl Trop Dis. 2015;9: e0004334. doi: 10.1371/journal.pntd.0004334 PubMed DOI PMC
Lu Z, Sankaranarayanan G, Rawlinson KA, Offord V, Brindley PJ, Berriman M, et al.. The Transcriptome of Schistosoma mansoni Developing Eggs Reveals Key Mediators in Pathogenesis and Life Cycle Propagation. Front Trop Dis. 2021;0: 14. doi: 10.3389/FITD.2021.713123 PubMed DOI PMC
Peterkova K, Vorel J, Ilgova J, Ostasov P, Fajtova P, Konecny L, et al.. Proteases and their inhibitors involved in Schistosoma mansoni egg-host interaction revealed by comparative transcriptomics with Fasciola hepatica eggs. Int J Parasitol. 2023;53: 253–263. doi: 10.1016/j.ijpara.2022.12.007 PubMed DOI
Weinstock J V, Boros DL. Organ-dependent differences in composition and function observed in hepatic and intestinal granulomas isolated from mice with Schistosomiasis mansoni. J Immunol. 1983;130: 418–22. Available: http://www.ncbi.nlm.nih.gov/pubmed/6600190 PubMed
Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Frontiers in immunology. NLM (Medline); 2018. p. 3042. doi: 10.3389/fimmu.2018.03042 PubMed DOI PMC
Wilbers RHP, Schneiter R, Holterman MHM, Drurey C, Smant G, Asojo OA, et al.. Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. Lok JB, editor. PLOS Pathog. 2018;14: e1007300. doi: 10.1371/journal.ppat.1007300 PubMed DOI PMC
Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, et al.. The genomes of four tapeworm species reveal adaptations to parasitism. Nat 2013 4967443. 2013;496: 57–63. doi: 10.1038/nature12031 PubMed DOI PMC
DeMarco R, Mathieson W, Manuel SJ, Dillon GP, Curwen RS, Ashton PD, et al.. Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts. Genome Res. 2010;20: 1112–1121. doi: 10.1101/gr.100099.109 PubMed DOI PMC
Kasny M, Mikes L, Hampl V, Dvorak J, Caffrey CR, Dalton JP, et al.. Peptidases of trematodes. Advances in Parasitology. 2009. pp. 205–297. doi: 10.1016/S0065-308X(09)69004-7 PubMed DOI
Ranasinghe SL, McManus DP. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol. 2017;33: 400–413. doi: 10.1016/j.pt.2016.12.013 PubMed DOI
Knuhr K, Langhans K, Nyenhuis S, Viertmann K, Overgaard Kildemoes AM, Doenhoff MJ, et al.. Schistosoma mansoni egg-released IPSE/alpha-1 dampens inflammatory cytokine responses viabasophil interleukin (IL)-4 and IL-13. Front Immunol. 2018;9: 2293. doi: 10.3389/fimmu.2018.02293 PubMed DOI PMC
Colley DG, Secor WE. Immunology of human schistosomiasis. Parasite Immunol. 2014;36: 347–357. doi: 10.1111/pim.12087 PubMed DOI PMC
Schramm G, Falcone FH, Gronow A, Haisch K, Mamat U, Doenhoff MJ, et al.. Molecular characterization of an interleukin-4-inducing factor from Schistosoma mansoni eggs. J Biol Chem. 2003;278: 18384–18392. doi: 10.1074/jbc.M300497200 PubMed DOI
Grimaud JA, Boros DL, Takiya C, Mathew RC, Emonard H. Collagen Isotypes, Laminin, and Fibronectin in Granulomas of the Liver and Intestines of Schistosoma mansoni-Infected Mice. Am J Trop Med Hyg. 1987;37: 335–344. doi: 10.4269/AJTMH.1987.37.335 PubMed DOI
Sölter R, von Buelow V, Dreizler D, Stampa G, Quack T, Grevelding CG, et al.. Myeloperoxidase from neutrophile granulocytes accomplish destruction of Schistosoma mansoni eggs. J Hepatol. 2023;78: S339–S340. doi: 10.1016/s0168-8278(23)00966-2 DOI
Lewis FA, Stirewalt MA, Souza CP, Gazzinelli G. Large-scale laboratory maintenance of Schistosoma mansoni, with observations on three schistosome/snail host combinations. J Parasitol. 1986;72: 813–829. doi: 10.2307/3281829 PubMed DOI
Lombardo FC, Pasche V, Panic G, Endriss Y, Keiser J. Life cycle maintenance and drug-sensitivity assays for early drug discovery in Schistosoma mansoni. [cited 13 May 2020]. doi: 10.1038/s41596-018-0101-y PubMed DOI
Hagen J, Young ND, Every AL, Pagel CN, Schnoeller C, Scheerlinck JPY, et al.. Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nat Commun. 2014;5. doi: 10.1038/ncomms6375 PubMed DOI PMC
Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990;172: 1425. doi: 10.1084/jem.172.5.1425 PubMed DOI PMC
Clutterbuck EJ, Hirst EMA, Sanderson CJ. Human Interleukin-5 (IL-5) Regulates the Production of Eosinophils in Human Bone Marrow Cultures: Comparison and Interaction With IL-1, IL-3, IL-6, and GMCSF. Blood. 1989;73: 1504–1512. doi: 10.1182/BLOOD.V73.6.1504.1504 PubMed DOI
Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, et al.. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol. 2001;167: 6533–6544. doi: 10.4049/jimmunol.167.11.6533 PubMed DOI
Wenk P. The function of non circulating microfilariae: Litomosoides carinii (Nematoda: Filarioidea). Dtsch Tierarztl Wochenschr. 1986;93: 414–418. PubMed
Bower MA, Constant SL, Mendez S. Necator americanus: The Na-ASP-2 protein secreted by the infective larvae induces neutrophil recruitment in vivo and in vitro. Exp Parasitol. 2008;118: 569–575. doi: 10.1016/J.EXPPARA.2007.11.014 PubMed DOI PMC
Yoshino TP, Brown M, Wu XJ, Jackson CJ, Ocadiz-Ruiz R, Chalmers IW, et al.. Excreted/secreted Schistosoma mansoni venom allergen-like 9 (SmVAL9) modulates host extracellular matrix remodelling gene expression. Int J Parasitol. 2014;44: 551–563. doi: 10.1016/J.IJPARA.2014.04.002 PubMed DOI PMC
Schnyder-Candrian S, Maillet I, Le Bert M, Brault L, Jacobs M, Ryffel B, et al.. Neutrophil Inhibitory Factor Selectively Inhibits the Endothelium-Driven Transmigration of Eosinophils In Vitro and Airway Eosinophilia in OVA-Induced Allergic Lung Inflammation. J Allergy. 2012;2012: 1–10. doi: 10.1155/2012/245909 PubMed DOI PMC
Perally S, Geyer KK, Farani PSG, Chalmers IW, Fernandez-Fuentes N, Maskell DR, et al.. Schistosoma mansoni venom allergen-like protein 6 (SmVAL6) maintains tegumental barrier function. Int J Parasitol. 2021;51: 251–261. doi: 10.1016/J.IJPARA.2020.09.004 PubMed DOI PMC
Wu XJ, Sabat G, Brown JF, Zhang M, Taft A, Peterson N, et al.. Proteomic analysis of Schistosoma mansoni proteins released during in vitro miracidium-to-sporocyst transformation. Mol Biochem Parasitol. 2009;164: 32–44. doi: 10.1016/J.MOLBIOPARA.2008.11.005 PubMed DOI PMC
Chalmers IW, McArdle AJ, Coulson RMR, Wagner MA, Schmid R, Hirai H, et al.. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the Schistosoma mansoni venom allergen-like (SmVAL) gene family. BMC Genomics. 2008;9: 1–20. doi: 10.1186/1471-2164-9-89/FIGURES/8 PubMed DOI PMC
Orcia D, Zeraik AE, Lopes JLS, Macedo JNA, Santos CR dos, Oliveira KC, et al.. Interaction of an esophageal MEG protein from schistosomes with a human S100 protein involved in inflammatory response. Biochim Biophys Acta—Gen Subj. 2017;1861: 3490–3497. doi: 10.1016/j.bbagen.2016.09.015 PubMed DOI
Wilson RA. Virulence factors of schistosomes. Microbes Infect. 2012;14: 1442–1450. doi: 10.1016/j.micinf.2012.09.001 PubMed DOI
Hambrook JR, Kaboré AL, Pila EA, Hanington PC. A metalloprotease produced by larval Schistosoma mansoni facilitates infection establishment and maintenance in the snail host by interfering with immune cell function. PLOS Pathog. 2018;14: e1007393. doi: 10.1371/JOURNAL.PPAT.1007393 PubMed DOI PMC
Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol. 2022;52: 343–358. doi: 10.1016/j.ijpara.2021.12.003 PubMed DOI
Kulkarni MM, Jones EA, McMaster WR, McGwire BS. Fibronectin binding and proteolytic degradation by Leishmania and effects on macrophage activation. Infect Immun. 2008;76: 1738–1747. doi: 10.1128/IAI.01274-07 PubMed DOI PMC
Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT. Leishmania virulence factors: focus on the metalloprotease GP63. 2012;14: 1377–1389. doi: 10.1016/J.MICINF.2012.05.014 PubMed DOI
Weglage J, Wolters F, Hehr L, Lichtenberger J, Wulz C, Hempel F, et al.. Schistosoma mansoni eggs induce Wnt/β-catenin signaling and activate the protooncogene c-Jun in human and hamster colon. Sci Reports 2020 101. 2020;10: 1–14. doi: 10.1038/s41598-020-79450-4 PubMed DOI PMC
von Bülow V, Lichtenberger J, Grevelding CG, Falcone FH, Roeb E, Roderfeld M. Does Schistosoma mansoni Facilitate Carcinogenesis? Cells. 2021;10. doi: 10.3390/CELLS10081982 PubMed DOI PMC
Yeh YT, Skinner DE, Criado-Hidalgo E, Chen NS, Herreros AG De, El-Sakkary N, et al.. Biomechanical interactions of Schistosoma mansoni eggs with vascular endothelial cells facilitate egg extravasation. PLOS Pathog. 2022;18: e1010309. doi: 10.1371/JOURNAL.PPAT.1010309 PubMed DOI PMC
Tucker MS, Karunaratne LB, Lewis FA, Freitas TC, Liang Y san. Schistosomiasis. Curr Protoc Immunol. 2013;103: 19.1.1–19.1.58. doi: 10.1002/0471142735.im1901s103 PubMed DOI
Moll P, Ante M, Seitz A, Reda T. QuantSeq 3′ mRNA sequencing for RNA quantification. Nat Methods 2014 1112. 2014;11: i–iii. doi: 10.1038/nmeth.f.376 DOI
Berriman M, Haas BJ, Loverde PT, Wilson RA, Dillon GP, Cerqueira GC, et al.. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460: 352–358. doi: 10.1038/nature08160 PubMed DOI PMC
Protasio A V., Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al.. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. Hoffmann KF, editor. PLoS Negl Trop Dis. 2012;6: e1455. doi: 10.1371/journal.pntd.0001455 PubMed DOI PMC
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite − a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215: 2–10. doi: 10.1016/j.molbiopara.2016.11.005 PubMed DOI PMC
Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al.. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 2016;44: D774–D780. doi: 10.1093/nar/gkv1217 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29: 15–21. doi: 10.1093/bioinformatics/bts635 PubMed DOI PMC
Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017;27: 491–499. doi: 10.1101/gr.209601.116 PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30: 923–930. doi: 10.1093/bioinformatics/btt656 PubMed DOI
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2014 121. 2014;12: 59–60. doi: 10.1038/nmeth.3176 PubMed DOI
Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al.. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45: D158–D169. doi: 10.1093/nar/gkw1099 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Alexa A, Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. 2023. doi: 10.18129/B9.bioc.topGO DOI
Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol. 2020;42. doi: 10.1111/pim.12710 PubMed DOI