Winners vs. losers: Schistosoma mansoni intestinal and liver eggs exhibit striking differences in gene expression and immunogenicity

. 2024 May ; 20 (5) : e1012268. [epub] 20240530

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38814989
Odkazy

PubMed 38814989
PubMed Central PMC11166329
DOI 10.1371/journal.ppat.1012268
PII: PPATHOGENS-D-23-02093
Knihovny.cz E-zdroje

The eggs of the blood fluke Schistosoma mansoni are the main cause of the clinical manifestations of chronic schistosomiasis. After laying, the egg "winners" attach to the endothelium of the mesenteric vein and, after a period of development, induce the growth of a small granuloma, which facilitates their passage to the intestinal lumen. Egg "losers" carried by the bloodstream to non-specific tissues also undergo full development and induce large granuloma formation, but their life ends there. Although these trapped eggs represent a dead end in the parasite life cycle, the vast majority of studies attempting to describe the biology of the S. mansoni eggs have studied these liver-trapped "losers" instead of migrating intestinal "winners". This raises the fundamental question of how these eggs differ. With robust comparative transcriptomic analysis performed on S. mansoni eggs isolated 7 weeks post infection, we show that gene expression is critically dependent on tissue localization, both in the early and late stages of development. While mitochondrial genes and venom allergen-like proteins are significantly upregulated in mature intestinal eggs, well-described egg immunomodulators IPSE/alpha-1 and omega-1, together with micro-exon genes, are predominantly expressed in liver eggs. In addition, several proteases and protease inhibitors previously implicated in egg-host interactions display clear tissue-specific gene expression patterns. These major differences in gene expression could be then reflected in the observed different ability of liver and intestinal soluble egg antigens to elicit host immune responses and in the shorter viability of miracidia hatched from liver eggs. Our comparative analysis provides a new perspective on the biology of parasite's eggs in the context of their development and tissue localization. These findings could contribute to a broader and more accurate understanding of parasite eggs interactions with the host, which have historically been often restricted to liver eggs and sometimes inaccurately generalized.

Zobrazit více v PubMed

Moore D V., Sandground JH. The relative egg producing capacity of PubMed DOI

Michaels RM, Prata A. Evolution and characteristics of PubMed DOI

Ashton PD, Harrop R, Shah B, Wilson RA. The schistosome egg: Development and secretions. Parasitology. 2001;122: 329–338. doi: 10.1017/s0031182001007351 PubMed DOI

Jurberg AD, Gonçalves T, Costa TA, Mattos ACA, Pascarelli BM, Manso PPA, et al. The embryonic development of PubMed DOI

Takaki KK, Rinaldi G, Berriman M, Pagán AJ, Ramakrishnan L. PubMed DOI PMC

Schwartz C, Fallon PG. Schistosoma “Eggs-Iting” the Host: Granuloma Formation and Egg Excretion. Frontiers in immunology. NLM (Medline); 2018. p. 2492. doi: 10.3389/fimmu.2018.02492 PubMed DOI PMC

Fan PC, Kang YC. Egg production capacity of one-pair worms of PubMed

Hams E, Aviello G, Fallon PG. The Schistosoma granuloma: Friend or foe? Front Immunol. 2013;4: 89. doi: 10.3389/fimmu.2013.00089 PubMed DOI PMC

Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. The Lancet. Lancet Publishing Group; 2014. pp. 2253–2264. doi: 10.1016/S0140-6736(13)61949-2 PubMed DOI PMC

Cass CL, Johnson JR, Califf LL, Xu T, Hernandez HJ, Stadecker MJ, et al. Proteomic analysis of PubMed DOI PMC

Mathieson W, Wilson RA. A comparative proteomic study of the undeveloped and developed PubMed DOI

Carson JP, Robinson MW, Hsieh MH, Cody J, Le L, You H, et al. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol Biochem Parasitol. 2020;240: 111322. doi: 10.1016/j.molbiopara.2020.111322 PubMed DOI PMC

Schramm G, Gronow A, Knobloch J, Wippersteg V, Grevelding CG, Galle J, et al. IPSE/alpha-1: A major immunogenic component secreted from PubMed DOI

Everts B, Perona-Wright G, Smits HH, Hokke CH, Van Der Ham AJ, Fitzsimmons CM, et al. Omega-1, a glycoprotein secreted by PubMed DOI PMC

Fahel JS, MacEdo GC, Pinheiro CS, Caliari M V., Oliveira SC. IPSE/alpha-1 of PubMed DOI

Everts B, Hussaarts L, Driessen NN, Meevissen MHJ, Schramm G, van der Ham AJ, et al. Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J Exp Med. 2012;209: 1753. doi: 10.1084/jem.20111381 PubMed DOI PMC

Dunne DW, Jones FM, Doenhoff MJ. The purification, characterization, serological activity and hepatotoxic properties of two cationic glycoproteins (alpha 1 and omega 1) from PubMed DOI

Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D, et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med. 2009;206: 1681–1690. doi: 10.1084/jem.20082462 PubMed DOI PMC

Lu Z, Berriman M. Meta-analysis of RNA-seq studies reveals genes responsible for life stage-dominant functions in DOI

Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, et al. PubMed DOI PMC

Lu Z, Sankaranarayanan G, Rawlinson KA, Offord V, Brindley PJ, Berriman M, et al. The Transcriptome of PubMed DOI PMC

Peterkova K, Vorel J, Ilgova J, Ostasov P, Fajtova P, Konecny L, et al. Proteases and their inhibitors involved in PubMed DOI

Weinstock J V, Boros DL. Organ-dependent differences in composition and function observed in hepatic and intestinal granulomas isolated from mice with Schistosomiasis mansoni. J Immunol. 1983;130: 418–22. Available: http://www.ncbi.nlm.nih.gov/pubmed/6600190 PubMed

Costain AH, MacDonald AS, Smits HH. Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Frontiers in immunology. NLM (Medline); 2018. p. 3042. doi: 10.3389/fimmu.2018.03042 PubMed DOI PMC

Wilbers RHP, Schneiter R, Holterman MHM, Drurey C, Smant G, Asojo OA, et al. Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. Lok JB, editor. PLOS Pathog. 2018;14: e1007300. doi: 10.1371/journal.ppat.1007300 PubMed DOI PMC

Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nat 2013 4967443. 2013;496: 57–63. doi: 10.1038/nature12031 PubMed DOI PMC

DeMarco R, Mathieson W, Manuel SJ, Dillon GP, Curwen RS, Ashton PD, et al. Protein variation in blood-dwelling schistosome worms generated by differential splicing of micro-exon gene transcripts. Genome Res. 2010;20: 1112–1121. doi: 10.1101/gr.100099.109 PubMed DOI PMC

Kasny M, Mikes L, Hampl V, Dvorak J, Caffrey CR, Dalton JP, et al. Peptidases of trematodes. Advances in Parasitology. 2009. pp. 205–297. doi: 10.1016/S0065-308X(09)69004-7 PubMed DOI

Ranasinghe SL, McManus DP. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence. Trends Parasitol. 2017;33: 400–413. doi: 10.1016/j.pt.2016.12.013 PubMed DOI

Knuhr K, Langhans K, Nyenhuis S, Viertmann K, Overgaard Kildemoes AM, Doenhoff MJ, et al. PubMed DOI PMC

Colley DG, Secor WE. Immunology of human schistosomiasis. Parasite Immunol. 2014;36: 347–357. doi: 10.1111/pim.12087 PubMed DOI PMC

Schramm G, Falcone FH, Gronow A, Haisch K, Mamat U, Doenhoff MJ, et al. Molecular characterization of an interleukin-4-inducing factor from PubMed DOI

Grimaud JA, Boros DL, Takiya C, Mathew RC, Emonard H. Collagen Isotypes, Laminin, and Fibronectin in Granulomas of the Liver and Intestines of PubMed DOI

Sölter R, von Buelow V, Dreizler D, Stampa G, Quack T, Grevelding CG, et al. Myeloperoxidase from neutrophile granulocytes accomplish destruction of DOI

Lewis FA, Stirewalt MA, Souza CP, Gazzinelli G. Large-scale laboratory maintenance of PubMed DOI

Lombardo FC, Pasche V, Panic G, Endriss Y, Keiser J. Life cycle maintenance and drug-sensitivity assays for early drug discovery in PubMed DOI

Hagen J, Young ND, Every AL, Pagel CN, Schnoeller C, Scheerlinck JPY, et al. Omega-1 knockdown in PubMed DOI PMC

Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med. 1990;172: 1425. doi: 10.1084/jem.172.5.1425 PubMed DOI PMC

Clutterbuck EJ, Hirst EMA, Sanderson CJ. Human Interleukin-5 (IL-5) Regulates the Production of Eosinophils in Human Bone Marrow Cultures: Comparison and Interaction With IL-1, IL-3, IL-6, and GMCSF. Blood. 1989;73: 1504–1512. doi: 10.1182/BLOOD.V73.6.1504.1504 PubMed DOI

Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J Immunol. 2001;167: 6533–6544. doi: 10.4049/jimmunol.167.11.6533 PubMed DOI

Wenk P. The function of non circulating microfilariae: PubMed

Bower MA, Constant SL, Mendez S. PubMed DOI PMC

Yoshino TP, Brown M, Wu XJ, Jackson CJ, Ocadiz-Ruiz R, Chalmers IW, et al. Excreted/secreted PubMed DOI PMC

Schnyder-Candrian S, Maillet I, Le Bert M, Brault L, Jacobs M, Ryffel B, et al. Neutrophil Inhibitory Factor Selectively Inhibits the Endothelium-Driven Transmigration of Eosinophils In Vitro and Airway Eosinophilia in OVA-Induced Allergic Lung Inflammation. J Allergy. 2012;2012: 1–10. doi: 10.1155/2012/245909 PubMed DOI PMC

Perally S, Geyer KK, Farani PSG, Chalmers IW, Fernandez-Fuentes N, Maskell DR, et al. PubMed DOI PMC

Wu XJ, Sabat G, Brown JF, Zhang M, Taft A, Peterson N, et al. Proteomic analysis of PubMed DOI PMC

Chalmers IW, McArdle AJ, Coulson RMR, Wagner MA, Schmid R, Hirai H, et al. Developmentally regulated expression, alternative splicing and distinct sub-groupings in members of the PubMed DOI PMC

Orcia D, Zeraik AE, Lopes JLS, Macedo JNA, Santos CR dos, Oliveira KC, et al. Interaction of an esophageal MEG protein from schistosomes with a human S100 protein involved in inflammatory response. Biochim Biophys Acta—Gen Subj. 2017;1861: 3490–3497. doi: 10.1016/j.bbagen.2016.09.015 PubMed DOI

Wilson RA. Virulence factors of schistosomes. Microbes Infect. 2012;14: 1442–1450. doi: 10.1016/j.micinf.2012.09.001 PubMed DOI

Hambrook JR, Kaboré AL, Pila EA, Hanington PC. A metalloprotease produced by larval PubMed DOI PMC

Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol. 2022;52: 343–358. doi: 10.1016/j.ijpara.2021.12.003 PubMed DOI

Kulkarni MM, Jones EA, McMaster WR, McGwire BS. Fibronectin binding and proteolytic degradation by PubMed DOI PMC

Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT. PubMed DOI

Weglage J, Wolters F, Hehr L, Lichtenberger J, Wulz C, Hempel F, et al. PubMed DOI PMC

von Bülow V, Lichtenberger J, Grevelding CG, Falcone FH, Roeb E, Roderfeld M. Does PubMed DOI PMC

Yeh YT, Skinner DE, Criado-Hidalgo E, Chen NS, Herreros AG De, El-Sakkary N, et al. Biomechanical interactions of PubMed DOI PMC

Tucker MS, Karunaratne LB, Lewis FA, Freitas TC, Liang Y san. Schistosomiasis. Curr Protoc Immunol. 2013;103: 19.1.1–19.1.58. doi: 10.1002/0471142735.im1901s103 PubMed DOI

Moll P, Ante M, Seitz A, Reda T. QuantSeq 3′ mRNA sequencing for RNA quantification. Nat Methods 2014 1112. 2014;11: i–iii. doi: 10.1038/nmeth.f.376 DOI

Berriman M, Haas BJ, Loverde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the blood fluke PubMed DOI PMC

Protasio A V., Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. A systematically improved high quality genome and transcriptome of the human blood fluke PubMed DOI PMC

Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite − a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215: 2–10. doi: 10.1016/j.molbiopara.2016.11.005 PubMed DOI PMC

Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 2016;44: D774–D780. doi: 10.1093/nar/gkv1217 PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29: 15–21. doi: 10.1093/bioinformatics/bts635 PubMed DOI PMC

Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017;27: 491–499. doi: 10.1101/gr.209601.116 PubMed DOI PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30: 923–930. doi: 10.1093/bioinformatics/btt656 PubMed DOI

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2014 121. 2014;12: 59–60. doi: 10.1038/nmeth.3176 PubMed DOI

Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45: D158–D169. doi: 10.1093/nar/gkw1099 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Alexa A, Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. 2023. doi: 10.18129/B9.bioc.topGO DOI

Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol. 2020;42. doi: 10.1111/pim.12710 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...