HPMA-Based Polymer Conjugates for Repurposed Drug Mebendazole and Other Imidazole-Based Therapeutics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-01417S
Grantová Agentura České Republiky
LTAUSA18083
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34372133
PubMed Central
PMC8347626
DOI
10.3390/polym13152530
PII: polym13152530
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA, controlled release, drug delivery, drug repurposing, mebendazole, polymer,
- Publikační typ
- časopisecké články MeSH
Recently, the antitumor potential of benzimidazole anthelmintics, such as mebendazole and its analogues, have been reported to have minimal side effects, in addition to their well-known anti-parasitic abilities. However, their administration is strongly limited owing to their extremely poor solubility, which highly depletes their overall bioavailability. This study describes the design, synthesis, and physico-chemical properties of polymer-mebendazole nanomedicines for drug repurposing in cancer therapy. The conjugation of mebendazole to water-soluble and biocompatible polymer carrier was carried out via biodegradable bond, relying on the hydrolytic action of lysosomal hydrolases for mebendazole release inside the tumor cells. Five low-molecular-weight mebendazole derivatives, differing in their inner structure, and two polymer conjugates differing in their linker structure, were synthesized. The overall synthetic strategy was designed to enable the modification and polymer conjugation of most benzimidazole-based anthelmintics, such as albendazole, fenbendazole or albendazole, besides the mebendazole. Furthermore, the described methodology may be suitable for conjugation of other biologically active compounds with a heterocyclic N-H group in their molecules.
Zobrazit více v PubMed
Cha Y., Erez T., Reynolds I.J., Kumar D., Ross J., Koytiger G., Kusko R., Zeskind B., Risso S., Kagan E., et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2018;175:168–180. doi: 10.1111/bph.13798. PubMed DOI PMC
Mukhopadhyay T., Sasaki J., Ramesh R., Roth J.A. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 2002;8:2963–2969. PubMed
Chu S.W., Badar S., Morris D.L., Pourgholami M.H. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 2009;29:3791–3796. PubMed
Dogra N., Kumar A., Mukhopadhyay T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci. Rep. 2018;8:11926. doi: 10.1038/s41598-018-30158-6. PubMed DOI PMC
Hou Z.J., Luo X., Zhang W., Peng F., Cui B., Wu S.J., Zheng F.M., Xu J., Xu L.Z., Long Z.J., et al. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget. 2015;6:6326–6340. doi: 10.18632/oncotarget.3436. PubMed DOI PMC
Sasaki J., Ramesh R., Chada S., Gomyo Y., Roth J.A., Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther. 2002;1:1201–1209. PubMed
Rushworth L.K., Hewit K., Munnings-Tomes S., Somani S., James D., Shanks E., Dufes C., Straube A., Patel R., Leung H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer. 2020;122:517–527. doi: 10.1038/s41416-019-0681-5. PubMed DOI PMC
Poruchynsky M.S., Komlodi-Pasztor E., Trostel S., Wilkerson J., Regairaz M., Pommier Y., Zhang X., Maity T.K., Robey R., Burotto M., et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc. Natl. Acad. Sci. USA. 2015;112:1571–1576. doi: 10.1073/pnas.1416418112. PubMed DOI PMC
Celestino Pinto L., Moreira-Nunes C.D.F.A., Moreira Soares B., Rodrigues Burbano R.M., Rodrigues de Lemos J.A., Carvalho Montenegro R. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in preclinical model of gastric peritoneal carcinomatosis. Toxicol. In Vitro. 2017;43:87–91. doi: 10.1016/j.tiv.2017.06.007. PubMed DOI
Dawson M., Braithwaite P.A., Roberts M.S., Watson T.R. The pharmacokinetics and bioavailability of a tracer dose of [3H]-mebendazole in man. Br. J. Clin. Pharmacol. 1985;19:79–86. doi: 10.1111/j.1365-2125.1985.tb02616.x. PubMed DOI PMC
Dawson M., Allan R.J., Watson T.R. The pharmacokinetics and bioavailability of mebendazole in man: A pilot study using [3H]-mebendazole. Br. J. Clin. Pharmacol. 1982;14:453–455. doi: 10.1111/j.1365-2125.1982.tb02008.x. PubMed DOI PMC
Dayan A.D. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop. 2003;86:141–159. doi: 10.1016/S0001-706X(03)00031-7. PubMed DOI
Pinto L.C., Moreira Soares B., Viana Pinheiro J.J., Riggins G.J., Pimentel Assumpcao P., Rodriguez Burbano R.M., Carvalho Montenegro R. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol. In Vitro. 2015;29:2038–2044. doi: 10.1016/j.tiv.2015.08.007. PubMed DOI
Bai R.Y., Staedke V., Aprhys C.M., Gallia G.L., Riggins G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol. 2011;13:974–982. doi: 10.1093/neuonc/nor077. PubMed DOI PMC
Simbulan-Rosenthal C.M., Dakshanamurthy S., Gaur A., Chen Y.S., Fang H.B., Abdussamad M., Zhou H., Zapas J., Calvert V., Petricoin E.F., et al. The repurposed anthelmintic mebendazole in combination with trametinib suppresses refractory NRASQ61K melanoma. Oncotarget. 2017;8:12576–12595. doi: 10.18632/oncotarget.14990. PubMed DOI PMC
Blom K., Senkowsky W., Jarvius M., Berglund M., Rubin J., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., et al. The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation. Immunopharmacol. Immunotoxicol. 2017;39:199–210. doi: 10.1080/08923973.2017.1320671. PubMed DOI
Blom K., Rubin J., Berglund M., Jarvius M., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., Nygren P., et al. Mebendazole-induced M1 polarisation of THP-1 macrophages may involve DYRK1B inhibition. BMC Res. Notes. 2019;12:234. doi: 10.1186/s13104-019-4273-5. PubMed DOI PMC
Jornet D., Bosca F., Andreu J.M., Domingo L.R., Tormos R., Miranda M.A. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. J. Photochem. Photobiol. B. 2016;155:1–6. doi: 10.1016/j.jphotobiol.2015.12.003. PubMed DOI
Doudican N., Rodriguez A., Osman I., Orlow S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res. 2008;6:1308–1315. doi: 10.1158/1541-7786.MCR-07-2159. PubMed DOI
Sung S.J., Kim H.K., Hong Y.K., Joe Y.A. Autophagy is a potential target for enhancing the anti-angiogenic effect of mebendazole in endothelial cells. Biomol. Ther. 2019;27:117–125. doi: 10.4062/biomolther.2018.222. PubMed DOI PMC
Williamson T., Bai R.Y., Staedtke V., Huso D., Riggins G.J. Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget. 2016;7:68571–68584. doi: 10.18632/oncotarget.11851. PubMed DOI PMC
Zhang F., Li Y., Zhang H., Huang E., Gao L., Luo W., Wei Q., Fan J., Song D., Liao J., et al. Anthelmintic mebendazole enhances cisplatin’s effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC) Oncotarget. 2017;8:12968–12982. doi: 10.18632/oncotarget.14673. PubMed DOI PMC
Fernández-Bañares F., Gonzalez-Huix F., Xiol X., Catala I., Miro J., Lopez N., Casais L. Marrow aplasia during high dose mebendazole treatment. Am. J. Trop. Med. Hyg. 1986;35:350–351. doi: 10.4269/ajtmh.1986.35.350. PubMed DOI
Colle I., Naegels S., Hoorens A., Hautekeete M. Granulomatous hepatitis due to mebendazole. J. Clin. Gastroenterol. 1999;28:44–45. doi: 10.1097/00004836-199901000-00010. PubMed DOI
Duncan R. Development of HPMA copolymer–anticancer conjugates: Clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 2009;61:1131–1148. doi: 10.1016/j.addr.2009.05.007. PubMed DOI
Kopeček J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv. Drug Deliv. Rev. 2013;65:49–59. doi: 10.1016/j.addr.2012.10.014. PubMed DOI PMC
Rihova B., Kovar M. Immunogenicity and immunomodulatory properties of HPMA-based polymers. Adv. Drug Deliv. Rev. 2010;62:184–191. doi: 10.1016/j.addr.2009.10.005. PubMed DOI
Sirova M., Kabesova M., Kovar L., Etrych T., Strohalm J., Ulbrich K., Rihova B. HPMA copolymer-bound doxorubicin induces immunogenic tumor cell death. Curr. Med. Chem. 2013;20:4815–4826. doi: 10.2174/09298673113206660281. PubMed DOI
Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 2010;21:797–802. doi: 10.1021/bc100070g. PubMed DOI
Taurin S., Nehoff H., Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control. Release. 2012;164:265–275. doi: 10.1016/j.jconrel.2012.07.013. PubMed DOI
Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392. PubMed
Seymour L.W., Miyamoto Y., Maeda H., Brereton M., Strohalm J., Ulbrich K., Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer. 1995;5:766–770. doi: 10.1016/0959-8049(94)00514-6. PubMed DOI
Simplício A.L., Clancy J.M., Gilmer J.F. Prodrugs for amines. Molecules. 2008;13:519–547. doi: 10.3390/molecules13030519. PubMed DOI PMC
Zimmermann S.C., Tichy T., Vavra J., Dash R.P., Slusher C.E., Gadiano A.J., Wu Y., Jancarik A., Tenora L., Monincova L., et al. N-substituted prodrugs of mebendazole provide improved aqueous solubility and oral bioavailability in mice and dogs. J. Med. Chem. 2018;61:3918–3929. doi: 10.1021/acs.jmedchem.7b01792. PubMed DOI
Studenovsky M., Pola R., Pechar M., Etrych T., Ulbrich K., Kovar L., Kabesova M., Rihova B. Polymer carriers for anticancer drugs targeted to EGF receptor. Macromol. Biosci. 2012;12:1714–1720. doi: 10.1002/mabi.201200270. PubMed DOI
Pola R., Janouskova O., Etrych T. The pH-dependent and enzymatic release of cytarabine from hydrophilic polymer conjugates. Physiol. Res. 2016;65(Suppl. 2):S225–S232. doi: 10.33549/physiolres.933424. PubMed DOI
Luttringhaus A., Dirksen H.W. Tetramethylurea as a solvent and reagent. Angew. Chem. Int. Ed. 1964;3:260–269. doi: 10.1002/anie.196402601. DOI
Graeme M., Rizzardo E., Thang S.H. Radical addition–fragmentation chemistry in polymer synthesis. Polymer. 2008;49:1079–1131.
Kostka L., Subr V., Laga R., Chytil P., Ulbrich K., Seymour L.W., Etrych T. Nanotherapeutics shielded with a pH responsive polymeric layer. Physiol. Res. 2015;64:S29–S44. doi: 10.33549/physiolres.933139. PubMed DOI