HPMA-Based Polymer Conjugates for Repurposed Drug Mebendazole and Other Imidazole-Based Therapeutics

. 2021 Jul 30 ; 13 (15) : . [epub] 20210730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34372133

Grantová podpora
19-01417S Grantová Agentura České Republiky
LTAUSA18083 Ministerstvo Školství, Mládeže a Tělovýchovy

Recently, the antitumor potential of benzimidazole anthelmintics, such as mebendazole and its analogues, have been reported to have minimal side effects, in addition to their well-known anti-parasitic abilities. However, their administration is strongly limited owing to their extremely poor solubility, which highly depletes their overall bioavailability. This study describes the design, synthesis, and physico-chemical properties of polymer-mebendazole nanomedicines for drug repurposing in cancer therapy. The conjugation of mebendazole to water-soluble and biocompatible polymer carrier was carried out via biodegradable bond, relying on the hydrolytic action of lysosomal hydrolases for mebendazole release inside the tumor cells. Five low-molecular-weight mebendazole derivatives, differing in their inner structure, and two polymer conjugates differing in their linker structure, were synthesized. The overall synthetic strategy was designed to enable the modification and polymer conjugation of most benzimidazole-based anthelmintics, such as albendazole, fenbendazole or albendazole, besides the mebendazole. Furthermore, the described methodology may be suitable for conjugation of other biologically active compounds with a heterocyclic N-H group in their molecules.

Zobrazit více v PubMed

Cha Y., Erez T., Reynolds I.J., Kumar D., Ross J., Koytiger G., Kusko R., Zeskind B., Risso S., Kagan E., et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2018;175:168–180. doi: 10.1111/bph.13798. PubMed DOI PMC

Mukhopadhyay T., Sasaki J., Ramesh R., Roth J.A. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 2002;8:2963–2969. PubMed

Chu S.W., Badar S., Morris D.L., Pourgholami M.H. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 2009;29:3791–3796. PubMed

Dogra N., Kumar A., Mukhopadhyay T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci. Rep. 2018;8:11926. doi: 10.1038/s41598-018-30158-6. PubMed DOI PMC

Hou Z.J., Luo X., Zhang W., Peng F., Cui B., Wu S.J., Zheng F.M., Xu J., Xu L.Z., Long Z.J., et al. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget. 2015;6:6326–6340. doi: 10.18632/oncotarget.3436. PubMed DOI PMC

Sasaki J., Ramesh R., Chada S., Gomyo Y., Roth J.A., Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther. 2002;1:1201–1209. PubMed

Rushworth L.K., Hewit K., Munnings-Tomes S., Somani S., James D., Shanks E., Dufes C., Straube A., Patel R., Leung H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer. 2020;122:517–527. doi: 10.1038/s41416-019-0681-5. PubMed DOI PMC

Poruchynsky M.S., Komlodi-Pasztor E., Trostel S., Wilkerson J., Regairaz M., Pommier Y., Zhang X., Maity T.K., Robey R., Burotto M., et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc. Natl. Acad. Sci. USA. 2015;112:1571–1576. doi: 10.1073/pnas.1416418112. PubMed DOI PMC

Celestino Pinto L., Moreira-Nunes C.D.F.A., Moreira Soares B., Rodrigues Burbano R.M., Rodrigues de Lemos J.A., Carvalho Montenegro R. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in preclinical model of gastric peritoneal carcinomatosis. Toxicol. In Vitro. 2017;43:87–91. doi: 10.1016/j.tiv.2017.06.007. PubMed DOI

Dawson M., Braithwaite P.A., Roberts M.S., Watson T.R. The pharmacokinetics and bioavailability of a tracer dose of [3H]-mebendazole in man. Br. J. Clin. Pharmacol. 1985;19:79–86. doi: 10.1111/j.1365-2125.1985.tb02616.x. PubMed DOI PMC

Dawson M., Allan R.J., Watson T.R. The pharmacokinetics and bioavailability of mebendazole in man: A pilot study using [3H]-mebendazole. Br. J. Clin. Pharmacol. 1982;14:453–455. doi: 10.1111/j.1365-2125.1982.tb02008.x. PubMed DOI PMC

Dayan A.D. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop. 2003;86:141–159. doi: 10.1016/S0001-706X(03)00031-7. PubMed DOI

Pinto L.C., Moreira Soares B., Viana Pinheiro J.J., Riggins G.J., Pimentel Assumpcao P., Rodriguez Burbano R.M., Carvalho Montenegro R. The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol. In Vitro. 2015;29:2038–2044. doi: 10.1016/j.tiv.2015.08.007. PubMed DOI

Bai R.Y., Staedke V., Aprhys C.M., Gallia G.L., Riggins G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol. 2011;13:974–982. doi: 10.1093/neuonc/nor077. PubMed DOI PMC

Simbulan-Rosenthal C.M., Dakshanamurthy S., Gaur A., Chen Y.S., Fang H.B., Abdussamad M., Zhou H., Zapas J., Calvert V., Petricoin E.F., et al. The repurposed anthelmintic mebendazole in combination with trametinib suppresses refractory NRASQ61K melanoma. Oncotarget. 2017;8:12576–12595. doi: 10.18632/oncotarget.14990. PubMed DOI PMC

Blom K., Senkowsky W., Jarvius M., Berglund M., Rubin J., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., et al. The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation. Immunopharmacol. Immunotoxicol. 2017;39:199–210. doi: 10.1080/08923973.2017.1320671. PubMed DOI

Blom K., Rubin J., Berglund M., Jarvius M., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., Nygren P., et al. Mebendazole-induced M1 polarisation of THP-1 macrophages may involve DYRK1B inhibition. BMC Res. Notes. 2019;12:234. doi: 10.1186/s13104-019-4273-5. PubMed DOI PMC

Jornet D., Bosca F., Andreu J.M., Domingo L.R., Tormos R., Miranda M.A. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. J. Photochem. Photobiol. B. 2016;155:1–6. doi: 10.1016/j.jphotobiol.2015.12.003. PubMed DOI

Doudican N., Rodriguez A., Osman I., Orlow S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res. 2008;6:1308–1315. doi: 10.1158/1541-7786.MCR-07-2159. PubMed DOI

Sung S.J., Kim H.K., Hong Y.K., Joe Y.A. Autophagy is a potential target for enhancing the anti-angiogenic effect of mebendazole in endothelial cells. Biomol. Ther. 2019;27:117–125. doi: 10.4062/biomolther.2018.222. PubMed DOI PMC

Williamson T., Bai R.Y., Staedtke V., Huso D., Riggins G.J. Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget. 2016;7:68571–68584. doi: 10.18632/oncotarget.11851. PubMed DOI PMC

Zhang F., Li Y., Zhang H., Huang E., Gao L., Luo W., Wei Q., Fan J., Song D., Liao J., et al. Anthelmintic mebendazole enhances cisplatin’s effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC) Oncotarget. 2017;8:12968–12982. doi: 10.18632/oncotarget.14673. PubMed DOI PMC

Fernández-Bañares F., Gonzalez-Huix F., Xiol X., Catala I., Miro J., Lopez N., Casais L. Marrow aplasia during high dose mebendazole treatment. Am. J. Trop. Med. Hyg. 1986;35:350–351. doi: 10.4269/ajtmh.1986.35.350. PubMed DOI

Colle I., Naegels S., Hoorens A., Hautekeete M. Granulomatous hepatitis due to mebendazole. J. Clin. Gastroenterol. 1999;28:44–45. doi: 10.1097/00004836-199901000-00010. PubMed DOI

Duncan R. Development of HPMA copolymer–anticancer conjugates: Clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 2009;61:1131–1148. doi: 10.1016/j.addr.2009.05.007. PubMed DOI

Kopeček J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv. Drug Deliv. Rev. 2013;65:49–59. doi: 10.1016/j.addr.2012.10.014. PubMed DOI PMC

Rihova B., Kovar M. Immunogenicity and immunomodulatory properties of HPMA-based polymers. Adv. Drug Deliv. Rev. 2010;62:184–191. doi: 10.1016/j.addr.2009.10.005. PubMed DOI

Sirova M., Kabesova M., Kovar L., Etrych T., Strohalm J., Ulbrich K., Rihova B. HPMA copolymer-bound doxorubicin induces immunogenic tumor cell death. Curr. Med. Chem. 2013;20:4815–4826. doi: 10.2174/09298673113206660281. PubMed DOI

Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 2010;21:797–802. doi: 10.1021/bc100070g. PubMed DOI

Taurin S., Nehoff H., Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J. Control. Release. 2012;164:265–275. doi: 10.1016/j.jconrel.2012.07.013. PubMed DOI

Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392. PubMed

Seymour L.W., Miyamoto Y., Maeda H., Brereton M., Strohalm J., Ulbrich K., Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer. 1995;5:766–770. doi: 10.1016/0959-8049(94)00514-6. PubMed DOI

Simplício A.L., Clancy J.M., Gilmer J.F. Prodrugs for amines. Molecules. 2008;13:519–547. doi: 10.3390/molecules13030519. PubMed DOI PMC

Zimmermann S.C., Tichy T., Vavra J., Dash R.P., Slusher C.E., Gadiano A.J., Wu Y., Jancarik A., Tenora L., Monincova L., et al. N-substituted prodrugs of mebendazole provide improved aqueous solubility and oral bioavailability in mice and dogs. J. Med. Chem. 2018;61:3918–3929. doi: 10.1021/acs.jmedchem.7b01792. PubMed DOI

Studenovsky M., Pola R., Pechar M., Etrych T., Ulbrich K., Kovar L., Kabesova M., Rihova B. Polymer carriers for anticancer drugs targeted to EGF receptor. Macromol. Biosci. 2012;12:1714–1720. doi: 10.1002/mabi.201200270. PubMed DOI

Pola R., Janouskova O., Etrych T. The pH-dependent and enzymatic release of cytarabine from hydrophilic polymer conjugates. Physiol. Res. 2016;65(Suppl. 2):S225–S232. doi: 10.33549/physiolres.933424. PubMed DOI

Luttringhaus A., Dirksen H.W. Tetramethylurea as a solvent and reagent. Angew. Chem. Int. Ed. 1964;3:260–269. doi: 10.1002/anie.196402601. DOI

Graeme M., Rizzardo E., Thang S.H. Radical addition–fragmentation chemistry in polymer synthesis. Polymer. 2008;49:1079–1131.

Kostka L., Subr V., Laga R., Chytil P., Ulbrich K., Seymour L.W., Etrych T. Nanotherapeutics shielded with a pH responsive polymeric layer. Physiol. Res. 2015;64:S29–S44. doi: 10.33549/physiolres.933139. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...