HPMA Copolymer Mebendazole Conjugate Allows Systemic Administration and Possesses Antitumour Activity In Vivo
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-05649S
Czech Science Foundation
61388971
Institutional Research Concept RVO
LTAUSA18083
Ministry of Education, Youth, and Sports of the Czech Republic within the Interexcellence program
JSPS-22-01
Academy of Sciences of Czech Republic
PubMed
35745774
PubMed Central
PMC9229042
DOI
10.3390/pharmaceutics14061201
PII: pharmaceutics14061201
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA, cancer therapy, controlled drug release, drug delivery, mebendazole, polymer,
- Publikační typ
- časopisecké články MeSH
Mebendazole and other benzimidazole antihelmintics, such as albendazole, fenbendazole, or flubendazole, have been shown to possess antitumour activity, primarily due to their microtubule-disrupting activity. However, the extremely poor water-solubility of mebendazole and other benzimidazoles, resulting in very low bioavailability, is a serious drawback of this class of drugs. Thus, the investigation of their antitumour potential has been limited so far to administering repeated high doses given peroral (p.o.) or to using formulations, such as liposomes. Herein, we report a fully biocompatible, water-soluble, HPMA copolymer-based conjugate bearing mebendazole (P-MBZ; Mw 28-33 kDa) covalently attached through a biodegradable bond, enabling systemic administration. Such an approach not only dramatically improves mebendazole solubility but also significantly prolongs the half-life and ensures tumour accumulation via an enhanced permeation and retention (EPR) effect in vivo. This P-MBZ has remarkable cytostatic and cytotoxic activities in EL-4 T-cell lymphoma, LL2 lung carcinoma, and CT-26 colon carcinoma mouse cell lines in vitro, with corresponding IC50 values of 1.07, 1.51, and 0.814 µM, respectively. P-MBZ also demonstrated considerable antitumour activity in EL-4 tumour-bearing mice when administered intraperitoneal (i.p.), either as a single dose or using 3 intermittent doses. The combination of P-MBZ with immunotherapy based on complexes of IL-2 and anti-IL-2 mAb S4B6, potently stimulating activated and memory CD8+ T cells, as well as NK cells, further improved the therapeutic effect.
Zobrazit více v PubMed
Sasaki J., Ramesh R., Chada S., Gomyo Y., Roth J.A., Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther. 2002;1:1201–1209. PubMed
Mukhopadhyay T., Sasaki J., Ramesh R., Roth J.A. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 2002;8:2963–2969. PubMed
Chu S.W., Badar S., Morris D.L., Pourgholami M.H. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 2009;29:3791–3796. PubMed
Dogra N., Kumar A., Mukhopadhyay T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci. Rep. 2018;8:11926. doi: 10.1038/s41598-018-30158-6. PubMed DOI PMC
Hou Z.J., Luo X., Zhang W., Peng F., Cui B., Wu S.J., Zheng F.M., Xu J., Xu L.Z., Long Z.J., et al. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget. 2015;6:6326–6340. doi: 10.18632/oncotarget.3436. PubMed DOI PMC
Jornet D., Bosca F., Andreu J.M., Domingo L.R., Tormos R., Miranda M.A. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. J. Photochem. Photobiol. B. 2016;155:1–6. doi: 10.1016/j.jphotobiol.2015.12.003. PubMed DOI
Doudican N., Rodriguez A., Osman I., Orlow S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res. 2008;6:1308–1315. doi: 10.1158/1541-7786.MCR-07-2159. PubMed DOI
Rushworth L.K., Hewit K., Munnings-Tomes S., Somani S., James D., Shanks E., Dufes C., Straube A., Patel R., Leung H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer. 2020;122:517–527. doi: 10.1038/s41416-019-0681-5. PubMed DOI PMC
Poruchynsky M.S., Komlodi-Pasztor E., Trostel S., Wilkerson J., Regairaz M., Pommier Y., Zhang X., Maity T.K., Robey R., Burotto M., et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc. Natl. Acad. Sci. USA. 2015;112:1571–1576. doi: 10.1073/pnas.1416418112. PubMed DOI PMC
Pinto L.C., Moreira Soares B., Viana Pinheiro J.J., Riggins G.J., Pimentel Assumpcao P., Rodriguez Burbano R.M., Carvalho Montenegro R. The anthelmintic drug mebendazole inhibits growth, migration and invasion in a gastric cancer cell model. Toxicol. Vitro. 2015;29:2038–2044. doi: 10.1016/j.tiv.2015.08.007. PubMed DOI
Pinto L.C., Moreira-Nunes C.F.A., Soares B.M., Burbano R.M.R., Lemos J.A.R., Montenegro R.C. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in a preclinical model of gastric peritoneal carcinomatosis. Toxicol. Vitro. 2017;43:87–91. doi: 10.1016/j.tiv.2017.06.007. PubMed DOI
Sung S.J., Kim H.K., Hong Y.K., Joe Y.A. Autophagy is a potential target for enhancing the anti-angiogenic effect of mebendazole in endothelial cells. Biomol. Ther. 2019;27:117–125. doi: 10.4062/biomolther.2018.222. PubMed DOI PMC
Bai R.Y., Staedke V., Aprhys C.M., Gallia G.L., Riggins G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro. Oncol. 2011;13:974–982. doi: 10.1093/neuonc/nor077. PubMed DOI PMC
Simbulan-Rosenthal C.M., Dakshanamurthy S., Gaur A., Chen Y.S., Fang H.B., Abdussamad M., Zhou H., Zapas J., Calvert V., Petricoin E.F., et al. The repurposed anthelmintic mebendazole in combination with trametinib suppresses refractory NRASQ61K melanoma. Oncotarget. 2017;8:12576–12595. doi: 10.18632/oncotarget.14990. PubMed DOI PMC
Blom K., Senkowsky W., Jarvius M., Berglund M., Rubin J., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., et al. The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation. Immunopharmacol. Immunotoxicol. 2017;39:199–210. doi: 10.1080/08923973.2017.1320671. PubMed DOI
Blom K., Rubin J., Berglund M., Jarvius M., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., Nygren P., et al. Mebendazole-induced M1 polarisation of THP-1 macrophages may involve DYRK1B inhibition. BMC Res. Notes. 2019;12:234. doi: 10.1186/s13104-019-4273-5. PubMed DOI PMC
Williamson T., Bai R.Y., Staedtke V., Huso D., Riggins G.J. Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumour initiation in a colon cancer preclinical model. Oncotarget. 2016;7:68571–68584. doi: 10.18632/oncotarget.11851. PubMed DOI PMC
Zhang F., Li Y., Zhang H., Huang E., Gao L., Luo W., Wei Q., Fan J., Song D., Liao J., et al. Anthelmintic mebendazole enhances cisplatin’s effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC) Oncotarget. 2017;8:12968–12982. doi: 10.18632/oncotarget.14673. PubMed DOI PMC
Dawson M., Braithwaite P.A., Roberts M.S., Watson T.R. The pharmacokinetics and bioavailability of a tracer dose of [3H]-mebendazole in man. Br. J. Clin. Pharmacol. 1985;19:79–86. doi: 10.1111/j.1365-2125.1985.tb02616.x. PubMed DOI PMC
Dawson M., Allan R.J., Watson T.R. The pharmacokinetics and bioavailability of mebendazole in man: A pilot study using [3H]-mebendazole. Br. J. Clin. Pharmacol. 1982;14:453–455. doi: 10.1111/j.1365-2125.1982.tb02008.x. PubMed DOI PMC
Kopeček J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv. Drug Deliv. Rev. 2013;65:49–59. doi: 10.1016/j.addr.2012.10.014. PubMed DOI PMC
Nishiyama N., Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 2006;112:630–648. doi: 10.1016/j.pharmthera.2006.05.006. PubMed DOI
Tavares M.R., Hrabankova K., Konefal R., Kana M., Rihova B., Etrych T., Sirova M., Chytil P. HPMA-based copolymers carrying STAT3 inhibitor cucurbitacin-D as stimulus-sensitive nanomedicines for oncotherapy. Pharmaceutics. 2021;13:179. doi: 10.3390/pharmaceutics13020179. PubMed DOI PMC
Pola R., Pokorna E., Vockova P., Bohmova E., Pechar M., Karolova J., Pankrac J., Sefc L., Helman K., Trneny M., et al. Cytarabine nanotherapeutics with increased stability and enhanced lymphoma uptake for tailored highly effective therapy of mantle cell lymphoma. Acta Biomater. 2021;119:349–359. doi: 10.1016/j.actbio.2020.11.014. PubMed DOI
Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI
Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 2010;21:797–802. doi: 10.1021/bc100070g. PubMed DOI
Duncan R. Development of HPMA copolymer-anticancer conjugates: Clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 2009;61:1131–1148. doi: 10.1016/j.addr.2009.05.007. PubMed DOI
Studenovsky M., Rumlerova A., Kostka L., Etrych T. HPMA-based polymer conjugates for repurposed drug mebendazole and other imidazole-based therapeutics. Polymers. 2021;13:2530. doi: 10.3390/polym13152530. PubMed DOI PMC
Etrych T., Šubr V., Strohalm J., Šírová M., Říhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI
Simplício A.L., Clancy J.M., Gilmer J.F. Prodrugs for amines. Molecules. 2008;13:519–547. doi: 10.3390/molecules13030519. PubMed DOI PMC
Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. HPMA copolymers with pH-controlled release of doxorubicin: In vitro cytotoxicity and in vivo antitumor activity. J. Control. Release. 2003;87:33–47. doi: 10.1016/S0168-3659(02)00348-6. PubMed DOI
Tomala J., Chmelova H., Mrkvan T., Rihova B., Kovar M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as a novel approach of cancer immunotherapy. J. Immunol. 2009;183:4904–4949. doi: 10.4049/jimmunol.0900284. PubMed DOI
Sivák L., Šubr V., Kovářová J., Dvořáková B., Šírová M., Říhová B., Randárová E., Kraus M., Tomala J., Studenovský M., et al. Polymer-ritonavir derivate nanomedicine with pH-sensitive activation possesses potent anti-tumor activity in vivo via inhibition of proteasome and STAT3 signaling. J. Control. Release. 2021;332:563–580. doi: 10.1016/j.jconrel.2021.03.015. PubMed DOI
Investigating drug-liposome interactions using liposomal electrokinetic chromatography