HPMA Copolymer Mebendazole Conjugate Allows Systemic Administration and Possesses Antitumour Activity In Vivo

. 2022 Jun 04 ; 14 (6) : . [epub] 20220604

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35745774

Grantová podpora
19-05649S Czech Science Foundation
61388971 Institutional Research Concept RVO
LTAUSA18083 Ministry of Education, Youth, and Sports of the Czech Republic within the Interexcellence program
JSPS-22-01 Academy of Sciences of Czech Republic

Odkazy

PubMed 35745774
PubMed Central PMC9229042
DOI 10.3390/pharmaceutics14061201
PII: pharmaceutics14061201
Knihovny.cz E-zdroje

Mebendazole and other benzimidazole antihelmintics, such as albendazole, fenbendazole, or flubendazole, have been shown to possess antitumour activity, primarily due to their microtubule-disrupting activity. However, the extremely poor water-solubility of mebendazole and other benzimidazoles, resulting in very low bioavailability, is a serious drawback of this class of drugs. Thus, the investigation of their antitumour potential has been limited so far to administering repeated high doses given peroral (p.o.) or to using formulations, such as liposomes. Herein, we report a fully biocompatible, water-soluble, HPMA copolymer-based conjugate bearing mebendazole (P-MBZ; Mw 28-33 kDa) covalently attached through a biodegradable bond, enabling systemic administration. Such an approach not only dramatically improves mebendazole solubility but also significantly prolongs the half-life and ensures tumour accumulation via an enhanced permeation and retention (EPR) effect in vivo. This P-MBZ has remarkable cytostatic and cytotoxic activities in EL-4 T-cell lymphoma, LL2 lung carcinoma, and CT-26 colon carcinoma mouse cell lines in vitro, with corresponding IC50 values of 1.07, 1.51, and 0.814 µM, respectively. P-MBZ also demonstrated considerable antitumour activity in EL-4 tumour-bearing mice when administered intraperitoneal (i.p.), either as a single dose or using 3 intermittent doses. The combination of P-MBZ with immunotherapy based on complexes of IL-2 and anti-IL-2 mAb S4B6, potently stimulating activated and memory CD8+ T cells, as well as NK cells, further improved the therapeutic effect.

Zobrazit více v PubMed

Sasaki J., Ramesh R., Chada S., Gomyo Y., Roth J.A., Mukhopadhyay T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther. 2002;1:1201–1209. PubMed

Mukhopadhyay T., Sasaki J., Ramesh R., Roth J.A. Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 2002;8:2963–2969. PubMed

Chu S.W., Badar S., Morris D.L., Pourgholami M.H. Potent inhibition of tubulin polymerisation and proliferation of paclitaxel-resistant 1A9PTX22 human ovarian cancer cells by albendazole. Anticancer Res. 2009;29:3791–3796. PubMed

Dogra N., Kumar A., Mukhopadhyay T. Fenbendazole acts as a moderate microtubule destabilizing agent and causes cancer cell death by modulating multiple cellular pathways. Sci. Rep. 2018;8:11926. doi: 10.1038/s41598-018-30158-6. PubMed DOI PMC

Hou Z.J., Luo X., Zhang W., Peng F., Cui B., Wu S.J., Zheng F.M., Xu J., Xu L.Z., Long Z.J., et al. Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget. 2015;6:6326–6340. doi: 10.18632/oncotarget.3436. PubMed DOI PMC

Jornet D., Bosca F., Andreu J.M., Domingo L.R., Tormos R., Miranda M.A. Analysis of mebendazole binding to its target biomolecule by laser flash photolysis. J. Photochem. Photobiol. B. 2016;155:1–6. doi: 10.1016/j.jphotobiol.2015.12.003. PubMed DOI

Doudican N., Rodriguez A., Osman I., Orlow S.J. Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res. 2008;6:1308–1315. doi: 10.1158/1541-7786.MCR-07-2159. PubMed DOI

Rushworth L.K., Hewit K., Munnings-Tomes S., Somani S., James D., Shanks E., Dufes C., Straube A., Patel R., Leung H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer. 2020;122:517–527. doi: 10.1038/s41416-019-0681-5. PubMed DOI PMC

Poruchynsky M.S., Komlodi-Pasztor E., Trostel S., Wilkerson J., Regairaz M., Pommier Y., Zhang X., Maity T.K., Robey R., Burotto M., et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc. Natl. Acad. Sci. USA. 2015;112:1571–1576. doi: 10.1073/pnas.1416418112. PubMed DOI PMC

Pinto L.C., Moreira Soares B., Viana Pinheiro J.J., Riggins G.J., Pimentel Assumpcao P., Rodriguez Burbano R.M., Carvalho Montenegro R. The anthelmintic drug mebendazole inhibits growth, migration and invasion in a gastric cancer cell model. Toxicol. Vitro. 2015;29:2038–2044. doi: 10.1016/j.tiv.2015.08.007. PubMed DOI

Pinto L.C., Moreira-Nunes C.F.A., Soares B.M., Burbano R.M.R., Lemos J.A.R., Montenegro R.C. Mebendazole, an antiparasitic drug, inhibits drug transporters expression in a preclinical model of gastric peritoneal carcinomatosis. Toxicol. Vitro. 2017;43:87–91. doi: 10.1016/j.tiv.2017.06.007. PubMed DOI

Sung S.J., Kim H.K., Hong Y.K., Joe Y.A. Autophagy is a potential target for enhancing the anti-angiogenic effect of mebendazole in endothelial cells. Biomol. Ther. 2019;27:117–125. doi: 10.4062/biomolther.2018.222. PubMed DOI PMC

Bai R.Y., Staedke V., Aprhys C.M., Gallia G.L., Riggins G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro. Oncol. 2011;13:974–982. doi: 10.1093/neuonc/nor077. PubMed DOI PMC

Simbulan-Rosenthal C.M., Dakshanamurthy S., Gaur A., Chen Y.S., Fang H.B., Abdussamad M., Zhou H., Zapas J., Calvert V., Petricoin E.F., et al. The repurposed anthelmintic mebendazole in combination with trametinib suppresses refractory NRASQ61K melanoma. Oncotarget. 2017;8:12576–12595. doi: 10.18632/oncotarget.14990. PubMed DOI PMC

Blom K., Senkowsky W., Jarvius M., Berglund M., Rubin J., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., et al. The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation. Immunopharmacol. Immunotoxicol. 2017;39:199–210. doi: 10.1080/08923973.2017.1320671. PubMed DOI

Blom K., Rubin J., Berglund M., Jarvius M., Lenhammar L., Parrow V., Andersson C., Loskog A., Fryknas M., Nygren P., et al. Mebendazole-induced M1 polarisation of THP-1 macrophages may involve DYRK1B inhibition. BMC Res. Notes. 2019;12:234. doi: 10.1186/s13104-019-4273-5. PubMed DOI PMC

Williamson T., Bai R.Y., Staedtke V., Huso D., Riggins G.J. Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumour initiation in a colon cancer preclinical model. Oncotarget. 2016;7:68571–68584. doi: 10.18632/oncotarget.11851. PubMed DOI PMC

Zhang F., Li Y., Zhang H., Huang E., Gao L., Luo W., Wei Q., Fan J., Song D., Liao J., et al. Anthelmintic mebendazole enhances cisplatin’s effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC) Oncotarget. 2017;8:12968–12982. doi: 10.18632/oncotarget.14673. PubMed DOI PMC

Dawson M., Braithwaite P.A., Roberts M.S., Watson T.R. The pharmacokinetics and bioavailability of a tracer dose of [3H]-mebendazole in man. Br. J. Clin. Pharmacol. 1985;19:79–86. doi: 10.1111/j.1365-2125.1985.tb02616.x. PubMed DOI PMC

Dawson M., Allan R.J., Watson T.R. The pharmacokinetics and bioavailability of mebendazole in man: A pilot study using [3H]-mebendazole. Br. J. Clin. Pharmacol. 1982;14:453–455. doi: 10.1111/j.1365-2125.1982.tb02008.x. PubMed DOI PMC

Kopeček J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv. Drug Deliv. Rev. 2013;65:49–59. doi: 10.1016/j.addr.2012.10.014. PubMed DOI PMC

Nishiyama N., Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 2006;112:630–648. doi: 10.1016/j.pharmthera.2006.05.006. PubMed DOI

Tavares M.R., Hrabankova K., Konefal R., Kana M., Rihova B., Etrych T., Sirova M., Chytil P. HPMA-based copolymers carrying STAT3 inhibitor cucurbitacin-D as stimulus-sensitive nanomedicines for oncotherapy. Pharmaceutics. 2021;13:179. doi: 10.3390/pharmaceutics13020179. PubMed DOI PMC

Pola R., Pokorna E., Vockova P., Bohmova E., Pechar M., Karolova J., Pankrac J., Sefc L., Helman K., Trneny M., et al. Cytarabine nanotherapeutics with increased stability and enhanced lymphoma uptake for tailored highly effective therapy of mantle cell lymphoma. Acta Biomater. 2021;119:349–359. doi: 10.1016/j.actbio.2020.11.014. PubMed DOI

Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI

Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 2010;21:797–802. doi: 10.1021/bc100070g. PubMed DOI

Duncan R. Development of HPMA copolymer-anticancer conjugates: Clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 2009;61:1131–1148. doi: 10.1016/j.addr.2009.05.007. PubMed DOI

Studenovsky M., Rumlerova A., Kostka L., Etrych T. HPMA-based polymer conjugates for repurposed drug mebendazole and other imidazole-based therapeutics. Polymers. 2021;13:2530. doi: 10.3390/polym13152530. PubMed DOI PMC

Etrych T., Šubr V., Strohalm J., Šírová M., Říhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI

Simplício A.L., Clancy J.M., Gilmer J.F. Prodrugs for amines. Molecules. 2008;13:519–547. doi: 10.3390/molecules13030519. PubMed DOI PMC

Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. HPMA copolymers with pH-controlled release of doxorubicin: In vitro cytotoxicity and in vivo antitumor activity. J. Control. Release. 2003;87:33–47. doi: 10.1016/S0168-3659(02)00348-6. PubMed DOI

Tomala J., Chmelova H., Mrkvan T., Rihova B., Kovar M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as a novel approach of cancer immunotherapy. J. Immunol. 2009;183:4904–4949. doi: 10.4049/jimmunol.0900284. PubMed DOI

Sivák L., Šubr V., Kovářová J., Dvořáková B., Šírová M., Říhová B., Randárová E., Kraus M., Tomala J., Studenovský M., et al. Polymer-ritonavir derivate nanomedicine with pH-sensitive activation possesses potent anti-tumor activity in vivo via inhibition of proteasome and STAT3 signaling. J. Control. Release. 2021;332:563–580. doi: 10.1016/j.jconrel.2021.03.015. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...