HPMA-Based Copolymers Carrying STAT3 Inhibitor Cucurbitacin-D as Stimulus-Sensitive Nanomedicines for Oncotherapy

. 2021 Jan 28 ; 13 (2) : . [epub] 20210128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33525658

Grantová podpora
17-08084S Grantová Agentura České Republiky
LTAUSA18083 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 33525658
PubMed Central PMC7911143
DOI 10.3390/pharmaceutics13020179
PII: pharmaceutics13020179
Knihovny.cz E-zdroje

The study describes the synthesis, physicochemical properties, and biological evaluation of polymer therapeutics based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers intended for a tumor-targeted immuno-oncotherapy. Water-soluble linear and cholesterol-containing HPMA precursors were synthesized using controlled reversible addition-fragmentation chain transfer polymerization to reach molecular weight Mn about 2 × 104 g·mol-1 and low dispersity. These linear or self-assembled micellar conjugates, containing immunomodulatory agent cucurbitacin-D (CuD) or the anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond, showed a hydrodynamic size of 10-30 nm in aqueous solutions. The CuD-containing conjugates were stable in conditions mimicking blood. Importantly, a massive release of active CuD in buffer mimicking the acidic tumor environment was observed. In vitro, both the linear (LP-CuD) and the micellar (MP-CuD) conjugates carrying CuD showed cytostatic/cytotoxic activity against several cancer cell lines. In a murine metastatic and difficult-to-treat 4T1 mammary carcinoma, only LP-CuD showed an anticancer effect. Indeed, the co-treatment with Dox-containing micellar polymer conjugate and LP-CuD showed potentiation of the anticancer effect. The results indicate that the binding of CuD, characterized by prominent hydrophobic nature and low bioavailability, to the polymer carrier allows a safe and effective delivery. Therefore, the conjugate could serve as a potential component of immuno-oncotherapy schemes within the next preclinical evaluation.

Zobrazit více v PubMed

Zhang H., Chen J. Current status and future directions of cancer immunotherapy. J. Cancer. 2018;9:1773–1781. doi: 10.7150/jca.24577. PubMed DOI PMC

Marshall H.T., Djamgoz M.B.A. Immuno-oncology: Emerging targets and combination therapies. Front. Oncol. 2018;8:318. doi: 10.3389/fonc.2018.00315. PubMed DOI PMC

Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239. PubMed DOI PMC

Mahoney K.M., Rennert P.D., Freeman G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015;14:561–584. doi: 10.1038/nrd4591. PubMed DOI

Nam J., Son S., Park K.S., Zou W., Shea L.D., Moon J.J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 2019;4:398–414. doi: 10.1038/s41578-019-0108-1. DOI

Yu H., Kortylewski M., Pardoll D. Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 2007;7:41–51. doi: 10.1038/nri1995. PubMed DOI

Khalil D.N., Smith E.L., Brentjens R.J., Wolchok J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016;13:273–290. doi: 10.1038/nrclinonc.2016.25. PubMed DOI PMC

Říhová B., Kovář L., Kovář M., Hovorka O. Cytotoxicity and immunostimulation: Double attack on cancer cells with polymeric therapeutics. Trends Biotechnol. 2009;27:11–17. doi: 10.1016/j.tibtech.2008.10.006. PubMed DOI

Yu H., Jove R. The stats of cancer—New molecular targets come of age. Nat. Rev. Cancer. 2004;4:97–105. doi: 10.1038/nrc1275. PubMed DOI

Kortylewski M., Kujawski M., Wang T., Wei S., Zhang S., Pilon-Thomas S., Niu G., Kay H., Mulé J., Kerr W.G., et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 2005;11:1314–1321. doi: 10.1038/nm1325. PubMed DOI

Niu G., Bowman T., Huang M., Shivers S., Reintgen D., Daud A., Chang A., Kraker A., Jove R., Yu H. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene. 2002;21:7001–7010. doi: 10.1038/sj.onc.1205859. PubMed DOI

Blaskovich M.A., Sun J., Cantor A., Turkson J., Jove R., Sebti S.M. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res. 2003;63:1270–1279. PubMed

Turkson J., Zhang S., Mora L.B., Burns A., Sebti S., Jove R. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J. Biol. Chem. 2005;280:32979–32988. doi: 10.1074/jbc.M502694200. PubMed DOI

Fagard R., Metelev V., Souissi I., Baran-Marszak F. STAT3 inhibitors for cancer therapy: Have all roads been explored? Jak-Stat. 2013;2:e22882/1–e22882/9. doi: 10.4161/jkst.22882. PubMed DOI PMC

Ge W., Chen X., Han F., Liu Z., Wang T., Wang M., Chen Y., Ding Y., Zhang Q. Synthesis of cucurbitacin B derivatives as potential anti-hepatocellular carcinoma agents. Molecules. 2018;23:3345. doi: 10.3390/molecules23123345. PubMed DOI PMC

Jayaprakasam B., Seeram N.P., Nair M.G. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett. 2003;189:11–16. doi: 10.1016/S0304-3835(02)00497-4. PubMed DOI

Kaushik U., Aeri V., Mir S.R. Cucurbitacins—An insight into medicinal leads from nature. Pharmacogn. Rev. 2015;9:12–18. doi: 10.4103/0973-7847.156314. PubMed DOI PMC

Sikander M., Malik S., Chauhan N., Khan P., Kumari S., Kashyap V.K., Khan S., Ganju A., Halaweish F.T., Yallapu M.M., et al. Cucurbitacin D reprograms glucose metabolic network in prostate cancer. Cancers. 2019;11:364. doi: 10.3390/cancers11030364. PubMed DOI PMC

Sikander M., Hafeez B.B., Malik S., Alsayari A., Halaweish F.T., Yallapu M.M., Chauhan S.C., Jaggi M. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep36594. PubMed DOI PMC

Ku J.M., Hong S.H., Kim H.I., Lim Y.S., Lee S.J., Kim M., Seo H.S., Shin Y.C., Ko S.-G. Cucurbitacin D exhibits its anti-cancer effect in human breast cancer cells by inhibiting Stat3 and Akt signaling. Eur. J. Inflamm. 2018;16:1721727X17751809. doi: 10.1177/1721727X17751809. DOI

Molavi O., Ma Z., Mahmud A., Alshamsan A., Samuel J., Lai R., Kwon G.S., Lavasanifar A. Polymeric micelles for the solubilization and delivery of STAT3 inhibitor cucurbitacins in solid tumors. Int. J. Pharm. 2008;347:118–127. doi: 10.1016/j.ijpharm.2007.06.032. PubMed DOI PMC

Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI

Matsumura Y., Maeda H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986;46:6387–6392. doi: 10.1021/bc100070g. PubMed DOI

Etrych T., Šubr V., Strohalm J., Šírová M., Říhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI

Chytil P., Šírová M., Kudláčová J., Říhová B., Ulbrich K., Etrych T. Bloodstream Stability Predetermines the Antitumor Efficacy of Micellar Polymer-Doxorubicin Drug Conjugates with pH-Triggered Drug Release. Mol. Pharm. 2018;15:3654–3663. doi: 10.1021/acs.molpharmaceut.8b00156. PubMed DOI

Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI

Maeda H., Bharate G.Y., Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009;71:409–419. doi: 10.1016/j.ejpb.2008.11.010. PubMed DOI

Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018;18:1700209. doi: 10.1002/mabi.201700209. PubMed DOI

Larson N., Ghandehari H. Polymeric conjugates for drug delivery. Chem. Mater. 2012;24:840–853. doi: 10.1021/cm2031569. PubMed DOI PMC

Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Randárová E., Nakamura H., Islam R., Studenovský M., Mamoru H., Fang J., Chytil P., Etrych T. Highly effective anti-tumor nanomedicines based on HPMA copolymer conjugates with pirarubicin prepared by controlled RAFT polymerization. Acta Biomater. 2020;106:256–266. doi: 10.1016/j.actbio.2020.02.011. PubMed DOI

Kostka L., Kotrchová L., Šubr V., Libánská A., Ferreira C.A., Malátová I., Lee H.J., Barnhart T.E., Engle J.W., Cai W., et al. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials. 2020;235:119728. doi: 10.1016/j.biomaterials.2019.119728. PubMed DOI PMC

Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Target. Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI

Lead Compound: SDX-7320. [(accessed on 22 January 2021)]; Available online: https://syndevrx.com/lead-compound-sdx-7320/

Chytil P., Etrych T., Konák Č., Šírová M., Mrkvan T., Bouček J., Ríhová B., Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J. Control. Release. 2008;127:121–130. doi: 10.1016/j.jconrel.2008.01.007. PubMed DOI

Chytil P., Etrych T., Kostka L., Ulbrich K. Hydrolytically degradable polymer micelles for anticancer drug delivery to solid tumors. Macromol. Chem. Phys. 2012;213:858–867. doi: 10.1002/macp.201100632. DOI

Filippov S.K., Chytil P., Konarev P.V., Dyakonova M., Papadakis C., Zhigunov A., Plestil J., Stepanek P., Etrych T., Ulbrich K., et al. Macromolecular HPMA-based nanoparticles with cholesterol for solid-tumor targeting: Detailed study of the inner structure of a highly efficient drug delivery system. Biomacromolecules. 2012;13:2594–2604. doi: 10.1021/bm3008555. PubMed DOI

Filippov S.K., Vishnevetskaya N.S., Niebuur B.-J., Koziolová E., Lomkova E.A., Chytil P., Etrych T., Papadakis C.M. Influence ofmolar mass, dispersity, and type and location of hydrophobic side chain moieties on the critical micellar concentration and stability ofamphiphilic HPMA-based polymer drug carriers. Colloid Polym. Sci. 2017;295:1313–1325. doi: 10.1007/s00396-017-4027-7. DOI

Lidický O., Šírová M., Etrych T. HPMA copolymer-based polymer conjugates for the delivery and controlled release of retinoids. Physiol. Res. 2016;65:S233–S241. doi: 10.33549/physiolres.933425. PubMed DOI

Chytil P., Etrych T., Kříz J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Ulbrich K., Etrych T., Chytil P., Jelínková M., Ríhová B. Antibody-targeted Polymer—Doxorubicin Conjugates with pH-controlled Activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI

Ishitake K., Satoh K., Kamigaito M., Okamoto Y. Stereogradient polymers formed by controlled/living radical polymerization of bulky methacrylate monomers. Angew. Chem. Int. Ed. 2009;48:1991–1994. doi: 10.1002/anie.200805168. PubMed DOI

Perrier S., Takolpuckdee P., Mars C.A. Reversible Addition−Fragmentation Chain Transfer Polymerization: End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI

Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI

Etrych T., Mrkvan T., Chytil P., Konak Č., Říhová B., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-Based Polymer Conjugates with pH-Controlled Activation of Doxorubicin. I. New Synthesis, Physicochemical Characterization and Preliminary Biological Evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI

Braunová A., Kaňa M., Kudláčová J., Kostka L., Bouček J., Betka J., Šírová M., Etrych T. Micelle-Forming Block Copolymers Tailored for Inhibition of P-gp-Mediated Multidrug Resistance: Structure to Activity Relationship. Pharmaceutics. 2019;11:579–600. doi: 10.3390/pharmaceutics11110579. PubMed DOI PMC

Trousil J., Syrová Z., Dal N.J.K., Rak D., Konefał R., Pavlova E., Matějková J., Cmarko D., Kubíčková P., Pavliš O., et al. Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish. Biomacromolecules. 2019;20:1798–1815. doi: 10.1021/acs.biomac.9b00214. PubMed DOI

Braunová A., Chytil P., Laga R., Šírová M., Machová D., Parnica J., Říhová B., Janoušková O., Etrych T. Polymer nanomedicines based on micelle-forming amphiphilic or water-soluble polymer-doxorubicin conjugates: Comparative study of in vitro and in vivo properties related to the polymer carrier structure, composition, and hydrodynamic properties. J. Control. Release. 2020;321:718–733. doi: 10.1016/j.jconrel.2020.03.002. PubMed DOI

Ku J.M., Kim S.R., Hong S.H., Choi H.-S., Seo H.S., Shin Y.C., Ko S.-G. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol. Cell. Biochem. 2015;409:33–43. doi: 10.1007/s11010-015-2509-9. PubMed DOI PMC

Sikander M., Malik S., Khan S., Kumari S., Chauhan N., Khan P., Halaweish F.T., Chauhan B., Yallapu M.M., Jaggi M., et al. Novel Mechanistic Insight into the Anticancer Activity of Cucurbitacin D against Pancreatic Cancer (Cuc D Attenuates Pancreatic Cancer) Cells. 2020;9:103. doi: 10.3390/cells9010103. PubMed DOI PMC

Ding N., Yamashita U., Matsuoka H., Sugiura T., Tsukada J., Noguchi J., Yoshida Y. Apoptosis induction through proteasome inhibitory activity of cucurbitacin D in human T-cell leukemia. Cancer. 2011;117:2735–2746. doi: 10.1002/cncr.25711. PubMed DOI

Nakanishi T., Song Y., He C., Wang D., Morita K., Tsukada J., Kanazawa T., Yoshida Y. Autophagy is associated with cucurbitacin D-induced apoptosis in human T cell leukemia cells. Med. Oncol. 2016;33:1–8. doi: 10.1007/s12032-016-0743-y. PubMed DOI

Etrych T., Šírova M., Starovoytova L., Řihova B., Ulbrich K. HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Mol. Pharm. 2010;7:1015–1026. doi: 10.1021/mp100119f. PubMed DOI

Nakamura H., Koziolová E., Etrych T., Chytil P., Fang J., Ulbrich K., Maeda H. Comparison between linear and star-like HPMA conjugated pirarubicin (THP) in pharmacokinetics and antitumor activity in tumor bearing mice. Eur. J. Pharm. Biopharm. 2015;90:90–96. doi: 10.1016/j.ejpb.2014.10.007. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace