Micelle-Forming Block Copolymers Tailored for Inhibition of P-gp-Mediated Multidrug Resistance: Structure to Activity Relationship
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-28600A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
31694350
PubMed Central
PMC6920990
DOI
10.3390/pharmaceutics11110579
PII: pharmaceutics11110579
Knihovny.cz E-zdroje
- Klíčová slova
- P-glycoprotein, block copolymers, micelles, multidrug resistance, polymer therapeutics, solid tumors,
- Publikační typ
- časopisecké články MeSH
Multidrug resistance (MDR) is often caused by the overexpression of efflux pumps, such as ABC transporters, in particular, P-glycoprotein (P-gp). Here, we investigate the di- and tri- block amphiphilic polymer systems based on polypropylene glycol (PPO) and copolymers of (N-(2-hydroxypropyl)methacrylamide) (PHPMA) as potential macromolecular inhibitors of P-gp, and concurrently, carriers of drugs, passively targeting solid tumors by the enhanced permeability and retention (EPR) effect. Interestingly, there were significant differences between the effects of di- and tri- block polymer-based micelles, with the former being significantly more thermodynamically stable and showing much higher P-gp inhibition ability. The presence of Boc-protected hydrazide groups or the Boc-deprotection method did not affect the physico-chemical or biological properties of the block copolymers. Moreover, diblock polymer micelles could be loaded with free PPO containing 5-40 wt % of free PPO, which showed increased P-gp inhibition in comparison to the unloaded micelles. Loaded polymer micelles containing more than 20 wt % free PPO showed a significant increase in toxicity; thus, loaded diblock polymer micelles containing 5-15 wt % free PPO are potential candidates for in vitro and in vivo application as potent MDR inhibitors and drug carriers.
Zobrazit více v PubMed
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Markman J.L., Rekechenetskiy A., Holler E., Ljubimova J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013;65:1866–1879. doi: 10.1016/j.addr.2013.09.019. PubMed DOI PMC
Szakács G., Paterson J.K., Ludwig J.A., Booth-Genthe C., Gottesman M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006;5:219–234. doi: 10.1038/nrd1984. PubMed DOI
Callaghan R., Luk F., Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos. 2014;42:623–631. doi: 10.1124/dmd.113.056176. PubMed DOI PMC
Wang Z., Chen Y., Liang H., Bender A., Glen R.C., Yan A. P-glycoprotein substrate models using support vector machines based on a comprehensive data set. J. Chem. Inf. Model. 2011;51:1447–1456. doi: 10.1021/ci2001583. PubMed DOI
Chen L., Li Y., Yu H., Zhang L., Hou T. Computational models for predicting substrates or inhibitors of P-glycoprotein. Drug Discov. Today. 2012;17:343–351. doi: 10.1016/j.drudis.2011.11.003. PubMed DOI
Koziolová E., Janoušková O., Cuchalová L., Hvězdová Z., Hraběta J., Eckschlager T., Sivák L., Ulbrich K., Etrych T., Šubr V. Overcoming multidrug resistance in Dox-resistant neuroblastoma cell lines via treatment with HPMA copolymer conjugates containing anthracyclines and P-gp inhibitors. J. Control. Release. 2016;233:136–146. doi: 10.1016/j.jconrel.2016.05.036. PubMed DOI
Šubr V., Sivák L., Koziolová E., Braunová A., Pechar M., Strohalm J., Kabešová M., Říhová B., Ulbrich K., Kovář M. Synthesis of Poly[N-(2-hydroxypropyl)methacrylamide] conjugates of inhibitors of the ABC transporter that overcome multidrug resistance in doxorubicin-resistant P388 cells in vitro. Biomacromolecules. 2014;15:3030–3043. doi: 10.1021/bm500649q. PubMed DOI
Sivak L., Subr V., Tomala J., Rihova B., Strohalm J., Etrych T., Kovar M. Overcoming multidrug resistance via simultaneous delivery of cytostatic drug and P-glycoprotein inhibitor to cancer cells by HPMA copolymer conjugate. Biomaterials. 2017;115:65–80. doi: 10.1016/j.biomaterials.2016.11.013. PubMed DOI
Alakhova D.Y., Kabanov A.V. Pluronics and MDR reversal: An update. Mol. Pharm. 2014;11:2566–2578. doi: 10.1021/mp500298q. PubMed DOI PMC
Batrakova E.V., Kabanov A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release. 2008;130:98–106. doi: 10.1016/j.jconrel.2008.04.013. PubMed DOI PMC
Kabanov A.V., Batrakova E.V., Alakhov V.Y. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv. Drug Deliv. Rev. 2002;54:759–779. doi: 10.1016/S0169-409X(02)00047-9. PubMed DOI
Pitto-Barry A., Barry N.P.E. Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014;5:3291–3297. doi: 10.1039/C4PY00039K. DOI
Kabanov A.V., Zhu J. Pluronic Block Copolymers for Drug and Gene Delivery. In: Kwon G.S., editor. Polymeric Drug Delivery Systems, Series: Drugs and the Pharmaceutical Sciences, Volume 148. Taylor and Francis Group, CRC Press; Boca Raton, FL, USA: 2005. pp. 577–613.
Raval A., Pillai S.A., Bahadur A., Bahadur P. Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs. J. Mol. Liq. 2017;230:473–481. doi: 10.1016/j.molliq.2017.01.065. DOI
Batrakova E.V., Bronich T.K., Vetro J.A., Kabanov A.V. Nanoparticulates as Drug Carriers. Imperial College Press; London, UK: 2006. Polymer Micelles as Drug Carriers; pp. 57–93.
Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzym. Regul. 2001;41:189–207. doi: 10.1016/S0065-2571(00)00013-3. PubMed DOI
Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI
Maeda H., Sawa T., Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release. 2001;74:47–61. doi: 10.1016/S0168-3659(01)00309-1. PubMed DOI
Braunová A., Kostka L., Sivák L., Cuchalová L., Hvězdová Z., Laga R., Filippov S., Černoch P., Pechar M., Janoušková O., et al. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J. Control. Release. 2017;245:41–51. doi: 10.1016/j.jconrel.2016.11.020. PubMed DOI
Nishiyama N., Matsumura Y., Kataoka K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci. 2016;107:867–874. doi: 10.1111/cas.12960. PubMed DOI PMC
Cabral H., Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release. 2014;190:465–476. doi: 10.1016/j.jconrel.2014.06.042. PubMed DOI
Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001;47:113–131. doi: 10.1016/S0169-409X(00)00124-1. PubMed DOI
Kataoka K., Matsumoto T., Yokoyama M., Okano T., Sakurai Y., Fukushima S., Okamoto K., Kwon G.S. Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-l-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance. J. Control. Release. 2000;64:143–153. doi: 10.1016/S0168-3659(99)00133-9. PubMed DOI
Dongin K., Eun Seong L., Kyung Taek O., Zhong G.G., You Han B. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH. Small. 2009;4:2043–2050. PubMed PMC
Deshmukh A.S., Chauhan P.N., Noolvi M.N., Chaturvedi K., Ganguly K., Shukla S.S., Nadagouda M.N., Aminabhavi T.M. Polymeric micelles: Basic research to clinical practice. Int. J. Pharm. 2017;532:249–268. doi: 10.1016/j.ijpharm.2017.09.005. PubMed DOI
Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. Antibody-targeted Polymer–doxorubicin Conjugates with pH-controlled Activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI
Šubr V., Koňák Č., Laga R., Ulbrich K. Coating of DNA/poly(l-lysine) complexes by covalent attachment of poly[N-(2-hydroxypropyl)methacrylamide] Biomacromolecules. 2006;7:122–130. doi: 10.1021/bm050524x. PubMed DOI
Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI
Perrier S., Takolpuckdee P., Mars C.A. Reversible addition-fragmentation chain transfer polymerization: End group modification for functionalized polymers and chain transfer agent recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI
Zinelaabidine C., Souad O., Zoubir J., Malika B., Nour-Eddine A. A Simple and Efficient Green Method for the Deprotection of N-Boc in Various Structurally Diverse Amines under Water-mediated Catalyst-free Conditions. Int. J. Chem. 2012;4:73–79. doi: 10.5539/ijc.v4n3p73. DOI
Trousil J., Syrová Z., Dal N.J.K., Rak D., Konefal R., Pavlova E., Matějková J., Cmarko D., Kubíčková P., Pavliš O., et al. Rifampicin Nanoformulation Enhances Treatment of Tuberculosis in Zebrafish. Biomacromolecules. 2019;20:1798–1815. doi: 10.1021/acs.biomac.9b00214. PubMed DOI
Kolouchova K., Sedlacek O., Jirak D., Babuka D., Blahut J., Kotek J., Vit M., Trousil J., Konefał R., Janouskova O., et al. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules. 2018;19:3515–3524. doi: 10.1021/acs.biomac.8b00812. PubMed DOI
Von Richter O., Glavinas H., Krajcsi P., Liehner S., Siewert B., Zech K. A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn. Schmiedeberg’s Arch. Pharmacol. 2009;379:11–26. doi: 10.1007/s00210-008-0345-0. PubMed DOI
Allen C., Maysinger D., Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surfaces B Biointerfaces. 1999;16:3–27. doi: 10.1016/S0927-7765(99)00058-2. DOI
Nagarajan R., Ganesh K. 1989-Nagarajan. J. Chem. Phys. 1989;90:5843–5856. doi: 10.1063/1.456390. DOI
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins-the introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI
Tyrrell Z.L., Shen Y., Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog. Polym. Sci. 2010;35:1128–1143. doi: 10.1016/j.progpolymsci.2010.06.003. DOI
Lammers T., Kühnlein R., Kissel M., Subr V., Etrych T., Pola R., Pechar M., Ulbrich K., Storm G., Huber P., et al. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J. Control. Release. 2005;110:103–118. doi: 10.1016/j.jconrel.2005.09.010. PubMed DOI
Sajid M.S., Jabeen F., Hussain D., Ashiq M.N., Najam-ul-Haq M. Hydrazide-functionalized affinity on conventional support materials for glycopeptide enrichment. Anal. Bioanal. Chem. 2017;409:3135–3143. doi: 10.1007/s00216-017-0254-5. PubMed DOI
Roth J. Protein N-glycosylation along the Secretory Pathway: Relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 2002;102:285–303. doi: 10.1021/cr000423j. PubMed DOI