Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM095583
NIGMS NIH HHS - United States
PubMed
28654088
PubMed Central
PMC5501160
DOI
10.1038/sdata.2017.79
PII: sdata201779
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- difrakce rentgenového záření MeSH
- kolifágy * MeSH
- molekulární struktura MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
Argonne National Laboratory 9700 S Cass Ave Lemont Illinois 60439 USA
Arizona State University School of Life Sciences Tempe Arizona 85287 5401 USA
Center for Free Electron Laser Science DESY Notkestrasse 85 22607 Hamburg Germany
Centre for Ultrafast Imaging University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany
Department of Physics Arizona State University Tempe Arizona 85287 USA
Department of Physics National University of Singapore Blk S12 2 Science Drive 3 Singapore 117551
Department of Physics Pohang University of Science and Technology Pohang 37673 Korea
Department of Physics University of Hamburg Luruper Chausee 149 22761 Hamburg Germany
Deutsches Elektronen Synchrotron DESY Notkestraße 85 D 22607 Hamburg Germany
European 10 ray Free Electron Laser GmbH Holzkoppel 4 22869 Schenefeld Germany
Institute of Physics AS CR v v i Na Slovance 2 18221 Prague 8 Czech Republic
Max Planck Institute for the Structure and Dynamics of Matter 22607 Hamburg Germany
National Research Centre 'Kurchatov Institute' Akademika Kurchatova pl 1 123182 Moscow Russia
National Research Nuclear University MEPhI Kashirskoe shosse 31 115409 Moscow Russia
NSLS 2 Brookhaven National Laboratory Upton New York 11873 USA
School of Molecular Sciences Arizona State University Tempe Arizona 85287 1604 USA
SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 USA
Zobrazit více v PubMed
Yoon C. H. 2016. Coherent X-ray Imaging Data Bank. http://dx.doi.org/10.11577/1349664 DOI
Neutze R., Wouts R., van der Spoel D., Weckert E. & Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000). PubMed
Aquila A. et al. The linac coherent light source single particle imaging road map. Struct. Dyn 2, 041701 (2015). PubMed PMC
DePonte D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D: Appl. Phys 41, 195505 (2008).
Ferguson K. R. et al. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source. J. Synchrotron Rad 22, 492–497 (2015). PubMed PMC
Emma P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics 4, 641–647 (2010).
White W. E., Robert A. & Dunne M. The Linac Coherent Light Source. J. Synchrotron Rad 22, 472–476 (2015). PubMed PMC
Mazzocco A., Waddell T. E., Lingohr E. & Johnson R. P. Enumeration of bacteriophages using the small drop plaque assay system. Methods in molecular biology 501, 81–85 (2009). PubMed
Hantke M. F. et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics 8, 943–949 (2014).
Munke A. et al. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Scientific Data 3, 160064 (2016). PubMed PMC
Bogan M. J. et al. Single particle X-ray diffractive imaging. Nano Lett 8, 310–316 (2008). PubMed
Seibert M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470, 78–81 (2011). PubMed PMC
Strüder L. et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nuclear Instruments and Methods in Physics Research Section A 614, 483–496 (2010).
Ekeberg T. et al. Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser. Phys. Rev. Lett 114, 098102 (2015). PubMed
Daurer B. J., Hantke M. F., Nettelblad C. & Maia F. R. N. C. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Cryst 49, 1042–1047 (2016). PubMed PMC
Damiani D. et al. Linac Coherent Light Source data analysis using psana. J. Appl. Cryst 49, 672–679 (2016).
Loh N. D. Effects of extraneous noise in Cryptotomography. Proc. SPIE Vol. 8500, 85000K (Image Reconstruction from Incomplete Data VII, 2012).
Yoon C. Novel algorithms in coherent diffraction imaging using X-ray free-electron lasers. Proc. SPIE Vol. 8500, 85000H (Image Reconstruction from Incomplete Data VII, 2012).
Hosseinizadeh A., Dashti A., Schwander P., Fung R. & Ourmazd A. Single-particle structure determination by X-ray free-electron lasers: possibilities and challenges. Structural Dynamics 2, 041601 (2015). PubMed PMC
Bobkov S. A. et al. Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers. J Synchrotron Rad 22, 1345 (2015). PubMed
Maia F. R. N. C. The Coherent X-ray Imaging Data Bank. Nature Methods 9, 854–855 (2012). PubMed