Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

. 2016 Aug 01 ; 3 () : 160064. [epub] 20160801

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu dataset, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid27478984

Grantová podpora
GM097463 NIGMS NIH HHS - United States
609920 European Research Council - International
R01GM095583 NIGMS NIH HHS - United States
U54 GM094599 NIGMS NIH HHS - United States
R01 GM097463 NIGMS NIH HHS - United States
R01 GM095583 NIGMS NIH HHS - United States

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

Argonne National Laboratory 9700 South Cass Avenue Argonne Illinois 60439 USA

Arizona State University Department of Physics Tempe Arizona 85287 USA

Arizona State University School of Life Sciences Tempe Arizona 85287 5401 USA

Arizona State University School of Molecular Sciences Tempe Arizona 85287 1604 USA

Australian Research Council Centre of Excellence in Advanced Molecular Imaging La Trobe Institute for Molecular Science La Trobe University Melbourne 3086 Australia

Beijing Computational Science Research Center 8 W Dongbeiwang Rd Haidian Beijing 100193 China

Biodesign Center for Applied Structural Discovery Biodesign Institute at Arizona State University Tempe 85287 USA

Biodesign Center for Infectious Diseases and Vaccinology Biodesign Institute at Arizona State University Tempe 85287 USA

Biomedical and 10 Ray Physics Department of Applied Physics AlbaNova University Center KTH Royal Institute of Technology Stockholm SE 106 91 Sweden

Brookhaven National Laboratory NSLS 2 Upton New York 11973 USA

Center for Free Electron Laser Science Deutsches Elektronen Synchrotron DESY Hamburg 22607 Germany

Centre for Bio imaging Sciences National University of Singapore 14 Science Drive 4 BLK S1A Singapore 117543 Singapore

Department of Information Technology Science for Life Laboratory Uppsala University Lägerhyddsvägen 2 Uppsala SE 75105 Sweden

Department of Physics and Astronomy Uppsala University Lägerhyddsvägen 1 Uppsala SE 75120 Sweden

Department of Physics Pohang University of Science and Technology Pohang 37673 Korea

Department of Physics University of Hamburg Hamburg 22761 Germany

Department of Physics University of Wisconsin Milwaukee 3135 North Maryland Ave Milwaukee Wisconsin 53211 USA

Deutsches Elektronen Synchrotron DESY Notkestraße 85 Hamburg D 22607 Germany

European XFEL GmbH Holzkoppel 4 Schenefeld 22869 Germany

Institut für Optik und Atomare Physik Technische Universität Berlin Hardenbergstraße 36 Berlin 10623 Germany

Institute for Protein Research Osaka University Suita Osaka 565 0871 Japan

Institute of Physics ASCR v v i ELI Beamlines Project Prague 182 21 Czech Republic

Laboratory of Atomic and Solid State Physics Cornell University Ithaca New York 14853 USA

Laboratory of Molecular Biophysics Department of Cell and Molecular Biology Uppsala University Husargatan 3 Uppsala SE 75124 Sweden

Max Planck Institute for the Structure and Dynamics of Matter CFEL Hamburg 22607 Germany

National Research Nuclear University MEPhI Kashirskoe shosse 31 Moscow 115409 Russia

School of Materials Science and Engineering Gwangju Institute of Science and Technology Gwangju 61005 Korea

SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 USA

Stanford PULSE Institute 2575 Sand Hill Road Menlo Park California 94025 USA

Komentář v

PubMed

Zobrazit více v PubMed

Munke A. 2016. Figshare. http://dx.doi.org/10.6084/m9.figshare.c.2342581 DOI

Munke A. 2016. Coherent X-ray Imaging Data Bank. http://dx.doi.org/10.11577/1252456 DOI

Henderson R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995). PubMed

Neutze R., Wouts R., van der Spoel D., Weckert E. & Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000). PubMed

Howells M. R. et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J. Electron Spectros. Relat. Phenomena 170, 4–12 (2009). PubMed PMC

Chapman H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys 2, 839–843 (2006).

Seibert M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470 78–81 (2011). PubMed PMC

Ekeberg T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free electron laser. Phys. Rev. Lett. 114, 098102 (2015). PubMed

van der Schot G. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun 6, 5704 (2015). PubMed

Hantke M. F. et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photonics 8, 943–949 (2014).

Chapman H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). PubMed PMC

Boutet S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012). PubMed PMC

Aquila A. et al. The linac coherent light source single particle imaging road map. Struct. Dyn 2, 041701 (2015). PubMed PMC

Kano H. et al. Nucleotide sequence of rice dwarf virus (RDV) genome segment S3 coding for 114 K major core protein. Nucleic Acids Res. 18, 6700 (1990). PubMed PMC

Omura T. et al. The outer capsid protein of rice dwarf virus is encoded by genome segment S8. J Gen Virol. 70, 2759–2764 (1989). PubMed

Yan J. et al. P2 protein encoded by genome segment S2 of rice dwarf phytoreovirus is essential for virus infection. Virology 224, 539–541 (1996). PubMed

Zhong B. et al. A minor outer capsid protein, P9, of Rice dwarf virus. Arch. Virol. 148, 2275–2280 (2003). PubMed

Suzuki N. et al. Molecular analysis of rice dwarf phytoreovirus segment S1: interviral homology of the putative RNA-dependent RNA polymerase between plant- and animal-infecting reoviruses. Virology 190, 240–247 (1992). PubMed

Suzuki N., Kusano T., Matsuura Y. & Omura T. Novel NTP binding property of rice dwarf phytoreovirus minor core protein P5. Virology 219, 471–474 (1996). PubMed

Ueda S. & Uyeda I. The rice dwarf phytoreovirus structural protein P7 possesses non-specific nucleic acids binding activity in vitro. Mol. Plant Pathol. Online http://www.bspp.org.uk/mppol/1997/0123ueda/ (1997).

Nakagawa A. et al. The atomic structure of Rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11, 1227–1238 (2003). PubMed

Boutet S. & Williams G. J. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 12, 035024 (2010).

Liang M. et al. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015). PubMed PMC

Bogan M. J. et al. Single particle X-ray diffractive imaging. NANO Lett 8, 310–316 (2008). PubMed

Hart P. et al. The CSPAD megapixel X-ray camera at LCLS. Proc. SPIE 8504, 8504 (2012).

Herrmann S. et al. CPSAD upgrades and CSPAD V1.5 at LCLS. J. Phys. Conf. Ser 493, 012013 (2014).

Maia F. R. N. C. The coherent X-ray imaging data bank. Nat. Methods 9, 854–855 (2012). PubMed

Kimura I., Minobe Y. & Omura T. Changes in a nucleic acid and a protein component of Rice dwarf virus particles associated with an increase in symptom severity. J. gen. Virol. 68, 3211–3225 (1987).

Omura T., Morinaka T., Inoue H. & Saito Y. Purification and some properties of rice gall dwarf virus, a new Phytoreovirus. Phytopath 72, 1246–1249 (1982).

DePonte D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D. Appl. Phys 41, 195505 (2008).

Daurer B. J., Hantke M. F., Nettelblad C. & Maia F. R. N. C. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Cryst. 49, 1042–1047 (2016). PubMed PMC

Barty A. et al. Cheetah: Software for High-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr 47, 1118–1131 (2014). PubMed PMC

Damiani D. et al. Linac Coherent Light Source data analysis using psana. J. Appl. Cryst. 49, 672–679 (2016).

Maia F. R. N. C., Ekeberg T., van der Spoel D. & Hajdu J. Hawk: the image reconstruction package for coherent X-ray diffractive imaging. J. Appl. Crystallogr 43, 1535–1539 (2010).

Giannakis D., Schwander P. & Ourmazd A. The symmetries of image formation by scattering. I. Theoretical framework. Opt. Express 20, 12799–12826 (2012). PubMed

Schwander P., Giannakis D., Yoon C. H. & Ourmazd A. The symmetries of image formation by scattering. II. Applications. Opt. Express 20, 12827–12849 (2012). PubMed

Hosseinizadeh A. et al. High-resolution structure of viruses from diffraction snapshots. Philos. Trans. R. Soc. Lond. B Biol. Sci 369, 20130326 (2014). PubMed PMC

Hosseinizadeh A., Dashti A., Schwander P., Fung R. & Ourmazd A. Single-particle structure determination by X-ray free electron lasers: possibilities and challenges. Struct. Dyn 2, 041601 (2015). PubMed PMC

Coifman R. R. & Lafon S. Diffusion maps. Appl. Comput. Harmon. Anal 21, 5–30 (2006).

Zobrazit více v PubMed

figshare
10.6084/M9.FIGSHARE.C.2342581

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...