Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
GM097463
NIGMS NIH HHS - United States
609920
European Research Council - International
R01GM095583
NIGMS NIH HHS - United States
U54 GM094599
NIGMS NIH HHS - United States
R01 GM097463
NIGMS NIH HHS - United States
R01 GM095583
NIGMS NIH HHS - United States
PubMed
27478984
PubMed Central
PMC4968191
DOI
10.1038/sdata.2016.64
PII: sdata201664
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- částice - urychlovače MeSH
- rentgenové záření MeSH
- Reoviridae izolace a purifikace MeSH
- rýže (rod) virologie MeSH
- virion * MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
Argonne National Laboratory 9700 South Cass Avenue Argonne Illinois 60439 USA
Arizona State University Department of Physics Tempe Arizona 85287 USA
Arizona State University School of Life Sciences Tempe Arizona 85287 5401 USA
Arizona State University School of Molecular Sciences Tempe Arizona 85287 1604 USA
Beijing Computational Science Research Center 8 W Dongbeiwang Rd Haidian Beijing 100193 China
Brookhaven National Laboratory NSLS 2 Upton New York 11973 USA
Center for Free Electron Laser Science Deutsches Elektronen Synchrotron DESY Hamburg 22607 Germany
Department of Physics and Astronomy Uppsala University Lägerhyddsvägen 1 Uppsala SE 75120 Sweden
Department of Physics Pohang University of Science and Technology Pohang 37673 Korea
Department of Physics University of Hamburg Hamburg 22761 Germany
Deutsches Elektronen Synchrotron DESY Notkestraße 85 Hamburg D 22607 Germany
European XFEL GmbH Holzkoppel 4 Schenefeld 22869 Germany
Institute for Protein Research Osaka University Suita Osaka 565 0871 Japan
Institute of Physics ASCR v v i ELI Beamlines Project Prague 182 21 Czech Republic
Laboratory of Atomic and Solid State Physics Cornell University Ithaca New York 14853 USA
Max Planck Institute for the Structure and Dynamics of Matter CFEL Hamburg 22607 Germany
National Research Nuclear University MEPhI Kashirskoe shosse 31 Moscow 115409 Russia
SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 USA
Stanford PULSE Institute 2575 Sand Hill Road Menlo Park California 94025 USA
Zobrazit více v PubMed
Munke A. 2016. Figshare. http://dx.doi.org/10.6084/m9.figshare.c.2342581 DOI
Munke A. 2016. Coherent X-ray Imaging Data Bank. http://dx.doi.org/10.11577/1252456 DOI
Henderson R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995). PubMed
Neutze R., Wouts R., van der Spoel D., Weckert E. & Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000). PubMed
Howells M. R. et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J. Electron Spectros. Relat. Phenomena 170, 4–12 (2009). PubMed PMC
Chapman H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys 2, 839–843 (2006).
Seibert M. M. et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470 78–81 (2011). PubMed PMC
Ekeberg T. et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free electron laser. Phys. Rev. Lett. 114, 098102 (2015). PubMed
van der Schot G. et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun 6, 5704 (2015). PubMed
Hantke M. F. et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photonics 8, 943–949 (2014).
Chapman H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). PubMed PMC
Boutet S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012). PubMed PMC
Aquila A. et al. The linac coherent light source single particle imaging road map. Struct. Dyn 2, 041701 (2015). PubMed PMC
Kano H. et al. Nucleotide sequence of rice dwarf virus (RDV) genome segment S3 coding for 114 K major core protein. Nucleic Acids Res. 18, 6700 (1990). PubMed PMC
Omura T. et al. The outer capsid protein of rice dwarf virus is encoded by genome segment S8. J Gen Virol. 70, 2759–2764 (1989). PubMed
Yan J. et al. P2 protein encoded by genome segment S2 of rice dwarf phytoreovirus is essential for virus infection. Virology 224, 539–541 (1996). PubMed
Zhong B. et al. A minor outer capsid protein, P9, of Rice dwarf virus. Arch. Virol. 148, 2275–2280 (2003). PubMed
Suzuki N. et al. Molecular analysis of rice dwarf phytoreovirus segment S1: interviral homology of the putative RNA-dependent RNA polymerase between plant- and animal-infecting reoviruses. Virology 190, 240–247 (1992). PubMed
Suzuki N., Kusano T., Matsuura Y. & Omura T. Novel NTP binding property of rice dwarf phytoreovirus minor core protein P5. Virology 219, 471–474 (1996). PubMed
Ueda S. & Uyeda I. The rice dwarf phytoreovirus structural protein P7 possesses non-specific nucleic acids binding activity in vitro. Mol. Plant Pathol. Online http://www.bspp.org.uk/mppol/1997/0123ueda/ (1997).
Nakagawa A. et al. The atomic structure of Rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11, 1227–1238 (2003). PubMed
Boutet S. & Williams G. J. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 12, 035024 (2010).
Liang M. et al. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015). PubMed PMC
Bogan M. J. et al. Single particle X-ray diffractive imaging. NANO Lett 8, 310–316 (2008). PubMed
Hart P. et al. The CSPAD megapixel X-ray camera at LCLS. Proc. SPIE 8504, 8504 (2012).
Herrmann S. et al. CPSAD upgrades and CSPAD V1.5 at LCLS. J. Phys. Conf. Ser 493, 012013 (2014).
Maia F. R. N. C. The coherent X-ray imaging data bank. Nat. Methods 9, 854–855 (2012). PubMed
Kimura I., Minobe Y. & Omura T. Changes in a nucleic acid and a protein component of Rice dwarf virus particles associated with an increase in symptom severity. J. gen. Virol. 68, 3211–3225 (1987).
Omura T., Morinaka T., Inoue H. & Saito Y. Purification and some properties of rice gall dwarf virus, a new Phytoreovirus. Phytopath 72, 1246–1249 (1982).
DePonte D. P. et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D. Appl. Phys 41, 195505 (2008).
Daurer B. J., Hantke M. F., Nettelblad C. & Maia F. R. N. C. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Cryst. 49, 1042–1047 (2016). PubMed PMC
Barty A. et al. Cheetah: Software for High-throughput reduction and analysis of serial femtosecond X-ray diffraction data. J. Appl. Crystallogr 47, 1118–1131 (2014). PubMed PMC
Damiani D. et al. Linac Coherent Light Source data analysis using psana. J. Appl. Cryst. 49, 672–679 (2016).
Maia F. R. N. C., Ekeberg T., van der Spoel D. & Hajdu J. Hawk: the image reconstruction package for coherent X-ray diffractive imaging. J. Appl. Crystallogr 43, 1535–1539 (2010).
Giannakis D., Schwander P. & Ourmazd A. The symmetries of image formation by scattering. I. Theoretical framework. Opt. Express 20, 12799–12826 (2012). PubMed
Schwander P., Giannakis D., Yoon C. H. & Ourmazd A. The symmetries of image formation by scattering. II. Applications. Opt. Express 20, 12827–12849 (2012). PubMed
Hosseinizadeh A. et al. High-resolution structure of viruses from diffraction snapshots. Philos. Trans. R. Soc. Lond. B Biol. Sci 369, 20130326 (2014). PubMed PMC
Hosseinizadeh A., Dashti A., Schwander P., Fung R. & Ourmazd A. Single-particle structure determination by X-ray free electron lasers: possibilities and challenges. Struct. Dyn 2, 041601 (2015). PubMed PMC
Coifman R. R. & Lafon S. Diffusion maps. Appl. Comput. Harmon. Anal 21, 5–30 (2006).
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
figshare
10.6084/M9.FIGSHARE.C.2342581