Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser

. 2021 Sep 09 ; 11 (1) : 17976. [epub] 20210909

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34504156
Odkazy

PubMed 34504156
PubMed Central PMC8429720
DOI 10.1038/s41598-021-97142-5
PII: 10.1038/s41598-021-97142-5
Knihovny.cz E-zdroje

We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.

Zobrazit více v PubMed

Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752–757. doi: 10.1038/35021099. PubMed DOI

Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC

Ekeberg T, et al. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 2015;114:098102. doi: 10.1103/PhysRevLett.114.098102. PubMed DOI

Munke A, et al. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Sci. Data. 2016;3:160064. doi: 10.1038/sdata.2016.64. PubMed DOI PMC

Klapper MH, Faraggi M. Applications of pulse radiolysis to protein chemistry. Q. Rev. Biophys. 1979;12:465–519. doi: 10.1017/S0033583500002791. PubMed DOI

Garrison WM. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 1987;87:381–398. doi: 10.1021/cr00078a006. DOI

Ayyer K, Lan T-Y, Elser V, Loh ND. Dragonfly: An implementation of the expand-maximize-compress algorithm for single-particle imaging. J. Appl. Crystallogr. 2016;49:1320–1335. doi: 10.1107/S1600576716008165. PubMed DOI PMC

Loh N-TD, Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E. 2009 doi: 10.1103/PhysRevE.80.026705. PubMed DOI

Fienup JR. Phase retrieval algorithms: A comparison. Appl. Opt. 1982;21:2758–2769. doi: 10.1364/AO.21.002758. PubMed DOI

Fortmann-Grote C, et al. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCrJ. 2017;4:560–568. doi: 10.1107/S2052252517009496. PubMed DOI PMC

Östlin C, Timneanu N, Caleman C, Martin AV. Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers? Struct. Dyn. 2019;6:044103. doi: 10.1063/1.5098309. PubMed DOI PMC

Mandl T, et al. Structural heterogeneity in single particle imaging using X-ray lasers. J. Phys. Chem. Lett. 2020;11:6077–6083. doi: 10.1021/acs.jpclett.0c01144. PubMed DOI PMC

Levy Y, Onuchic JN. Water and proteins: A love-hate relationship. Proc. Natl. Acad. Sci. 2004;101:3325–3326. doi: 10.1073/pnas.0400157101. PubMed DOI PMC

Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with X rays at the advent of high repetition rate X-ray free electron laser sources. Struct. Dyn. 2020;7:040901. doi: 10.1063/4.0000024. PubMed DOI PMC

Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics. 2020;14:391. doi: 10.1038/s41566-020-0607-z. DOI

LCLS-II Project Team. LCLS-II Final Design Report. LCLSII-1.1-DR-0251-R0, Nov. 2015, SLAC, Menlo Park, CA, USA 14, 391 (2015).

Zhu, Z. Y. et al. SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai. In Proceedings of the FEL2017, 20–25 (Santa Fe, NM, USA, 2017).

Fortmann-Grote, C. & E, J. C. Simex. https://github.com/PaNOSC-ViNYL/SimEx (2020).

Yoon CH, et al. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser. Sci. Rep. 2016 doi: 10.1038/srep24791. PubMed DOI PMC

Hau-Riege SP, London RA, Chapman HN, Szoke A, Timneanu N. Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in X-Ray diffraction imaging of single biological molecules. Phys. Rev. Lett. 2007 doi: 10.1103/PhysRevLett.98.198302. PubMed DOI

Jurek Z, Faigel G. The effect of tamper layer on the explosion dynamics of atom clusters. Eur. Phys. J. D. 2008;50:35–43. doi: 10.1140/epjd/e2008-00189-8. DOI

Wang F, Weckert E, Ziaja B, Larsson DSD, van der Spoel D. Coherent diffraction of a single virus particle: The impact of a water layer on the available orientational information. Phys. Rev. E. 2011 doi: 10.1103/PhysRevE.83.031907. PubMed DOI

Ziaja B, et al. Heterogeneous clusters as a model system for the study of ionization dynamics within tampered samples. Phys. Rev. A. 2011;84:033201. doi: 10.1103/PhysRevA.84.033201. DOI

Jurek Z, Oszlanyi G, Faigel G. Imaging atom clusters by hard X-ray free-electron lasers. EPL (Europhys. Lett.) 2004;65:491. doi: 10.1209/epl/i2003-10119-x. DOI

Jurek Z, Faigel G, Tegze M. Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 2004;29:217–229. doi: 10.1140/epjd/e2004-00033-3. DOI

Hau-Riege SP, London RA, Szoke A. Dynamics of biological molecules irradiated by short X-ray pulses. Phys. Rev. E. 2004;69:051906. doi: 10.1103/PhysRevE.69.051906. PubMed DOI

Chubar, O., Elleaume, P., Kuznetsov, S. & Snigirev, A. A. Physical optics computer code optimized for synchrotron radiation. In Optical Design and Analysis Software II, vol. 4769, 145–151 (International Society for Optics and Photonics, 2002).

Samoylova L, Buzmakov A, Chubar O, Sinn H. WavePropaGator: Interactive framework for X-ray free-electron laser optics design and simulations. J. Appl. Crystallogr. 2016;49:1347–1355. doi: 10.1107/S160057671600995X. PubMed DOI PMC

Jurek Z, Son S-K, Ziaja B, Santra R. XMDYN and XATOM: Versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Crystallogr. 2016;49:1048–1056. doi: 10.1107/S1600576716006014. DOI

Murphy BF, et al. Femtosecond X-ray-induced explosion of C 60 at extreme intensity. Nat. Commun. 2014;5:4281. doi: 10.1038/ncomms5281. PubMed DOI

Tachibana T, et al. Nanoplasma formation by high intensity hard X-rays. Sci. Rep. 2015;5:10977. doi: 10.1038/srep10977. PubMed DOI PMC

Nass K, et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 2020;11:1814. doi: 10.1038/s41467-020-15610-4. PubMed DOI PMC

Yoon, C. H. & et al. pysingfel. https://github.com/chuckie82/pysingfel (2020).

Berman HM, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Hau-Riege SP, London RA, Huldt G, Chapman HN. Pulse requirements for X-ray diffraction imaging of single biological molecules. Phys. Rev. E. 2005 doi: 10.1103/PhysRevE.71.061919. PubMed DOI

Son S-K, Young L, Santra R. Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys. Rev. A. 2011 doi: 10.1103/PhysRevA.83.033402. DOI

Fortmann-Grote, C. et al. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers. In Advances in Computational Methods for X-Ray Optics IV, vol. 10388, 103880M (International Society for Optics and Photonics, 2017).

Bielecki J, et al. Electrospray sample injection for single-particle imaging with X-ray lasers. Sci. Adv. 2019 doi: 10.1126/sciadv.aav8801. PubMed DOI PMC

Schlessman JL, Woo D, Joshua-Tor L, Howard JB, Rees DC. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum 11 Edited by I. A. Wilson. J. Mol. Biol. 1998;280:669–685. doi: 10.1006/jmbi.1998.1898. PubMed DOI

Phillips JC, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020;153:044130. doi: 10.1063/5.0014475. PubMed DOI PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

MacKerell AD, Jr, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI

MacKerell AD, Jr, Feig M, Brooks CL., III Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004;25:1400–1415. doi: 10.1002/jcc.20065. PubMed DOI

Virtanen JJ, Makowski L, Sosnick TR, Freed KF. Modeling the hydration layer around proteins: Applications to small- and wide-angle X-Ray scattering. Biophys. J . 2011;101:2061–2069. doi: 10.1016/j.bpj.2011.09.021. PubMed DOI PMC

Saldin EL, Schneidmiller EA, Yurkov MV. FAST: A three-dimensional time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res., Sect. A. 1999;429:233–237. doi: 10.1016/S0168-9002(99)00110-2. DOI

Rohringer N, Santra R. X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser. Phys. Rev. A. 2007;76:033416. doi: 10.1103/PhysRevA.76.033416. DOI

Son S-K, Santra R. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses. Phys. Rev. A. 2012;85:063415. doi: 10.1103/PhysRevA.85.063415. DOI

Slowik JM, Son S-K, Dixit G, Jurek Z, Santra R. Incoherent X-ray scattering in single molecule imaging. New J. Phys. 2014;16:073042. doi: 10.1088/1367-2630/16/7/073042. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Computational study of diffraction image formation from XFEL irradiated single ribosome molecule

. 2024 May 09 ; 14 (1) : 10617. [epub] 20240509

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...