Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34504156
PubMed Central
PMC8429720
DOI
10.1038/s41598-021-97142-5
PII: 10.1038/s41598-021-97142-5
Knihovny.cz E-zdroje
- MeSH
- difrakce rentgenového záření přístrojové vybavení metody MeSH
- elektrony MeSH
- fotony MeSH
- lasery * MeSH
- molekulární zobrazování metody MeSH
- oxidoreduktasy chemie účinky záření MeSH
- rentgenové záření škodlivé účinky MeSH
- simulace molekulární dynamiky * MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nitrogenase reductase MeSH Prohlížeč
- oxidoreduktasy MeSH
- voda MeSH
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
Department of Physics Universität Hamburg Notkestr 9 11 22607 Hamburg Germany
European XFEL Holzkoppel 4 22869 Schenefeld Germany
Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152 31 342 Krakow Poland
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Prague 8 Czech Republic
Institute of Plasma Physics Czech Academy of Sciences Za Slovankou 3 182 00 Prague 8 Czech Republic
Max Planck Institute for Evolutionary Biology August Thienemann Straße 2 24306 Plön Germany
The Hamburg Centre for Ultrafast Imaging Luruper Chaussee 149 22761 Hamburg Germany
Zobrazit více v PubMed
Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752–757. doi: 10.1038/35021099. PubMed DOI
Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC
Ekeberg T, et al. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 2015;114:098102. doi: 10.1103/PhysRevLett.114.098102. PubMed DOI
Munke A, et al. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Sci. Data. 2016;3:160064. doi: 10.1038/sdata.2016.64. PubMed DOI PMC
Klapper MH, Faraggi M. Applications of pulse radiolysis to protein chemistry. Q. Rev. Biophys. 1979;12:465–519. doi: 10.1017/S0033583500002791. PubMed DOI
Garrison WM. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 1987;87:381–398. doi: 10.1021/cr00078a006. DOI
Ayyer K, Lan T-Y, Elser V, Loh ND. Dragonfly: An implementation of the expand-maximize-compress algorithm for single-particle imaging. J. Appl. Crystallogr. 2016;49:1320–1335. doi: 10.1107/S1600576716008165. PubMed DOI PMC
Loh N-TD, Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E. 2009 doi: 10.1103/PhysRevE.80.026705. PubMed DOI
Fienup JR. Phase retrieval algorithms: A comparison. Appl. Opt. 1982;21:2758–2769. doi: 10.1364/AO.21.002758. PubMed DOI
Fortmann-Grote C, et al. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCrJ. 2017;4:560–568. doi: 10.1107/S2052252517009496. PubMed DOI PMC
Östlin C, Timneanu N, Caleman C, Martin AV. Is radiation damage the limiting factor in high-resolution single particle imaging with X-ray free-electron lasers? Struct. Dyn. 2019;6:044103. doi: 10.1063/1.5098309. PubMed DOI PMC
Mandl T, et al. Structural heterogeneity in single particle imaging using X-ray lasers. J. Phys. Chem. Lett. 2020;11:6077–6083. doi: 10.1021/acs.jpclett.0c01144. PubMed DOI PMC
Levy Y, Onuchic JN. Water and proteins: A love-hate relationship. Proc. Natl. Acad. Sci. 2004;101:3325–3326. doi: 10.1073/pnas.0400157101. PubMed DOI PMC
Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with X rays at the advent of high repetition rate X-ray free electron laser sources. Struct. Dyn. 2020;7:040901. doi: 10.1063/4.0000024. PubMed DOI PMC
Decking W, Abeghyan S, Abramian P, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics. 2020;14:391. doi: 10.1038/s41566-020-0607-z. DOI
LCLS-II Project Team. LCLS-II Final Design Report. LCLSII-1.1-DR-0251-R0, Nov. 2015, SLAC, Menlo Park, CA, USA 14, 391 (2015).
Zhu, Z. Y. et al. SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai. In Proceedings of the FEL2017, 20–25 (Santa Fe, NM, USA, 2017).
Fortmann-Grote, C. & E, J. C. Simex. https://github.com/PaNOSC-ViNYL/SimEx (2020).
Yoon CH, et al. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser. Sci. Rep. 2016 doi: 10.1038/srep24791. PubMed DOI PMC
Hau-Riege SP, London RA, Chapman HN, Szoke A, Timneanu N. Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in X-Ray diffraction imaging of single biological molecules. Phys. Rev. Lett. 2007 doi: 10.1103/PhysRevLett.98.198302. PubMed DOI
Jurek Z, Faigel G. The effect of tamper layer on the explosion dynamics of atom clusters. Eur. Phys. J. D. 2008;50:35–43. doi: 10.1140/epjd/e2008-00189-8. DOI
Wang F, Weckert E, Ziaja B, Larsson DSD, van der Spoel D. Coherent diffraction of a single virus particle: The impact of a water layer on the available orientational information. Phys. Rev. E. 2011 doi: 10.1103/PhysRevE.83.031907. PubMed DOI
Ziaja B, et al. Heterogeneous clusters as a model system for the study of ionization dynamics within tampered samples. Phys. Rev. A. 2011;84:033201. doi: 10.1103/PhysRevA.84.033201. DOI
Jurek Z, Oszlanyi G, Faigel G. Imaging atom clusters by hard X-ray free-electron lasers. EPL (Europhys. Lett.) 2004;65:491. doi: 10.1209/epl/i2003-10119-x. DOI
Jurek Z, Faigel G, Tegze M. Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 2004;29:217–229. doi: 10.1140/epjd/e2004-00033-3. DOI
Hau-Riege SP, London RA, Szoke A. Dynamics of biological molecules irradiated by short X-ray pulses. Phys. Rev. E. 2004;69:051906. doi: 10.1103/PhysRevE.69.051906. PubMed DOI
Chubar, O., Elleaume, P., Kuznetsov, S. & Snigirev, A. A. Physical optics computer code optimized for synchrotron radiation. In Optical Design and Analysis Software II, vol. 4769, 145–151 (International Society for Optics and Photonics, 2002).
Samoylova L, Buzmakov A, Chubar O, Sinn H. WavePropaGator: Interactive framework for X-ray free-electron laser optics design and simulations. J. Appl. Crystallogr. 2016;49:1347–1355. doi: 10.1107/S160057671600995X. PubMed DOI PMC
Jurek Z, Son S-K, Ziaja B, Santra R. XMDYN and XATOM: Versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Crystallogr. 2016;49:1048–1056. doi: 10.1107/S1600576716006014. DOI
Murphy BF, et al. Femtosecond X-ray-induced explosion of C 60 at extreme intensity. Nat. Commun. 2014;5:4281. doi: 10.1038/ncomms5281. PubMed DOI
Tachibana T, et al. Nanoplasma formation by high intensity hard X-rays. Sci. Rep. 2015;5:10977. doi: 10.1038/srep10977. PubMed DOI PMC
Nass K, et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 2020;11:1814. doi: 10.1038/s41467-020-15610-4. PubMed DOI PMC
Yoon, C. H. & et al. pysingfel. https://github.com/chuckie82/pysingfel (2020).
Berman HM, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC
Hau-Riege SP, London RA, Huldt G, Chapman HN. Pulse requirements for X-ray diffraction imaging of single biological molecules. Phys. Rev. E. 2005 doi: 10.1103/PhysRevE.71.061919. PubMed DOI
Son S-K, Young L, Santra R. Impact of hollow-atom formation on coherent X-ray scattering at high intensity. Phys. Rev. A. 2011 doi: 10.1103/PhysRevA.83.033402. DOI
Fortmann-Grote, C. et al. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers. In Advances in Computational Methods for X-Ray Optics IV, vol. 10388, 103880M (International Society for Optics and Photonics, 2017).
Bielecki J, et al. Electrospray sample injection for single-particle imaging with X-ray lasers. Sci. Adv. 2019 doi: 10.1126/sciadv.aav8801. PubMed DOI PMC
Schlessman JL, Woo D, Joshua-Tor L, Howard JB, Rees DC. Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum 11 Edited by I. A. Wilson. J. Mol. Biol. 1998;280:669–685. doi: 10.1006/jmbi.1998.1898. PubMed DOI
Phillips JC, et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020;153:044130. doi: 10.1063/5.0014475. PubMed DOI PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
MacKerell AD, Jr, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI
MacKerell AD, Jr, Feig M, Brooks CL., III Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004;25:1400–1415. doi: 10.1002/jcc.20065. PubMed DOI
Virtanen JJ, Makowski L, Sosnick TR, Freed KF. Modeling the hydration layer around proteins: Applications to small- and wide-angle X-Ray scattering. Biophys. J . 2011;101:2061–2069. doi: 10.1016/j.bpj.2011.09.021. PubMed DOI PMC
Saldin EL, Schneidmiller EA, Yurkov MV. FAST: A three-dimensional time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res., Sect. A. 1999;429:233–237. doi: 10.1016/S0168-9002(99)00110-2. DOI
Rohringer N, Santra R. X-ray nonlinear optical processes using a self-amplified spontaneous emission free-electron laser. Phys. Rev. A. 2007;76:033416. doi: 10.1103/PhysRevA.76.033416. DOI
Son S-K, Santra R. Monte Carlo calculation of ion, electron, and photon spectra of xenon atoms in x-ray free-electron laser pulses. Phys. Rev. A. 2012;85:063415. doi: 10.1103/PhysRevA.85.063415. DOI
Slowik JM, Son S-K, Dixit G, Jurek Z, Santra R. Incoherent X-ray scattering in single molecule imaging. New J. Phys. 2014;16:073042. doi: 10.1088/1367-2630/16/7/073042. DOI