SH3 domain tyrosine phosphorylation--sites, role and evolution

. 2012 ; 7 (5) : e36310. [epub] 20120515

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22615764

BACKGROUND: SH3 domains are eukaryotic protein domains that participate in a plethora of cellular processes including signal transduction, proliferation, and cellular movement. Several studies indicate that tyrosine phosphorylation could play a significant role in the regulation of SH3 domains. RESULTS: To explore the incidence of the tyrosine phosphorylation within SH3 domains we queried the PhosphoSite Plus database of phosphorylation sites. Over 100 tyrosine phosphorylations occurring on 20 different SH3 domain positions were identified. The tyrosine corresponding to c-Src Tyr-90 was by far the most frequently identified SH3 domain phosphorylation site. A comparison of sequences around this tyrosine led to delineation of a preferred sequence motif ALYD(Y/F). This motif is present in about 15% of human SH3 domains and is structurally well conserved. We further observed that tyrosine phosphorylation is more abundant than serine or threonine phosphorylation within SH3 domains and other adaptor domains, such as SH2 or WW domains. Tyrosine phosphorylation could represent an important regulatory mechanism of adaptor domains. CONCLUSIONS: While tyrosine phosphorylation typically promotes signaling protein interactions via SH2 or PTB domains, its role in SH3 domains is the opposite - it blocks or prevents interactions. The regulatory function of tyrosine phosphorylation is most likely achieved by the phosphate moiety and its charge interfering with binding of polyproline helices of SH3 domain interacting partners.

Zobrazit více v PubMed

Mayer BJ. SH3 domains: complexity in moderation. J Cell Sci. 2001;114:1253–1263. PubMed

Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 1994;76:933–945. PubMed

Kaneko T, Li L, Li SS. The SH3 domain–a family of versatile peptide- and protein-recognition module. Front Biosci. 2008;13:4938–4952. PubMed

Erpel T, Superti-Furga G, Courtneidge SA. Mutational analysis of the Src SH3 domain: the same residues of the ligand binding surface are important for intra- and intermolecular interactions. EMBO J. 1995;14:963–975. PubMed PMC

Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 1997;385:595–602. PubMed

Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol. 2009;21:140–146. PubMed PMC

Rodrigues GA, Park M. Oncogenic activation of tyrosine kinases. Curr Opin Genet Dev. 1994;4:15–24. PubMed

King N, Hittinger CT, Carroll SB. Evolution of key cell signaling and adhesion protein families predates animal origins. Science. 2003;301:361–363. PubMed

Lim WA, Pawson T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell. 2010;142:661–667. PubMed PMC

Manning G, Young SL, Miller WT, Zhai Y. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A. 2008;105:9674–9679. PubMed PMC

Anderson IJ, Watkins RF, Samuelson J, Spencer DF, Majoros WH, et al. Gene discovery in the Acanthamoeba castellanii genome. Protist. 2005;156:203–214. PubMed

Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, et al. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity. 1996;4:515–525. PubMed

Meyn MA, Wilson MB, Abdi FA, Fahey N, Schiavone AP, et al. Src family kinases phosphorylate the Bcr-Abl SH3-SH2 region and modulate Bcr-Abl transforming activity. J Biol Chem. 2006;281:30907–30916. PubMed

Janostiak R, Tolde O, Bruhová Z, Novotny M, Hanks SK, et al. Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness. Mol Biol Cell. 2011;22:4256–4267. PubMed PMC

Hunter T, Plowman GD. The protein kinases of budding yeast: six score and more. Trends Biochem Sci. 1997;22:18–22. PubMed

Chen S, O’Reilly LP, Smithgall TE, Engen JR. Tyrosine phosphorylation in the SH3 domain disrupts negative regulatory interactions within the c-Abl kinase core. J Mol Biol. 2008;383:414–423. PubMed PMC

Agrawal V, Kishan KV. Promiscuous binding nature of SH3 domains to their target proteins. Protein Pept Lett. 2002;9:185–193. PubMed

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. PubMed PMC

Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. The Pfam protein families database. Nucleic Acids Res. 2010;38:D211–222. PubMed PMC

Xue Y, Ren J, Gao X, Jin C, Wen L, et al. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics. 2008;7:1598–1608. PubMed PMC

Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. Human Protein Reference Database–2009 update. Nucleic Acids Res. 2009;37:D767–772. PubMed PMC

Joseph RE, Fulton DB, Andreotti AH. Mechanism and functional significance of Itk autophosphorylation. J Mol Biol. 2007;373:1281–1292. PubMed PMC

Booher RN, Deshaies RJ, Kirschner MW. Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J. 1993;12:3417–3426. PubMed PMC

Cesareni G, Gimona M, Sudol M, Yaffe M. Wiley-VCH; 2005. Modular Protein Domains.524

Fabian H, Otvos L, Szendrei GI, Lang E, Mantsch HH. Tyrosine- versus serine-phosphorylation leads to conformational changes in a synthetic tau peptide. J Biomol Struct Dyn. 1994;12:573–579. PubMed

Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B. PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics. 2004;4:1551–1561. PubMed

Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A. 1998;95:5857–5864. PubMed PMC

Consortium U. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2012;40:D71–75. PubMed PMC

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. PubMed PMC

Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, et al. The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res. 2011;39:D392–401. PubMed PMC

Kleywegt GJ. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr. 1996;52:842–857. PubMed

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed

Sato M, Maruoka M, Yokota N, Kuwano M, Matsui A, et al. Identification and functional analysis of a new phosphorylation site (Y398) in the SH3 domain of Abi-1. FEBS Lett. 2011;585:834–840. PubMed

Morrogh LM, Hinshelwood S, Costello P, Cory GO, Kinnon C. The SH3 domain of Bruton’s tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur J Immunol. 1999;29:2269–2279. PubMed

Sriram G, Reichman C, Tunceroglu A, Kaushal N, Saleh T, et al. Phosphorylation of Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation. Oncogene. 2011;30:4645–4655. PubMed PMC

Li S, Couvillon AD, Brasher BB, Van Etten RA. Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling. EMBO J. 2001;20:6793–6804. PubMed PMC

Wilcox HM, Berg LJ. Itk phosphorylation sites are required for functional activity in primary T cells. J Biol Chem. 2003;278:37112–37121. PubMed

Wu Y, Spencer SD, Lasky LA. Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J Biol Chem. 1998;273:5765–5770. PubMed

Wu X, Gan B, Yoo Y, Guan JL. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell. 2005;9:185–196. PubMed

Sylvester M, Kliche S, Lange S, Geithner S, Klemm C, et al. Adhesion and degranulation promoting adapter protein (ADAP) is a central hub for phosphotyrosine-mediated interactions in T cells. PLoS One. 2010;5:e11708. PubMed PMC

Fernow I, Tomasovic A, Siehoff-Icking A, Tikkanen R. Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases. BMC Cell Biol. 2009;10:80. PubMed PMC

Broome MA, Hunter T. Requirement for c-Src catalytic activity and the SH3 domain in platelet-derived growth factor BB and epidermal growth factor mitogenic signaling. J Biol Chem. 1996;271:16798–16806. PubMed

Kashiwakura J, Suzuki N, Takeno M, Itoh S, Oku T, et al. Evidence of autophosphorylation in Txk: Y91 is an autophosphorylation site. Biol Pharm Bull. 2002;25:718–721. PubMed

Lazer G, Pe’er L, Farago M, Machida K, Mayer BJ, et al. Tyrosine residues at the carboxyl terminus of Vav1 play an important role in regulation of its biological activity. J Biol Chem. 2010;285:23075–23085. PubMed PMC

Luo W, Slebos RJ, Hill S, Li M, Brábek J, et al. Global impact of oncogenic Src on a phosphotyrosine proteome. J Proteome Res. 2008;7:3447–3460. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace