The role of focal adhesion anchoring domains of CAS in mechanotransduction

. 2017 Apr 13 ; 7 () : 46233. [epub] 20170413

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28406229

CAS is a docking protein, which was shown to act as a mechanosensor in focal adhesions. The unique assembly of structural domains in CAS is important for its function as a mechanosensor. The tension within focal adhesions is transmitted to a stretchable substrate domain of CAS by focal adhesion-targeting of SH3 and CCH domain of CAS, which anchor the CAS protein in focal adhesions. Mechanistic models of the stretching biosensor propose equal roles for both anchoring domains. Using deletion mutants and domain replacements, we have analyzed the relative importance of the focal adhesion anchoring domains on CAS localization and dynamics in focal adhesions as well as on CAS-mediated mechanotransduction. We confirmed the predicted prerequisite of the focal adhesion targeting for CAS-dependent mechanosensing and unraveled the critical importance of CAS SH3 domain in mechanosensing. We further show that CAS localizes to the force transduction layer of focal adhesions and that mechanical stress stabilizes CAS in focal adhesions.

Zobrazit více v PubMed

Tikhmyanova N., Little J. L. & Golemis E. A. CAS proteins in normal and pathological cell growth control. Cell Mol. Life Sci. 67, 1025–1048 (2010). PubMed PMC

Janostiak R., Pataki A. C., Brabek J. & Rosel D. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur. J. Cell Biol. 93, 445–454 (2014). PubMed

Li X. & Earp H. S. Paxillin is tyrosine-phosphorylated by and preferentially associates with the calcium-dependent tyrosine kinase in rat liver epithelial cells. J. Biol. Chem. 272, 14341–14348 (1997). PubMed

Polte T. R. & Hanks S. K. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proc. Natl. Acad. Sci. USA 92, 10678–10682 (1995). PubMed PMC

Garton A. J., Burnham M. R., Bouton A. H. & Tonks N. K. Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene 15, 877–885 (1997). PubMed

Liu F., Hill D. E. & Chernoff J. Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). J. Biol. Chem. 271, 31290–31295 (1996). PubMed

Kirsch K. H., Georgescu M. M. & Hanafusa H. Direct binding of p130(Cas) to the guanine nucleotide exchange factor C3G. J. Biol. Chem. 273, 25673–25679 (1998). PubMed

Nakamoto T. et al.. CIZ, a zinc finger protein that interacts with p130(cas) and activates the expression of matrix metalloproteinases. Mol. Cell Biol. 20, 1649–1658 (2000). PubMed PMC

Janostiak R. et al.. CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol. Life Sci. 71, 727–744 (2014). PubMed PMC

Goldmann W. H. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction. Cell Biol. Int. 38, 283–286 (2014). PubMed

Donato D. M., Ryzhova L. M., Meenderink L. M., Kaverina I. & Hanks S. K. Dynamics and mechanism of p130Cas localization to focal adhesions. J. Biol. Chem. 285, 20769–20779 (2010). PubMed PMC

Janostiak R. et al.. Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness. Mol. Biol. Cell 22, 4256–4267 (2011). PubMed PMC

Tatarova Z., Brabek J., Rosel D. & Novotny M. SH3 domain tyrosine phosphorylation–sites, role and evolution. PLoS. One. 7, e36310 (2012). PubMed PMC

Sakai R. et al.. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J. 13, 3748–3756 (1994). PubMed PMC

Nojima Y. et al.. Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J. Biol. Chem. 270, 15398–15402 (1995). PubMed

Sawada Y. et al.. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006). PubMed PMC

Shin N. Y. et al.. Subsets of the major tyrosine phosphorylation sites in Crk-associated substrate (CAS) are sufficient to promote cell migration. J. Biol. Chem. 279, 38331–38337 (2004). PubMed

Schlaepfer D. D. & Hunter T. Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J. Biol. Chem. 272, 13189–13195 (1997). PubMed

Nakamoto T., Sakai R., Ozawa K., Yazaki Y. & Hirai H. Direct binding of C-terminal region of p130Cas to SH2 and SH3 domains of Src kinase. J. Biol. Chem. 271, 8959–8965 (1996). PubMed

Mace P. D. et al.. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Nat. Struct. Mol. Biol. 18, 1381–1387 (2011). PubMed PMC

Chen C. S., Alonso J. L., Ostuni E., Whitesides G. M. & Ingber D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355–361 (2003). PubMed

Riveline D. et al.. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001). PubMed PMC

Hildebrand J. D., Schaller M. D. & Parsons J. T. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J. Cell Biol. 123, 993–1005 (1993). PubMed PMC

Law S. F. et al.. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain. Exp. Cell Res. 252, 224–235 (1999). PubMed

Zeng X., Zhu H., Lashuel H. A. & Hu J. C. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci. 6, 2218–2226 (1997). PubMed PMC

Rosel D. et al.. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol. Cancer Res. 6, 1410–1420 (2008). PubMed

Kanchanawong P. et al.. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010). PubMed PMC

Schaller M. D. et al.. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell Biol. 14, 1680–1688 (1994). PubMed PMC

Calalb M. B., Zhang X., Polte T. R. & Hanks S. K. Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem. Biophys. Res. Commun. 228, 662–668 (1996). PubMed

Tolde O., Rosel D., Janostiak R., Vesely P. & Brabek J. Dynamics and morphology of focal adhesions in complex 3D environment. Folia Biol. (Praha) 58, 177–184 (2012). PubMed

Horzum U., Ozdil B. & Pesen-Okvur D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 1, 56–59 (2014). PubMed PMC

Butler J. P., Tolic-Norrelykke I. M., Fabry B. & Fredberg J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol Cell Physiol 282, C595–C605 (2002). PubMed

Gerum R. C., Richter S., Fabry B. & Zitterbart D. P. ClickPoints: an expandable toolbox for scientific image annotation and analysis. Methods in Ecology and Evolution, doi: 10.1111/2041-210X.12702 (2016). DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...