The role of focal adhesion anchoring domains of CAS in mechanotransduction
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28406229
PubMed Central
PMC5390273
DOI
10.1038/srep46233
PII: srep46233
Knihovny.cz E-resources
- MeSH
- Cell Adhesion MeSH
- Mechanotransduction, Cellular * MeSH
- Fibroblasts cytology metabolism MeSH
- Focal Adhesions metabolism MeSH
- Stress, Mechanical MeSH
- Mutant Proteins chemistry MeSH
- Mice MeSH
- Protein Domains MeSH
- Recombinant Fusion Proteins metabolism MeSH
- Signal Transduction MeSH
- Protein Stability MeSH
- Crk-Associated Substrate Protein chemistry metabolism MeSH
- Structure-Activity Relationship MeSH
- Green Fluorescent Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bcar1 protein, mouse MeSH Browser
- Mutant Proteins MeSH
- Recombinant Fusion Proteins MeSH
- Crk-Associated Substrate Protein MeSH
- Green Fluorescent Proteins MeSH
CAS is a docking protein, which was shown to act as a mechanosensor in focal adhesions. The unique assembly of structural domains in CAS is important for its function as a mechanosensor. The tension within focal adhesions is transmitted to a stretchable substrate domain of CAS by focal adhesion-targeting of SH3 and CCH domain of CAS, which anchor the CAS protein in focal adhesions. Mechanistic models of the stretching biosensor propose equal roles for both anchoring domains. Using deletion mutants and domain replacements, we have analyzed the relative importance of the focal adhesion anchoring domains on CAS localization and dynamics in focal adhesions as well as on CAS-mediated mechanotransduction. We confirmed the predicted prerequisite of the focal adhesion targeting for CAS-dependent mechanosensing and unraveled the critical importance of CAS SH3 domain in mechanosensing. We further show that CAS localizes to the force transduction layer of focal adhesions and that mechanical stress stabilizes CAS in focal adhesions.
BIOCEV at Faculty of Science Charles University Prague Vestec Czech Republic
Biophysics Group Department of Physics University of Erlangen Nuremberg Erlangen Germany
See more in PubMed
Tikhmyanova N., Little J. L. & Golemis E. A. CAS proteins in normal and pathological cell growth control. Cell Mol. Life Sci. 67, 1025–1048 (2010). PubMed PMC
Janostiak R., Pataki A. C., Brabek J. & Rosel D. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur. J. Cell Biol. 93, 445–454 (2014). PubMed
Li X. & Earp H. S. Paxillin is tyrosine-phosphorylated by and preferentially associates with the calcium-dependent tyrosine kinase in rat liver epithelial cells. J. Biol. Chem. 272, 14341–14348 (1997). PubMed
Polte T. R. & Hanks S. K. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proc. Natl. Acad. Sci. USA 92, 10678–10682 (1995). PubMed PMC
Garton A. J., Burnham M. R., Bouton A. H. & Tonks N. K. Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene 15, 877–885 (1997). PubMed
Liu F., Hill D. E. & Chernoff J. Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). J. Biol. Chem. 271, 31290–31295 (1996). PubMed
Kirsch K. H., Georgescu M. M. & Hanafusa H. Direct binding of p130(Cas) to the guanine nucleotide exchange factor C3G. J. Biol. Chem. 273, 25673–25679 (1998). PubMed
Nakamoto T. et al.. CIZ, a zinc finger protein that interacts with p130(cas) and activates the expression of matrix metalloproteinases. Mol. Cell Biol. 20, 1649–1658 (2000). PubMed PMC
Janostiak R. et al.. CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol. Life Sci. 71, 727–744 (2014). PubMed PMC
Goldmann W. H. Vinculin-p130Cas interaction is critical for focal adhesion dynamics and mechano-transduction. Cell Biol. Int. 38, 283–286 (2014). PubMed
Donato D. M., Ryzhova L. M., Meenderink L. M., Kaverina I. & Hanks S. K. Dynamics and mechanism of p130Cas localization to focal adhesions. J. Biol. Chem. 285, 20769–20779 (2010). PubMed PMC
Janostiak R. et al.. Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness. Mol. Biol. Cell 22, 4256–4267 (2011). PubMed PMC
Tatarova Z., Brabek J., Rosel D. & Novotny M. SH3 domain tyrosine phosphorylation–sites, role and evolution. PLoS. One. 7, e36310 (2012). PubMed PMC
Sakai R. et al.. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J. 13, 3748–3756 (1994). PubMed PMC
Nojima Y. et al.. Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J. Biol. Chem. 270, 15398–15402 (1995). PubMed
Sawada Y. et al.. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006). PubMed PMC
Shin N. Y. et al.. Subsets of the major tyrosine phosphorylation sites in Crk-associated substrate (CAS) are sufficient to promote cell migration. J. Biol. Chem. 279, 38331–38337 (2004). PubMed
Schlaepfer D. D. & Hunter T. Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J. Biol. Chem. 272, 13189–13195 (1997). PubMed
Nakamoto T., Sakai R., Ozawa K., Yazaki Y. & Hirai H. Direct binding of C-terminal region of p130Cas to SH2 and SH3 domains of Src kinase. J. Biol. Chem. 271, 8959–8965 (1996). PubMed
Mace P. D. et al.. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Nat. Struct. Mol. Biol. 18, 1381–1387 (2011). PubMed PMC
Chen C. S., Alonso J. L., Ostuni E., Whitesides G. M. & Ingber D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355–361 (2003). PubMed
Riveline D. et al.. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001). PubMed PMC
Hildebrand J. D., Schaller M. D. & Parsons J. T. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J. Cell Biol. 123, 993–1005 (1993). PubMed PMC
Law S. F. et al.. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain. Exp. Cell Res. 252, 224–235 (1999). PubMed
Zeng X., Zhu H., Lashuel H. A. & Hu J. C. Oligomerization properties of GCN4 leucine zipper e and g position mutants. Protein Sci. 6, 2218–2226 (1997). PubMed PMC
Rosel D. et al.. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol. Cancer Res. 6, 1410–1420 (2008). PubMed
Kanchanawong P. et al.. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010). PubMed PMC
Schaller M. D. et al.. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell Biol. 14, 1680–1688 (1994). PubMed PMC
Calalb M. B., Zhang X., Polte T. R. & Hanks S. K. Focal adhesion kinase tyrosine-861 is a major site of phosphorylation by Src. Biochem. Biophys. Res. Commun. 228, 662–668 (1996). PubMed
Tolde O., Rosel D., Janostiak R., Vesely P. & Brabek J. Dynamics and morphology of focal adhesions in complex 3D environment. Folia Biol. (Praha) 58, 177–184 (2012). PubMed
Horzum U., Ozdil B. & Pesen-Okvur D. Step-by-step quantitative analysis of focal adhesions. MethodsX. 1, 56–59 (2014). PubMed PMC
Butler J. P., Tolic-Norrelykke I. M., Fabry B. & Fredberg J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol Cell Physiol 282, C595–C605 (2002). PubMed
Gerum R. C., Richter S., Fabry B. & Zitterbart D. P. ClickPoints: an expandable toolbox for scientific image annotation and analysis. Methods in Ecology and Evolution, doi: 10.1111/2041-210X.12702 (2016). DOI
The interaction of p130Cas with PKN3 promotes malignant growth