Computational study of diffraction image formation from XFEL irradiated single ribosome molecule

. 2024 May 09 ; 14 (1) : 10617. [epub] 20240509

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38720133
Odkazy

PubMed 38720133
PubMed Central PMC11078940
DOI 10.1038/s41598-024-61314-w
PII: 10.1038/s41598-024-61314-w
Knihovny.cz E-zdroje

Single particle imaging at atomic resolution is perhaps one of the most desired goals for ultrafast X-ray science with X-ray free-electron lasers. Such a capability would create great opportunity within the biological sciences, as high-resolution structural information of biosamples that may not crystallize is essential for many research areas therein. In this paper, we report on a comprehensive computational study of diffraction image formation during single particle imaging of a macromolecule, containing over one hundred thousand non-hydrogen atoms. For this study, we use a dedicated simulation framework, SIMEX, available at the European XFEL facility. Our results demonstrate the full feasibility of computational single-particle imaging studies for biological samples of realistic size. This finding is important as it shows that the SIMEX platform can be used for simulations to inform relevant single-particle-imaging experiments and help to establish optimal parameters for these experiments. This will enable more focused and more efficient single-particle-imaging experiments at XFEL facilities, making the best use of the resource-intensive XFEL operation.

Zobrazit více v PubMed

Bogan MJ, et al. Single particle X-ray diffractive imaging. Nano Lett. 2008;8:310–316. doi: 10.1021/nl072728k. PubMed DOI

Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC

Sobolev E, et al. Megahertz single-particle imaging at the European XFEL. Commun. Phys. 2020 doi: 10.1038/s42005-020-0362-y. DOI

Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources. Struct. Dynam. 2020;7:040901. doi: 10.1063/4.0000024. PubMed DOI PMC

Cheng Y. Single-particle cryo-em-how did it get here and where will it go. Science. 2018;361:876–880. doi: 10.1126/science.aat4346. PubMed DOI PMC

Nogales E. The development of cryo-em into a mainstream structural biology technique. Nat. Methods. 2016;13:24–27. doi: 10.1038/nmeth.3694. PubMed DOI PMC

Sun Z, Fan J, Li H, Jiang H. Current status of single particle imaging with x-ray lasers. Appl. Sci. 2018 doi: 10.3390/app8010132. DOI

Barty A, et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photonics. 2012;6:35–40. doi: 10.1038/nphoton.2011.297. PubMed DOI PMC

Xu R, et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nat. Commun. 2014;5:4061. doi: 10.1038/ncomms5061. PubMed DOI

Mancuso AP, et al. The single particles, clusters and biomolecules and serial femtosecond crystallography instrument of the European XFEL: Initial installation. J. Synchrotron Radiat. 2019;26:660–676. doi: 10.1107/S1600577519003308. PubMed DOI PMC

Nass K, et al. Structural dynamics in proteins induced by and probed with X-ray free-electron laser pulses. Nat. Commun. 2020;11:1814. doi: 10.1038/s41467-020-15610-4. PubMed DOI PMC

Chapman HN, et al. Femtosecond x-ray protein nanocrystallography. Nature. 2011;470:73–77. doi: 10.1038/nature09750. PubMed DOI PMC

Ziaja B, et al. Towards realistic simulations of macromolecules irradiated under the conditions of coherent diffraction imaging with an x-ray free-electron laser. Photonics. 2015;2:256–269. doi: 10.3390/photonics2010256. DOI

Yoon CH, et al. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray free-electron laser. Sci. Rep. 2016 doi: 10.1038/srep24791. PubMed DOI PMC

Fortmann-Grote C, et al. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray free-electron laser. IUCrJ. 2017;4:560–568. doi: 10.1107/S2052252517009496. PubMed DOI PMC

Fortmann-Grote, C. & E, J. C. Simex. howpublishedhttps://github.com/PaNOSC-ViNYL/SimEx (2020).

Juncheng E, et al. Simex-lite: Easy access to start-to-end simulation for experiments at advanced light sources. Proc. SPIE. 2023 doi: 10.1117/12.2677299. DOI

Juncheng E, et al. Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray free-electron laser. Sci. Rep. 2021;11:17976. doi: 10.1038/s41598-021-97142-5. PubMed DOI PMC

Juncheng E, et al. Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser. Sci. Rep. 2023;13:16359. doi: 10.1038/s41598-023-43298-1. PubMed DOI PMC

Ziaja B, Wabnitz H, Wang F, Weckert E. Energetics, ionization, and expansion dynamics of atomic clusters irradiated with short intense vacuum-ultraviolet pulses. Phys. Rev. Lett. 2009;102:205002. doi: 10.1103/PhysRevLett.102.205002. PubMed DOI

Jurek Z, Son S-K, Ziaja B, Santra R. XMDYN and XATOM: Versatile simulation tools for quantitative modeling of X-ray free-electron laser induced dynamics of matter. J. Appl. Crystallogr. 2016;49:1048–1056. doi: 10.1107/S1600576716006014. DOI

Murphy BF, et al. Femtosecond X-ray-induced explosion of C 60 at extreme intensity. Nat. Commun. 2014;5:4281. doi: 10.1038/ncomms5281. PubMed DOI

Stransky M, Jurek Z, Santra R, Mancuso A, Ziaja B. Tree-code based improvement of computational performance of the X-ray-matter-interaction simulation tool XMDYN. Molecules. 2022;27:4206. doi: 10.3390/molecules27134206. PubMed DOI PMC

Zhang W, Dunkle JA, Cate JHD. Structures of the ribosome in intermediate states of ratcheting. Science. 2009;325:1014–1017. doi: 10.1126/science.1175275. PubMed DOI PMC

Gibbon, P. PEPC: Pretty Efficient Parallel Coulomb-solver. Technical Report, FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte MathematikFZJ-ZAM-IB-2003-05 (2003).

Inoue I, et al. Femtosecond reduction of atomic scattering factors triggered by intense x-ray pulse. Phys. Rev. Lett. 2023;131:163201. doi: 10.1103/PhysRevLett.131.163201. PubMed DOI

Abdullah MM, Son S-K, Jurek Z, Santra R. Towards the theoretical limitations of X-ray nanocrystallography at high intensity: the validity of the effective-form-factor description. IUCrJ. 2018;5:699–705. doi: 10.1107/S2052252518011442. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...