• This record comes from PubMed

Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses

. 2017 May 01 ; 4 (Pt 3) : 251-262. [epub] 20170407

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.

Bhabha Atomic Research Center Mumbai 400 085 India

Biomedical and 10 ray Physics Department of Applied Physics AlbaNova University Center KTH Royal Institute of Technology SE 106 91 Stockholm Sweden

Brookhaven National Laboratory 743 Brookhaven Avenue Upton NY 11973 USA

Center for Free Electron Laser Science DESY Notkestrasse 85 22607 Hamburg Germany

Centre for BioImaging Sciences National University of Singapore Singapore

Department of Physics Arizona State University Tempe AZ 85287 USA

Division of Scientific Computing Department of Information Technology Science for Life Laboratory Uppsala University Lägerhyddsvägen 2 SE 751 05 Uppsala Sweden

ELI Beamlines Institute of Physics Czech Academy of Science Na Slovance 2 182 21 Prague Czech Republic

Institute of Physics AS CR v v i Na Slovance 2 182 21 Prague 8 Czech Republic

Laboratory of Molecular Biophysics Department of Cell and Molecular Biology Uppsala University Husargatan 3 SE 751 24 Uppsala Sweden

Linac Coherent Light Source SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Molecular and Condensed Matter Physics Department of Physics and Astronomy Uppsala University Lägerhyddsvägen 1 SE 751 20 Uppsala Sweden

NERSC Lawrence Berkeley National Laboratory Berkeley California USA

Physical and Life Sciences Directorate Lawrence Livermore National Laboratory 7000 East Avenue Livermore CA 94550 USA

The Hamburg Center for Ultrafast Imaging University of Hamburg Luruper Chaussee 149 22761 Hamburg Germany

Erratum In

PubMed

See more in PubMed

Aquila, A. et al. (2015). Struct. Dyn. 2, 041701. PubMed PMC

Awel, S., Kirian, R. A., Eckerskorn, N., Wiedorn, M., Horke, D. A., Rode, A. V., Küpper, J. & Chapman, H. N. (2016). Opt. Express, 24, 6507–6521. PubMed

Ayvazyan, V. et al. (2006). Eur. Phys. J. D, 37, 297–303.

Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131. PubMed PMC

Bogan, M. J. et al. (2008). Nano Lett. 8, 310–316. PubMed

Boutet, S. & Williams, G. J. (2010). New J. Phys. 12, 035024.

Bozek, D. J. (2009). Eur. Phys. J. Spec. Top. 169, 129–132.

Carini, G. A. et al. (2014). J. Phys. Conf. Ser. 493, 012011.

Chapman, H. N. et al. (2006). Nat. Phys. 2, 839–843.

Damiani, D., Dubrovin, M., Gaponenko, I., Kroeger, W., Lane, T. J., Mitra, A., O’Grady, C. P., Salnikov, A., Sanchez-Gonzalez, A., Schneider, D. & Yoon, C. H. (2016). J. Appl. Cryst. 49, 672–679.

Dans, P. E., Forsyth, B. R. & Chanock, R. M. (1966). J. Bacteriol. 91, 1605–1611. PubMed PMC

Daurer, B. J., Hantke, M. F., Nettelblad, C. & Maia, F. R. N. C. (2016). J. Appl. Cryst. 49, 1042–1047. PubMed PMC

DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H. & Doak, R. B. (2008). J. Phys. D Appl. Phys. 41, 195505.

Ekeberg, T. et al. (2015). Phys. Rev. Lett. 114, 098102. PubMed

Emma, P. et al. (2010). Nat. Photonics, 4, 641–647.

Fan, J. et al. (2016). Sci. Rep. 6, 34008. PubMed PMC

Fienup, J. R. (1978). Opt. Lett. 3, 27–29. PubMed

Gañán-Calvo, A. M., DePonte, D. P., Herrada, M. A., Spence, J. C. H., Weierstall, U. & Doak, R. B. (2010). Small, 6, 822–824. PubMed

Gañán-Calvo, A. M., López-Herrera, J. M. & Riesco-Chueca, P. (2006). J. Fluid Mech. 566, 421–445.

Gerchberg, R. W. & Saxton, W. O. (1972). Optik, 35, 237–246.

Hantke, M. F., Ekeberg, T. & Maia, F. R. N. C. (2016). J. Appl. Cryst. 49, 1356–1362. PubMed PMC

Hantke, M. F. et al. (2014). Nat. Photonics, 8, 943–949.

Hart, P. et al. (2012). 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 538–541. https://doi.org/10.1109/NSSMIC.2012.6551166.

Henderson, R. (1995). Q. Rev. Biophys. 28, 171–193. PubMed

Isawa, H. et al. (2011). Virus Res. 155, 147–155. PubMed

Ishikawa, T. et al. (2012). Nat. Photonics, 6, 540–544.

Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., Yabashi, M., Tamakoshi, M., Moriya, T., Oshima, T., Ishikawa, T., Bessho, Y. & Nishino, Y. (2014). Nat. Commun. 5, 3052. PubMed PMC

Liang, M. et al. (2015). J. Synchrotron Rad. 22, 514–519. PubMed PMC

Loh, N. D. (2014). Philos. Trans. R. Soc. B Biol. Sci. 369, 20130328. PubMed PMC

Loh, N. D. et al. (2013). Opt. Express, 21, 12385–12394. PubMed

Maia, F. R. N. C. (2012). Nat. Methods, 9, 854–855. PubMed

Maia, F. R. N. C., Ekeberg, T., van der Spoel, D. & Hajdu, J. (2010). J. Appl. Cryst. 43, 1535–1539.

Maia, F. R. N. C., White, T. A., Loh, N. D. & Hajdu, J. (2016). J. Appl. Cryst. 49, 1117–1120.

Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. (2015). Science, 348, 530–535. PubMed

Miao, J., Sayre, D. & Chapman, H. N. (1998). J. Opt. Soc. Am. A, 15, 1662–1669.

Molla, A., Paul, A. V. & Wimmer, E. (1991). Science, 254, 1647–1651. PubMed

Munke, A. et al. (2016). Sci. Data, 3, 160064. PubMed PMC

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Nature (London), 406, 752–757. PubMed

Okamoto, K., Miyazaki, N., Larsson, D. S. D., Kobayashi, D., Svenda, M., Mühlig, K., Maia, F. R. N. C., Gunn, L. H., Isawa, H., Kobayashi, M., Sawabe, K., Murata, K. & Hajdu, J. (2016). Sci. Rep. 6, 33170. PubMed PMC

Schot, G. van der et al. (2015). Nat. Commun. 6, 5704. PubMed

Seibert, M. M. et al. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 194015.

Seibert, M. M. et al. (2011). Nature (London), 470, 78–81. PubMed

Siewert, F., Buchheim, J., Boutet, S., Williams, G. J., Montanez, P. A., Krzywinski, J. & Signorato, R. (2012). Opt. Express, 20, 4525–4536. PubMed

Song, C., Jiang, H., Mancuso, A., Amirbekian, B., Peng, L., Sun, R., Shah, S. S., Zhou, Z., Ishikawa, T. & Miao, J. (2008). Phys. Rev. Lett. 101, 158101. PubMed

Thibault, P., Elser, V., Jacobsen, C., Shapiro, D. & Sayre, D. (2006). Acta Cryst. A62, 248–261. PubMed

Thibault, P. & Menzel, A. (2013). Nature (London), 494, 68–71. PubMed

Trebbin, M., Krüger, K., DePonte, D., Roth, S. V., Chapman, H. N. & Förster, S. (2014). Lab Chip, 14, 1733–1745. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...