Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
28512572
PubMed Central
PMC5414399
DOI
10.1107/s2052252517003591
PII: it5009
Knihovny.cz E-resources
- Keywords
- OmRV, Omono River virus, X-ray diffraction, diffraction before destruction, flash X-ray imaging, free-electron laser, virus,
- Publication type
- Journal Article MeSH
This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.
Bhabha Atomic Research Center Mumbai 400 085 India
Brookhaven National Laboratory 743 Brookhaven Avenue Upton NY 11973 USA
Center for Free Electron Laser Science DESY Notkestrasse 85 22607 Hamburg Germany
Centre for BioImaging Sciences National University of Singapore Singapore
Department of Physics Arizona State University Tempe AZ 85287 USA
Institute of Physics AS CR v v i Na Slovance 2 182 21 Prague 8 Czech Republic
NERSC Lawrence Berkeley National Laboratory Berkeley California USA
See more in PubMed
Aquila, A. et al. (2015). Struct. Dyn. 2, 041701. PubMed PMC
Awel, S., Kirian, R. A., Eckerskorn, N., Wiedorn, M., Horke, D. A., Rode, A. V., Küpper, J. & Chapman, H. N. (2016). Opt. Express, 24, 6507–6521. PubMed
Ayvazyan, V. et al. (2006). Eur. Phys. J. D, 37, 297–303.
Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131. PubMed PMC
Bogan, M. J. et al. (2008). Nano Lett. 8, 310–316. PubMed
Boutet, S. & Williams, G. J. (2010). New J. Phys. 12, 035024.
Bozek, D. J. (2009). Eur. Phys. J. Spec. Top. 169, 129–132.
Carini, G. A. et al. (2014). J. Phys. Conf. Ser. 493, 012011.
Chapman, H. N. et al. (2006). Nat. Phys. 2, 839–843.
Damiani, D., Dubrovin, M., Gaponenko, I., Kroeger, W., Lane, T. J., Mitra, A., O’Grady, C. P., Salnikov, A., Sanchez-Gonzalez, A., Schneider, D. & Yoon, C. H. (2016). J. Appl. Cryst. 49, 672–679.
Dans, P. E., Forsyth, B. R. & Chanock, R. M. (1966). J. Bacteriol. 91, 1605–1611. PubMed PMC
Daurer, B. J., Hantke, M. F., Nettelblad, C. & Maia, F. R. N. C. (2016). J. Appl. Cryst. 49, 1042–1047. PubMed PMC
DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H. & Doak, R. B. (2008). J. Phys. D Appl. Phys. 41, 195505.
Ekeberg, T. et al. (2015). Phys. Rev. Lett. 114, 098102. PubMed
Emma, P. et al. (2010). Nat. Photonics, 4, 641–647.
Fan, J. et al. (2016). Sci. Rep. 6, 34008. PubMed PMC
Fienup, J. R. (1978). Opt. Lett. 3, 27–29. PubMed
Gañán-Calvo, A. M., DePonte, D. P., Herrada, M. A., Spence, J. C. H., Weierstall, U. & Doak, R. B. (2010). Small, 6, 822–824. PubMed
Gañán-Calvo, A. M., López-Herrera, J. M. & Riesco-Chueca, P. (2006). J. Fluid Mech. 566, 421–445.
Gerchberg, R. W. & Saxton, W. O. (1972). Optik, 35, 237–246.
Hantke, M. F., Ekeberg, T. & Maia, F. R. N. C. (2016). J. Appl. Cryst. 49, 1356–1362. PubMed PMC
Hantke, M. F. et al. (2014). Nat. Photonics, 8, 943–949.
Hart, P. et al. (2012). 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), pp. 538–541. https://doi.org/10.1109/NSSMIC.2012.6551166.
Henderson, R. (1995). Q. Rev. Biophys. 28, 171–193. PubMed
Isawa, H. et al. (2011). Virus Res. 155, 147–155. PubMed
Ishikawa, T. et al. (2012). Nat. Photonics, 6, 540–544.
Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., Yabashi, M., Tamakoshi, M., Moriya, T., Oshima, T., Ishikawa, T., Bessho, Y. & Nishino, Y. (2014). Nat. Commun. 5, 3052. PubMed PMC
Liang, M. et al. (2015). J. Synchrotron Rad. 22, 514–519. PubMed PMC
Loh, N. D. (2014). Philos. Trans. R. Soc. B Biol. Sci. 369, 20130328. PubMed PMC
Loh, N. D. et al. (2013). Opt. Express, 21, 12385–12394. PubMed
Maia, F. R. N. C. (2012). Nat. Methods, 9, 854–855. PubMed
Maia, F. R. N. C., Ekeberg, T., van der Spoel, D. & Hajdu, J. (2010). J. Appl. Cryst. 43, 1535–1539.
Maia, F. R. N. C., White, T. A., Loh, N. D. & Hajdu, J. (2016). J. Appl. Cryst. 49, 1117–1120.
Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. (2015). Science, 348, 530–535. PubMed
Miao, J., Sayre, D. & Chapman, H. N. (1998). J. Opt. Soc. Am. A, 15, 1662–1669.
Molla, A., Paul, A. V. & Wimmer, E. (1991). Science, 254, 1647–1651. PubMed
Munke, A. et al. (2016). Sci. Data, 3, 160064. PubMed PMC
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Nature (London), 406, 752–757. PubMed
Okamoto, K., Miyazaki, N., Larsson, D. S. D., Kobayashi, D., Svenda, M., Mühlig, K., Maia, F. R. N. C., Gunn, L. H., Isawa, H., Kobayashi, M., Sawabe, K., Murata, K. & Hajdu, J. (2016). Sci. Rep. 6, 33170. PubMed PMC
Schot, G. van der et al. (2015). Nat. Commun. 6, 5704. PubMed
Seibert, M. M. et al. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 194015.
Seibert, M. M. et al. (2011). Nature (London), 470, 78–81. PubMed
Siewert, F., Buchheim, J., Boutet, S., Williams, G. J., Montanez, P. A., Krzywinski, J. & Signorato, R. (2012). Opt. Express, 20, 4525–4536. PubMed
Song, C., Jiang, H., Mancuso, A., Amirbekian, B., Peng, L., Sun, R., Shah, S. S., Zhou, Z., Ishikawa, T. & Miao, J. (2008). Phys. Rev. Lett. 101, 158101. PubMed
Thibault, P., Elser, V., Jacobsen, C., Shapiro, D. & Sayre, D. (2006). Acta Cryst. A62, 248–261. PubMed
Thibault, P. & Menzel, A. (2013). Nature (London), 494, 68–71. PubMed
Trebbin, M., Krüger, K., DePonte, D., Roth, S. V., Chapman, H. N. & Förster, S. (2014). Lab Chip, 14, 1733–1745. PubMed
Observation of a single protein by ultrafast X-ray diffraction
Electrospray sample injection for single-particle imaging with x-ray lasers
Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams