Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30224956
PubMed Central
PMC6126651
DOI
10.1107/s2052252518010047
PII: ec5008
Knihovny.cz E-zdroje
- Klíčová slova
- LCLS, Melbournevirus, XFELs, coherent diffractive imaging, image reconstruction,
- Publikační typ
- časopisecké články MeSH
Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.
Center for Free Electron Laser Science DESY Notkestrasse 85 22607 Hamburg Germany
Condensed Matter Physics Department of Physics Chalmers University of Technology Gothenburg Sweden
Department of Physics and Astronomy Uppsala University Box 516 SE 751 20 Uppsala Sweden
Department of Physics Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
Linac Coherent Light Source SLAC National Accelerator Laboratory Stanford California 94309 USA
NERSC Lawrence Berkeley National Laboratory 1 Cyclotron Rd Berkeley CA 94720 USA
NSLS 2 Brookhaven National Laboratory PO Box 5000 Upton NY 11973 USA
PULSE Institute and SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
Research Institute for Solid State Physics and Optics 1525 Budapest Hungary
Zobrazit více v PubMed
Altarelli, M. et al. (2007). The European X-ray Free-Electron Laser. Technical Design Report 2006-097. DESY, Hamburg, Germany.
Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H., White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131. PubMed PMC
Bergh, M., Huldt, G., Tîmneanu, N., Maia, F. R. N. C. & Hajdu, J. (2008). Q. Rev. Biophys. 41, 181–204. PubMed
Bozek, J. D. (2009). Eur. Phys. J. Spec. Top. 169, 129–132.
Chapman, H. N., Barty, A., Bogan, M. J. et al. (2006). Nat. Phys. 2, 839–843.
Chapman, H. N., Barty, A., Marchesini, S. et al. (2006). J. Opt. Soc. Am. A, 23, 1179–200. PubMed
Daurer, B. J., Hantke, M. F., Nettelblad, C. & Maia, F. R. N. C. (2016). J. Appl. Cryst. 49, 1042–1047. PubMed PMC
Daurer, B. J. et al. (2017). IUCrJ, 4, 251–262. PubMed PMC
Ekeberg, T. et al. (2015). Phys. Rev. Lett. 114, 098102. PubMed
Emma, P. et al. (2010). Nat. Photonics, 4(9), 641–647.
Ferguson, K. R. et al. (2015). J. Synchrotron Rad. 22, 492–497. PubMed PMC
Fienup, J. R. (1978). Opt. Lett. 3, 27–29. PubMed
Galayda, J. N. (2014). The linac coherent light source-II project. Technical Report, SLAC National Accelerator Laboratory, Menlo Park, USA.
Gorkhover, T. et al. (2018). Nat. Photonics, 12, 150–153.
Hantke, M. F., Ekeberg, T. & Maia, F. R. N. C. (2016). J. Appl. Cryst. 49, 1356–1362. PubMed PMC
Hantke, M. F. et al. (2014). Nat. Photonics, 8, 943–949.
Huldt, G., Szoke, A. & Hajdu, J. (2003). J. Struct. Biol. 144, 219–227. PubMed
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110–119. PubMed
Jurek, Z., Faigel, G. & Tegze, M. (2004). Eur. Phys. J. D. At. Mol. Opt. Phys. 29, 217–229.
Kassemeyer, S. et al. (2012). Opt. Express, 20, 4149. PubMed
Kurta, R. P. et al. (2017). Phys. Rev. Lett. 119, 158102. PubMed
Loh, N. D. et al. (2010). Phys. Rev. Lett. 104, 225501. PubMed
Loh, N. D. & Elser, V. (2009). Phys. Rev. E, 80, 026705. PubMed
Luke, D. R. (2005). Inverse Probl. 21, 37–50.
Maia, F. R., Ekeberg, T., Tîmneanu, N., van der Spoel, D. & Hajdu, J. (2009). Phys. Rev. E, 80, 031905. PubMed
Maia, F. R. N. C., Ekeberg, T., van der Spoel, D. & Hajdu, J. (2010). J. Appl. Cryst. 43, 1535–1539.
Mancuso, A. P. et al. (2010). New J. Phys. 12, 035003.
Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., Weierstall, U. & Spence, J. C. (2003). Phys. Rev. B, 68, 140101.
Martin, A. V. et al. (2012). Opt. Express, 20, 16650–16661.
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Nature, 406, 752–757. PubMed
Okamoto, K., Miyazaki, N., Reddy, H. K., Hantke, M. F., Maia, F. R., Larsson, D. S., Abergel, C., Claverie, J. M., Hajdu, J., Murata, K. & Svenda, M. (2018). Virology, 516, 239–245. PubMed
Rickwood, D. (1978). Centrifugal separations in molecular and cell biology, edited by G. D. Birnie and D. Rickwood, p. 219. London: Information Retrieval Ltd.
Schot, G. van der, et al. (2015). Nat. Commun. 6, 5704. PubMed
Seibert, M. M. et al. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 194015.
Seibert, M. M. et al. (2011). Nature, 470, 78–81. PubMed PMC
Sellberg, J. A. et al. (2014). Nature, 510, 381–384. PubMed
Spence, J. C. (2017). IUCrJ, 4, 322–339. PubMed PMC
Strüder, L. et al. (2010). Nucl. Instrum. Methods Phys. Res. A, 614, 483–496.
The XBI BioLab for life science experiments at the European XFEL