Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
30443352
PubMed Central
PMC6211534
DOI
10.1107/s2052252518010837
PII: ec5009
Knihovny.cz E-zdroje
- Klíčová slova
- Rayleigh scattering, Uppsala injectors, XFELs, aerosol injection, nanoparticles,
- Publikační typ
- časopisecké články MeSH
Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.
Condensed Matter Physics Department of Physics Chalmers University of Technology Gothenburg Sweden
Department of Physics Arizona State University 550 E Tyler Drive Tempe AZ 85287 USA
European XFEL GmbH Holzkoppel 4 Schenefeld 22869 Germany
NERSC Lawrence Berkeley National Laboratory Berkeley California USA
Zobrazit více v PubMed
Ashkenas, H. & Sherman, F. S. (1966). Rarefied Gas Dynamics, Vol. 2, edited by J. H. De Leeuw, pp. 84–105. New York: Academic Press.
Awel, S., Kirian, R. A., Eckerskorn, N., Wiedorn, M., Horke, D. A., Rode, A. V., Küpper, J. & Chapman, H. N. (2016). Opt. Express, 24, 6507–6521. PubMed
Awel, S. et al. (2018). J. Appl. Cryst. 51, 133–139. PubMed PMC
Beijerinck, H. C. W., Van Gerwen, R. J. F., Kerstel, E. R. T., Martens, J. F. M., Van Vliembergen, E. J. W., Smits, M. r. Th. & Kaashoek, G. H. (1985). Chem. Phys. 96, 153–173.
Bergh, M., Huldt, G., Tîmneanu, N., Maia, F. R. N. C. & Hajdu, J. (2008). Q. Rev. Biophys. 41, 181–204. PubMed
Bogan, M. J. et al. (2008). Nano Lett. 8, 310–316. PubMed
Bohren, C. F. & Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley
Bostedt, C. et al. (2013). J. Phys. B At. Mol. Opt. Phys. 46, 164003.
Boutet, S. & Williams, G. J. (2010). New J. Phys. 12, 035024.
Campargue, R. (1984). J. Phys. Chem. 88, 4466–4474.
Classen, A., Ayyer, K., Chapman, H. N., Röhlsberger, R. & von Zanthier, J. (2017). Phys. Rev. Lett. 119, 053401. PubMed
Dahneke, B. E. & Cheng, Y. S. (1979). J. Aerosol Sci. 10, 257–274.
Daurer, B. J. et al. (2017). IUCrJ, 4, 251–262. PubMed PMC
DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H. & Doak, R. B. (2008). J. Phys. D Appl. Phys. 41, 195505.
Ekeberg, T. et al. (2015). Phys. Rev. Lett. 114, 1–6.
Feldhaus, J. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 194002.
Gañán-Calvo, A. (1998). Phys. Rev. Lett. 80, 285–288.
Hantke, M. F. et al. (2014). Nat. Photon. 8, 943–949.
Henderson, C. B. (1976). AIAA J. 14, 707–708.
Kassemeyer, S. et al. (2012). Opt. Express, 20, 4149–4158. PubMed
Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., Yabashi, M., Tamakoshi, M., Moriya, T., Oshima, T., Ishikawa, T., Bessho, Y. & Nishino, Y. (2014). Nat. Commun. 5, 3052. PubMed PMC
Kirian, R. A. et al. (2015). Struct. Dyn. 2, 041717. PubMed PMC
Liu, P., Ziemann, P. J., Kittelson, D. B. & McMurry, P. H. (1995a). Aerosol Sci. Technol. 22, 293–313.
Liu, P., Ziemann, P. J., Kittelson, D. B. & McMurry, P. H. (1995b). Aerosol Sci. Technol. 22, 314–324.
Murphy, W. K. & Sears, G. W. (1964). J. Appl. Phys. 35, 1986–1987.
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Nature, 406, 752–757. PubMed
Rath, A. D. et al. (2014). Opt. Express, 22, 28914–28925. PubMed
Reddy, H. K. N. et al. (2017). Sci. Data, 4, 170079. PubMed PMC
Schot, G. van der et al. (2015). Nat. Commun. 6, 5704. PubMed
Schreiner, J., Schild, U., Voigt, C. & Mauersberger, K. (1999). Aerosol Sci. Technol. 31, 373–382.
Seibert, M. M. et al. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 194015.
Seibert, M. M. et al. (2011). Nature, 470, 78–81. PubMed PMC
Stan, C. A. et al. (2016). Nat. Phys. 12, 966–971.
Wang, X. & McMurry, P. H. (2006). Aerosol Sci. Technol. 40, 320–334.
Williams, L. R. et al. (2013). Atmos. Meas. Tech. 6, 3271–3280.
Zeng, C., Hernando-Pérez, M., Dragnea, B., Ma, X., van der Schoot, P. & Zandi, R. (2017). Phys. Rev. Lett. 119, 038102. PubMed
Observation of a single protein by ultrafast X-ray diffraction
The XBI BioLab for life science experiments at the European XFEL
Plasma channel formation in NIR laser-irradiated carrier gas from an aerosol nanoparticle injector
Electrospray sample injection for single-particle imaging with x-ray lasers