Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams

. 2018 Nov 01 ; 5 (Pt 6) : 673-680. [epub] 20180911

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30443352

Grantová podpora
Wellcome Trust - United Kingdom

Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics. Here a lab-based technique is introduced for Rayleigh-scattering microscopy allowing us to track and size aerosolized particles down to 40 nm in diameter as they exit the injector. This technique was used to characterize the 'Uppsala injector', which is a pioneering and frequently used aerosol sample injector for XFEL single-particle imaging. The particle-beam focus, particle velocities, particle density and injection yield were measured at different operating conditions. It is also shown how high particle densities and good injection yields can be reached for large particles (100-500 nm). It is found that with decreasing particle size, particle densities and injection yields deteriorate, indicating the need for different injection strategies to extend XFEL imaging to smaller targets, such as single proteins. This work demonstrates the power of Rayleigh-scattering microscopy for studying focused aerosol beams quantitatively. It lays the foundation for lab-based injector development and online injection diagnostics for XFEL research. In the future, the technique may also find application in other fields that employ focused aerosol beams, such as mass spectrometry, particle deposition, fuel injection and three-dimensional printing techniques.

Zobrazit více v PubMed

Ashkenas, H. & Sherman, F. S. (1966). Rarefied Gas Dynamics, Vol. 2, edited by J. H. De Leeuw, pp. 84–105. New York: Academic Press.

Awel, S., Kirian, R. A., Eckerskorn, N., Wiedorn, M., Horke, D. A., Rode, A. V., Küpper, J. & Chapman, H. N. (2016). Opt. Express, 24, 6507–6521. PubMed

Awel, S. et al. (2018). J. Appl. Cryst. 51, 133–139. PubMed PMC

Beijerinck, H. C. W., Van Gerwen, R. J. F., Kerstel, E. R. T., Martens, J. F. M., Van Vliembergen, E. J. W., Smits, M. r. Th. & Kaashoek, G. H. (1985). Chem. Phys. 96, 153–173.

Bergh, M., Huldt, G., Tîmneanu, N., Maia, F. R. N. C. & Hajdu, J. (2008). Q. Rev. Biophys. 41, 181–204. PubMed

Bogan, M. J. et al. (2008). Nano Lett. 8, 310–316. PubMed

Bohren, C. F. & Huffman, D. R. (1983). Absorption and Scattering of Light by Small Particles. New York: Wiley

Bostedt, C. et al. (2013). J. Phys. B At. Mol. Opt. Phys. 46, 164003.

Boutet, S. & Williams, G. J. (2010). New J. Phys. 12, 035024.

Campargue, R. (1984). J. Phys. Chem. 88, 4466–4474.

Classen, A., Ayyer, K., Chapman, H. N., Röhlsberger, R. & von Zanthier, J. (2017). Phys. Rev. Lett. 119, 053401. PubMed

Dahneke, B. E. & Cheng, Y. S. (1979). J. Aerosol Sci. 10, 257–274.

Daurer, B. J. et al. (2017). IUCrJ, 4, 251–262. PubMed PMC

DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H. & Doak, R. B. (2008). J. Phys. D Appl. Phys. 41, 195505.

Ekeberg, T. et al. (2015). Phys. Rev. Lett. 114, 1–6.

Feldhaus, J. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 194002.

Gañán-Calvo, A. (1998). Phys. Rev. Lett. 80, 285–288.

Hantke, M. F. et al. (2014). Nat. Photon. 8, 943–949.

Henderson, C. B. (1976). AIAA J. 14, 707–708.

Kassemeyer, S. et al. (2012). Opt. Express, 20, 4149–4158. PubMed

Kimura, T., Joti, Y., Shibuya, A., Song, C., Kim, S., Tono, K., Yabashi, M., Tamakoshi, M., Moriya, T., Oshima, T., Ishikawa, T., Bessho, Y. & Nishino, Y. (2014). Nat. Commun. 5, 3052. PubMed PMC

Kirian, R. A. et al. (2015). Struct. Dyn. 2, 041717. PubMed PMC

Liu, P., Ziemann, P. J., Kittelson, D. B. & McMurry, P. H. (1995a). Aerosol Sci. Technol. 22, 293–313.

Liu, P., Ziemann, P. J., Kittelson, D. B. & McMurry, P. H. (1995b). Aerosol Sci. Technol. 22, 314–324.

Murphy, W. K. & Sears, G. W. (1964). J. Appl. Phys. 35, 1986–1987.

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. (2000). Nature, 406, 752–757. PubMed

Rath, A. D. et al. (2014). Opt. Express, 22, 28914–28925. PubMed

Reddy, H. K. N. et al. (2017). Sci. Data, 4, 170079. PubMed PMC

Schot, G. van der et al. (2015). Nat. Commun. 6, 5704. PubMed

Schreiner, J., Schild, U., Voigt, C. & Mauersberger, K. (1999). Aerosol Sci. Technol. 31, 373–382.

Seibert, M. M. et al. (2010). J. Phys. B At. Mol. Opt. Phys. 43, 194015.

Seibert, M. M. et al. (2011). Nature, 470, 78–81. PubMed PMC

Stan, C. A. et al. (2016). Nat. Phys. 12, 966–971.

Wang, X. & McMurry, P. H. (2006). Aerosol Sci. Technol. 40, 320–334.

Williams, L. R. et al. (2013). Atmos. Meas. Tech. 6, 3271–3280.

Zeng, C., Hernando-Pérez, M., Dragnea, B., Ma, X., van der Schoot, P. & Zandi, R. (2017). Phys. Rev. Lett. 119, 038102. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...