• This record comes from PubMed

Observation of a single protein by ultrafast X-ray diffraction

. 2024 Jan 12 ; 13 (1) : 15. [epub] 20240112

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 38216563
PubMed Central PMC10786860
DOI 10.1038/s41377-023-01352-7
PII: 10.1038/s41377-023-01352-7
Knihovny.cz E-resources

The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.

Biomedical and 10 Ray Physics Department of Applied Physics AlbaNova University Center KTH Royal Institute of Technology SE 10691 Stockholm Sweden

Center for Free Electron Laser Science DESY 22607 Hamburg Germany

Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany

Department of Chemistry and Physics La Trobe Institute for Molecular Science La Trobe University Melbourne VIC 3086 Australia

Department of Chemistry Universität Hamburg 20146 Hamburg Germany

Department of Physics and Astronomy Uppsala University Box 516 SE 75120 Uppsala Sweden

Department of Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

Deutsches Electronen Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany

Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0DE UK

Dipartimento di Fisica Aldo Pontremoli Università degli Studi di Milano via Celoria 16 20133 Milano Italy

Division of Scientific Computing Science for Life Laboratory Department of Information Technology Uppsala University Box 337 SE 75105 Uppsala Sweden

ELI Beamlines IoP Institute of Physics AS CR v v i Na Slovance 2 182 21 Prague 8 Czech Republic

European Molecular Biology Laboratory c o DESY Notkestrasse 85 22607 Hamburg Germany

European XFEL Holzkoppel 4 22869 Schenefeld Germany

Laboratory of Molecular Biophysics Department of Cell and Molecular Biology Uppsala University Husargatan 3 SE 75124 Uppsala Sweden

Leibniz Institute for Experimental Virology Centre for Structural Systems Biology Notkestraße 85 22607 Hamburg Germany

Max Planck Institute for the Structure and Dynamics of Matter Luruper Chaussee 149 22761 Hamburg Germany

Multi User CryoEM Facility Centre for Structural Systems Biology Notkestr 85 22607 Hamburg Germany

NERSC Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Plant Biology Section School of Integrative Plant Science Cornell University Ithaca NY 14853 USA

PNSensor GmbH Otto Hahn Ring 6 D 81739 München Germany

The Hamburg Center for Ultrafast Imaging Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany

University Medical Center Hamburg Eppendorf Martinistrasse 52 20246 Hamburg Germany

University of Stavanger Centre Organelle Research Richard Johnsensgate 4 4021 Stavanger Norway

See more in PubMed

Mankowsky R, et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature. 2014;516:71–73. doi: 10.1038/nature13875. PubMed DOI

Loh ZH, et al. Observation of the fastest chemical processes in the radiolysis of water. Science. 2020;367:179–182. doi: 10.1126/science.aaz4740. PubMed DOI

Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. doi: 10.1038/nature09750. PubMed DOI PMC

Tenboer J, et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science. 2014;346:1242–1246. doi: 10.1126/science.1259357. PubMed DOI PMC

Nogales E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods. 2016;13:24–27. doi: 10.1038/nmeth.3694. PubMed DOI PMC

Frank J. Time-resolved cryo-electron microscopy: recent progress. J. Struct. Biol. 2017;200:303–306. doi: 10.1016/j.jsb.2017.06.005. PubMed DOI PMC

Neutze R, et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752–757. doi: 10.1038/35021099. PubMed DOI

Hayer-Hartl M, Bracher A, Hartl FU. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 2016;41:62–76. doi: 10.1016/j.tibs.2015.07.009. PubMed DOI

Braig K, et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature. 1994;371:578–586. doi: 10.1038/371578a0. PubMed DOI

Rostom AA, Robinson CV. Detection of the intact groel chaperonin assembly by mass spectrometry. J. Am. Chem. Soc. 1999;121:4718–4719. doi: 10.1021/ja990238r. DOI

Rose RJ, et al. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods. 2012;9:1084–1086. doi: 10.1038/nmeth.2208. PubMed DOI

van den Heuvel RHH, et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 2006;78:7473–7483. doi: 10.1021/ac061039a. PubMed DOI

Sobott F, Robinson CV. Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. Int. J. Mass Spectrom. 2004;236:25–32. doi: 10.1016/j.ijms.2004.05.010. DOI

Roseman AM, et al. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell. 1996;87:241–251. doi: 10.1016/S0092-8674(00)81342-2. PubMed DOI

Ludtke SJ, et al. Seeing GroEL at 6 Å resolution by single particle electron cryomicroscopy. Structure. 2004;12:1129–1136. doi: 10.1016/j.str.2004.05.006. PubMed DOI

Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC

Aquila A, et al. The linac coherent light source single particle imaging road map. Struct. Dyn. 2015;2:041701. doi: 10.1063/1.4918726. PubMed DOI PMC

Daurer BJ, et al. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ. 2017;4:251–262. doi: 10.1107/S2052252517003591. PubMed DOI PMC

Ayyer K, et al. Low-signal limit of X-ray single particle diffractive imaging. Opt. Express. 2019;27:37816–37833. doi: 10.1364/OE.27.037816. PubMed DOI

Ekeberg T, et al. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 2015;114:098102. doi: 10.1103/PhysRevLett.114.098102. PubMed DOI

van der Schot G, et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun. 2015;6:5704. doi: 10.1038/ncomms6704. PubMed DOI

Bielecki J, et al. Electrospray sample injection for single-particle imaging with x-ray lasers. Sci. Adv. 2019;5:eaav8801. doi: 10.1126/sciadv.aav8801. PubMed DOI PMC

Chapman HN, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006;2:839–843. doi: 10.1038/nphys461. DOI

Tschentscher T, et al. Photon beam transport and scientific instruments at the european XFEL. Appl. Sci. 2017;7:592. doi: 10.3390/app7060592. DOI

Hantke MF, et al. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCrJ. 2018;5:673–680. doi: 10.1107/S2052252518010837. PubMed DOI PMC

Kuster M, et al. The 1-Megapixel pnCCD detector for the Small Quantum Systems Instrument at the European XFEL: system and operation aspects. J. Synchrotron Radiat. 2021;28:576–587. doi: 10.1107/S1600577520015659. PubMed DOI PMC

Strüder L, et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2010;614:483–496. doi: 10.1016/j.nima.2009.12.053. DOI

Decking W, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics. 2020;14:391–397. doi: 10.1038/s41566-020-0607-z. DOI

Chaudhry C, Horwich AL, Brunger AT, Adams PD. Exploring the structural dynamics of the E. coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J. Mol. Biol. 2004;342:229–245. doi: 10.1016/j.jmb.2004.07.015. PubMed DOI

Hogan CJ, et al. Tandem differential mobility analysis-mass spectrometry reveals partial gas-phase collapse of the GroEL complex. J. Phys. Chem. B. 2011;115:3614–3621. doi: 10.1021/jp109172k. PubMed DOI

Marklund EG, Larsson DSD, van der Spoel D, Patriksson A, Caleman C. Structural stability of electrosprayed proteins: temperature and hydration effects. Phys. Chem. Chem. Phys. 2009;11:8069–8078. doi: 10.1039/b903846a. PubMed DOI

Esser, T. K. et al. Cryo-EM of soft-landed β-galactosidase: Gas-phase and native structures are remarkably similar. Preprint at BioRxiv10.1101/2023.08.17.553673 (2023). PubMed PMC

Hau-Riege SP, et al. Sacrificial tamper slows down sample explosion in FLASH diffraction experiments. Phys. Rev. Lett. 2010;104:064801. doi: 10.1103/PhysRevLett.104.064801. PubMed DOI

Maia FRNC, Ekeberg T, Tîmneanu N, van der Spoel D, Hajdu J. Structural variability and the incoherent addition of scattered intensities in single-particle diffraction. Phys. Rev. E. 2009;80:031905. doi: 10.1103/PhysRevE.80.031905. PubMed DOI

Porro M, et al. The MiniSDD-based 1-Megapixel Camera of the DSSC Project for the European XFEL. IEEE Trans. Nucl. Sci. 2021;68:1334–1350. doi: 10.1109/TNS.2021.3076602. DOI

Gessler, P. et al. Overview of acquisition and control electronics and concepts for experiments and beam transport at the European XFEL. In Proceedings of the 17th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems. New York, 10.18429/jacow-icalepcs2019-thapp05 (2020).

Motuk E, et al. Design and development of electronics for the EuXFEL clock and control system. J. Instrum. 2012;7:C01062. doi: 10.1088/1748-0221/7/01/C01062. DOI

Maltezopoulos T, et al. Operation of X-ray gas monitors at the European XFEL. J. Synchrotron Radiat. 2019;26:1045–1051. doi: 10.1107/S1600577519003795. PubMed DOI

Daurer BJ, Hantke MF, Nettelblad C, Maia FRNC. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Crystallogr. 2016;49:1042–1047. doi: 10.1107/S1600576716005926. PubMed DOI PMC

Abraham MJ, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Hantke MF, Ekeberg T, Maia FRNC. Condor: a simulation tool for flash X-ray imaging. J. Appl. Crystallogr. 2016;49:1356–1362. doi: 10.1107/S1600576716009213. PubMed DOI PMC

Loh N-TD, Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E. 2009;80:026705. doi: 10.1103/PhysRevE.80.026705. PubMed DOI

Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC

Freeke J, Robinson CV, Ruotolo BT. Residual counter ions can stabilise a large protein complex in the gas phase. Int. J. Mass Spectrom. 2010;298:91–98. doi: 10.1016/j.ijms.2009.08.001. DOI

Zivanov J, et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife. 2018;7:e42166. doi: 10.7554/eLife.42166. PubMed DOI PMC

Punjani A, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI

Zheng SQ, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193. PubMed DOI PMC

Zhang K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. doi: 10.1016/j.jsb.2015.11.003. PubMed DOI PMC

Roh S-H, et al. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Proc. Natl Acad. Sci. USA. 2017;114:8259–8264. doi: 10.1073/pnas.1704725114. PubMed DOI PMC

Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Wagner T, et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. doi: 10.1038/s42003-019-0437-z. PubMed DOI PMC

Maia FRNC. The Coherent X-ray Imaging Data Bank. Nat. Methods. 2012;9:854–855. doi: 10.1038/nmeth.2110. PubMed DOI

Wiedorn MO, et al. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers. J. Synchrotron Radiat. 2017;24:1296–1298. doi: 10.1107/S1600577517011961. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...