Observation of a single protein by ultrafast X-ray diffraction
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
38216563
PubMed Central
PMC10786860
DOI
10.1038/s41377-023-01352-7
PII: 10.1038/s41377-023-01352-7
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.
Center for Free Electron Laser Science DESY 22607 Hamburg Germany
Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
Department of Chemistry Universität Hamburg 20146 Hamburg Germany
Department of Physics and Astronomy Uppsala University Box 516 SE 75120 Uppsala Sweden
Department of Physics Universität Hamburg Luruper Chaussee 149 22761 Hamburg Germany
Deutsches Electronen Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
Diamond Light Source Harwell Science and Innovation Campus Didcot OX11 0DE UK
ELI Beamlines IoP Institute of Physics AS CR v v i Na Slovance 2 182 21 Prague 8 Czech Republic
European Molecular Biology Laboratory c o DESY Notkestrasse 85 22607 Hamburg Germany
European XFEL Holzkoppel 4 22869 Schenefeld Germany
Multi User CryoEM Facility Centre for Structural Systems Biology Notkestr 85 22607 Hamburg Germany
NERSC Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
Plant Biology Section School of Integrative Plant Science Cornell University Ithaca NY 14853 USA
PNSensor GmbH Otto Hahn Ring 6 D 81739 München Germany
University Medical Center Hamburg Eppendorf Martinistrasse 52 20246 Hamburg Germany
University of Stavanger Centre Organelle Research Richard Johnsensgate 4 4021 Stavanger Norway
See more in PubMed
Mankowsky R, et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature. 2014;516:71–73. doi: 10.1038/nature13875. PubMed DOI
Loh ZH, et al. Observation of the fastest chemical processes in the radiolysis of water. Science. 2020;367:179–182. doi: 10.1126/science.aaz4740. PubMed DOI
Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. doi: 10.1038/nature09750. PubMed DOI PMC
Tenboer J, et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science. 2014;346:1242–1246. doi: 10.1126/science.1259357. PubMed DOI PMC
Nogales E. The development of cryo-EM into a mainstream structural biology technique. Nat. Methods. 2016;13:24–27. doi: 10.1038/nmeth.3694. PubMed DOI PMC
Frank J. Time-resolved cryo-electron microscopy: recent progress. J. Struct. Biol. 2017;200:303–306. doi: 10.1016/j.jsb.2017.06.005. PubMed DOI PMC
Neutze R, et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752–757. doi: 10.1038/35021099. PubMed DOI
Hayer-Hartl M, Bracher A, Hartl FU. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 2016;41:62–76. doi: 10.1016/j.tibs.2015.07.009. PubMed DOI
Braig K, et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature. 1994;371:578–586. doi: 10.1038/371578a0. PubMed DOI
Rostom AA, Robinson CV. Detection of the intact groel chaperonin assembly by mass spectrometry. J. Am. Chem. Soc. 1999;121:4718–4719. doi: 10.1021/ja990238r. DOI
Rose RJ, et al. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods. 2012;9:1084–1086. doi: 10.1038/nmeth.2208. PubMed DOI
van den Heuvel RHH, et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 2006;78:7473–7483. doi: 10.1021/ac061039a. PubMed DOI
Sobott F, Robinson CV. Characterising electrosprayed biomolecules using tandem-MS—the noncovalent GroEL chaperonin assembly. Int. J. Mass Spectrom. 2004;236:25–32. doi: 10.1016/j.ijms.2004.05.010. DOI
Roseman AM, et al. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell. 1996;87:241–251. doi: 10.1016/S0092-8674(00)81342-2. PubMed DOI
Ludtke SJ, et al. Seeing GroEL at 6 Å resolution by single particle electron cryomicroscopy. Structure. 2004;12:1129–1136. doi: 10.1016/j.str.2004.05.006. PubMed DOI
Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC
Aquila A, et al. The linac coherent light source single particle imaging road map. Struct. Dyn. 2015;2:041701. doi: 10.1063/1.4918726. PubMed DOI PMC
Daurer BJ, et al. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ. 2017;4:251–262. doi: 10.1107/S2052252517003591. PubMed DOI PMC
Ayyer K, et al. Low-signal limit of X-ray single particle diffractive imaging. Opt. Express. 2019;27:37816–37833. doi: 10.1364/OE.27.037816. PubMed DOI
Ekeberg T, et al. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 2015;114:098102. doi: 10.1103/PhysRevLett.114.098102. PubMed DOI
van der Schot G, et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun. 2015;6:5704. doi: 10.1038/ncomms6704. PubMed DOI
Bielecki J, et al. Electrospray sample injection for single-particle imaging with x-ray lasers. Sci. Adv. 2019;5:eaav8801. doi: 10.1126/sciadv.aav8801. PubMed DOI PMC
Chapman HN, et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006;2:839–843. doi: 10.1038/nphys461. DOI
Tschentscher T, et al. Photon beam transport and scientific instruments at the european XFEL. Appl. Sci. 2017;7:592. doi: 10.3390/app7060592. DOI
Hantke MF, et al. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCrJ. 2018;5:673–680. doi: 10.1107/S2052252518010837. PubMed DOI PMC
Kuster M, et al. The 1-Megapixel pnCCD detector for the Small Quantum Systems Instrument at the European XFEL: system and operation aspects. J. Synchrotron Radiat. 2021;28:576–587. doi: 10.1107/S1600577520015659. PubMed DOI PMC
Strüder L, et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2010;614:483–496. doi: 10.1016/j.nima.2009.12.053. DOI
Decking W, et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonics. 2020;14:391–397. doi: 10.1038/s41566-020-0607-z. DOI
Chaudhry C, Horwich AL, Brunger AT, Adams PD. Exploring the structural dynamics of the E. coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J. Mol. Biol. 2004;342:229–245. doi: 10.1016/j.jmb.2004.07.015. PubMed DOI
Hogan CJ, et al. Tandem differential mobility analysis-mass spectrometry reveals partial gas-phase collapse of the GroEL complex. J. Phys. Chem. B. 2011;115:3614–3621. doi: 10.1021/jp109172k. PubMed DOI
Marklund EG, Larsson DSD, van der Spoel D, Patriksson A, Caleman C. Structural stability of electrosprayed proteins: temperature and hydration effects. Phys. Chem. Chem. Phys. 2009;11:8069–8078. doi: 10.1039/b903846a. PubMed DOI
Esser, T. K. et al. Cryo-EM of soft-landed β-galactosidase: Gas-phase and native structures are remarkably similar. Preprint at BioRxiv10.1101/2023.08.17.553673 (2023). PubMed PMC
Hau-Riege SP, et al. Sacrificial tamper slows down sample explosion in FLASH diffraction experiments. Phys. Rev. Lett. 2010;104:064801. doi: 10.1103/PhysRevLett.104.064801. PubMed DOI
Maia FRNC, Ekeberg T, Tîmneanu N, van der Spoel D, Hajdu J. Structural variability and the incoherent addition of scattered intensities in single-particle diffraction. Phys. Rev. E. 2009;80:031905. doi: 10.1103/PhysRevE.80.031905. PubMed DOI
Porro M, et al. The MiniSDD-based 1-Megapixel Camera of the DSSC Project for the European XFEL. IEEE Trans. Nucl. Sci. 2021;68:1334–1350. doi: 10.1109/TNS.2021.3076602. DOI
Gessler, P. et al. Overview of acquisition and control electronics and concepts for experiments and beam transport at the European XFEL. In Proceedings of the 17th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems. New York, 10.18429/jacow-icalepcs2019-thapp05 (2020).
Motuk E, et al. Design and development of electronics for the EuXFEL clock and control system. J. Instrum. 2012;7:C01062. doi: 10.1088/1748-0221/7/01/C01062. DOI
Maltezopoulos T, et al. Operation of X-ray gas monitors at the European XFEL. J. Synchrotron Radiat. 2019;26:1045–1051. doi: 10.1107/S1600577519003795. PubMed DOI
Daurer BJ, Hantke MF, Nettelblad C, Maia FRNC. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Crystallogr. 2016;49:1042–1047. doi: 10.1107/S1600576716005926. PubMed DOI PMC
Abraham MJ, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Hantke MF, Ekeberg T, Maia FRNC. Condor: a simulation tool for flash X-ray imaging. J. Appl. Crystallogr. 2016;49:1356–1362. doi: 10.1107/S1600576716009213. PubMed DOI PMC
Loh N-TD, Elser V. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E. 2009;80:026705. doi: 10.1103/PhysRevE.80.026705. PubMed DOI
Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC
Freeke J, Robinson CV, Ruotolo BT. Residual counter ions can stabilise a large protein complex in the gas phase. Int. J. Mass Spectrom. 2010;298:91–98. doi: 10.1016/j.ijms.2009.08.001. DOI
Zivanov J, et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife. 2018;7:e42166. doi: 10.7554/eLife.42166. PubMed DOI PMC
Punjani A, et al. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI
Zheng SQ, et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193. PubMed DOI PMC
Zhang K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 2016;193:1–12. doi: 10.1016/j.jsb.2015.11.003. PubMed DOI PMC
Roh S-H, et al. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Proc. Natl Acad. Sci. USA. 2017;114:8259–8264. doi: 10.1073/pnas.1704725114. PubMed DOI PMC
Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Wagner T, et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2019;2:218. doi: 10.1038/s42003-019-0437-z. PubMed DOI PMC
Maia FRNC. The Coherent X-ray Imaging Data Bank. Nat. Methods. 2012;9:854–855. doi: 10.1038/nmeth.2110. PubMed DOI
Wiedorn MO, et al. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers. J. Synchrotron Radiat. 2017;24:1296–1298. doi: 10.1107/S1600577517011961. PubMed DOI PMC