Plasma channel formation in NIR laser-irradiated carrier gas from an aerosol nanoparticle injector
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000789
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_013/0001793
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/15_003/0000449
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000789
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/15_003/0000447
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000789
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000789
EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
EP/G054940/1
RCUK | Engineering and Physical Sciences Research Council (EPSRC)
05K13KT6
Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
PubMed
31221980
PubMed Central
PMC6586673
DOI
10.1038/s41598-019-45120-3
PII: 10.1038/s41598-019-45120-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Aerosol nanoparticle injectors are fundamentally important for experiments where container-free sample handling is needed to study isolated nanoparticles. The injector consists of a nebuliser, a differential pumping unit, and an aerodynamic lens to create and deliver a focused particle beam to the interaction point inside a vacuum chamber. The tightest focus of the particle beam is close to the injector tip. The density of the focusing carrier gas is high at this point. We show here how this gas interacts with a near infrared laser pulse (800 nm wavelength, 120 fs pulse duration) at intensities approaching 1016 Wcm-2. We observe acceleration of gas ions to kinetic energies of 100s eV and study their energies as a function of the carrier gas density. Our results indicate that field ionisation by the intense near-infrared laser pulse opens up a plasma channel behind the laser pulse. The observations can be understood in terms of a Coulomb explosion of the created underdense plasma channel. The results can be used to estimate gas background in experiments with the injector and they open up opportunities for a new class of studies on electron and ion dynamics in nanoparticles surrounded by a low-density gas.
Chalmers University of Technology Department of Physics Göteborg Sweden
Department of Cell and Molecular Biology Uppsala University Husargatan 3 SE 751 24 Uppsala Sweden
ELI Beamlines Institute of Physics AS CR v v i Na Slovance 2 182 21 Prague 8 Czech Republic
Zobrazit více v PubMed
Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. doi: 10.1038/nature09750. PubMed DOI PMC
Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC
Hantke MF, et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics. 2014;8:943–949. doi: 10.1038/nphoton.2014.270. DOI
van der Schot G, et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications. 2015;6:5704. doi: 10.1038/ncomms6704. PubMed DOI
Ekeberg T, et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 2015;114:098102. doi: 10.1103/PhysRevLett.114.098102. PubMed DOI
Barke I, et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nature Communications. 2015;6:6187. doi: 10.1038/ncomms7187. PubMed DOI PMC
Pande K, et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science. 2016;352:725–729. doi: 10.1126/science.aad5081. PubMed DOI PMC
Meyer M, et al. Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr. Phys. Rev. Lett. 2010;104:213001. doi: 10.1103/PhysRevLett.104.213001. PubMed DOI
Fang L, et al. Double core-hole production in N2: Beating the Auger clock. Phys. Rev. Lett. 2010;105:083005. doi: 10.1103/PhysRevLett.105.083005. PubMed DOI
Krikunova M, et al. Strong-field ionization of molecular iodine traced with XUV pulses from a free-electron laser. Phys. Rev. A. 2012;86:043430. doi: 10.1103/PhysRevA.86.043430. DOI
Küpper J, et al. X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys. Rev. Lett. 2014;112:083002. doi: 10.1103/PhysRevLett.112.083002. DOI
Calegari F, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science. 2014;346:336–339. doi: 10.1126/science.1254061. PubMed DOI
Erk B, et al. Imaging charge transfer in iodomethane upon X-ray photoabsorption. Science. 2014;345:288–291. doi: 10.1126/science.1253607. PubMed DOI
Young L, et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature. 2010;466:56–61. doi: 10.1038/nature09177. PubMed DOI
Gorkhover T, et al. Nanoplasma dynamics of single large xenon clusters irradiated with superintense X-ray pulses from the Linac coherent light source free-electron laser. Phys. Rev. Lett. 2012;108:245005. doi: 10.1103/PhysRevLett.108.245005. PubMed DOI
Rupp D, et al. Recombination-enhanced surface expansion of clusters in intense soft X-ray laser pulses. Phys. Rev. Lett. 2016;117:153401. doi: 10.1103/PhysRevLett.117.153401. PubMed DOI
Rath AD, et al. Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and delay beam line of the FLASH soft X-ray laser. Optics Express. 2014;22:28914–28925. doi: 10.1364/OE.22.028914. PubMed DOI
Zhang X, et al. Numerical characterization of particle beam collimation: Part II Integrated aerodynamic-lens—nozzle system. Aerosol Science and Technology. 2004;38:619–638. doi: 10.1080/02786820490479833. DOI
Wang X, Gidwani A, Girshick SL, McMurry PH. Aerodynamic focusing of nanoparticles: II. Numerical simulation of particle motion through aerodynamic lenses. Aerosol Science and Technology. 2005;39:624–636. doi: 10.1080/02786820500181950. DOI
Wang X, McMurry PH. A design tool for aerodynamic lens systems. Aerosol Science and Technology. 2006;40:320–334. doi: 10.1080/02786820600615063. DOI
Liu PSK, et al. Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer. Aerosol Science and Technology. 2007;41:721–733. doi: 10.1080/02786820701422278. DOI
Hantke MF, et al. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCrJ. 2018;5:673–680. doi: 10.1107/S2052252518010837. PubMed DOI PMC
Bogan MJ, et al. Single particle X-ray diffractive imaging. Nano Lett. 2008;8:310–316. doi: 10.1021/nl072728k. PubMed DOI
Barty A, et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics. 2012;6:35–40. doi: 10.1038/nphoton.2011.297. PubMed DOI PMC
Oberthür D. Biological single-particle imaging using XFELs – towards the next resolution revolution. IUCrJ. 2018;5:663–666. doi: 10.1107/S2052252518015129. PubMed DOI PMC
Awel S, et al. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography. 2018;51:133–139. doi: 10.1107/S1600576717018131. PubMed DOI PMC
Andreasson J, et al. Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Opt. Express. 2014;22:2497–2510. doi: 10.1364/OE.22.002497. PubMed DOI
Flueckiger L, et al. Time-resolved X-ray imaging of a laser-induced nanoplasma and its neutral residuals. New Journal of Physics. 2016;18:043017. doi: 10.1088/1367-2630/18/4/043017. DOI
Gorkhover T, et al. Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nature Photonics. 2016;10:93–97. doi: 10.1038/NPHOTON.2015.264. DOI
Zherebtsov S, et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Physics. 2011;7:656–662. doi: 10.1038/nphys1983. DOI
Zherebtsov S, et al. Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields. New Journal of Physics. 2012;14:075010. doi: 10.1088/1367-2630/14/7/075010. DOI
Antonsson E, et al. Signatures of transient resonance heating in photoemission from free NaCl nanoparticles in intense femtosecond laser pulses. Journal of Electron Spectroscopy and Related Phenomena. 2015;200:216–221. doi: 10.1016/j.elspec.2015.04.015. DOI
Seiffert L, et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nature Physics. 2017;13:766–770. doi: 10.1038/NPHYS4129. DOI
Hickstein DD, et al. Mapping nanoscale absorption of femtosecond laser pulses using plasma explosion imaging. ACS Nano. 2014;8:8810–8818. doi: 10.1021/nn503199v. PubMed DOI
Passig J, et al. Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters. Nature Communications. 2017;8:1181. doi: 10.1038/s41467-017-01286-w. PubMed DOI PMC
Ciappina MF, et al. High energy photoelectron emission from gases using plasmonic enhanced near-fields. Laser Phys. Lett. 2013;10:105302. doi: 10.1088/1612-2011/10/10/105302. DOI
Ortmann L, et al. Emergence of a higher energy structure in strong field ionization with inhomogeneous electric fields. Phys. Rev. Lett. 2017;119:053204. doi: 10.1103/PhysRevLett.119.053204. PubMed DOI
DePonte DP, et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D. 2008;41:195505. doi: 10.1088/0022-3727/41/19/195505. DOI
Bielecki J, et al. Electrospray sample injection for single-particle imaging with X-ray lasers. bioRxiv. 2018 doi: 10.1101/453456. PubMed DOI PMC
Hickstein DD, et al. Observation and control of shock waves in individual nanoplasmas. Phys. Rev. Lett. 2014;112:115004. doi: 10.1103/PhysRevLett.112.115004. PubMed DOI
Kim S, et al. High-harmonic generation by resonant plasmon field enhancement. Nature. 2008;453:757–760. doi: 10.1038/nature07012. PubMed DOI
Park I-Y, et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photonics. 2011;5:678–682. doi: 10.1038/NPHOTON.2011.258. DOI
Sivis M, Duwe M, Abel B, Ropers C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nature Physics. 2013;9:304–309. doi: 10.1038/NPHYS2590. DOI
Pfullmann N, et al. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation. New Journal of Physics. 2013;15:093027. doi: 10.1088/1367-2630/15/9/093027. DOI
Horke DA, Roth N, Worbs L, Küpper J. Characterizing gas flow from aerosol particle injectors. Journal of Applied Physics. 2017;121:123106. doi: 10.1063/1.4978914. DOI
Ammosov MV, Delone NB, Krainov VP. Tunnel ionisation of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP. 1986;64:1191–1194.
Altucci C, et al. Characterization of pulsed gas sources for intense laser field-atom interaction experiments. J. Phys. D. 1996;29:68–75. doi: 10.1088/0022-3727/29/1/012. DOI
Ditmire T, Smith RA. Short-pulse laser interferometric measurement of absolute gas densities from a cooled gas jet. Opt. Lett. 1998;23:618–620. doi: 10.1364/OL.23.000618. PubMed DOI
Gañán Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 1998;80:285–288. doi: 10.1103/PhysRevLett.80.285. DOI
Campargue R. Progress in overexpanded supersonic jets and skimmed molecular-beams in free-jet zones of silence. Journal of Physical Chemistry. 1984;88:4466–4474. doi: 10.1021/j150664a004. DOI
Beijerinck HCW, et al. Campargue-type supersonic beam sources - absolute intensities, skimmer transmission and scaling laws for mono-atomic gases He, Ne and Ar. Chemical Physics. 1985;96:153–173. doi: 10.1016/0301-0104(85)80201-9. DOI
Arber TD, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion. 2015;57:113001. doi: 10.1088/0741-3335/57/11/113001. DOI
Ridgers C, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser—matter interactions. Journal of Computational Physics. 2014;260:273–285. doi: 10.1016/j.jcp.2013.12.007. DOI