Plasma channel formation in NIR laser-irradiated carrier gas from an aerosol nanoparticle injector

. 2019 Jun 20 ; 9 (1) : 8851. [epub] 20190620

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31221980

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000789 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_013/0001793 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/15_003/0000449 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000789 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/15_003/0000447 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000789 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
CZ.02.1.01/0.0/0.0/16_019/0000789 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
EP/G054940/1 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
05K13KT6 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)

Odkazy

PubMed 31221980
PubMed Central PMC6586673
DOI 10.1038/s41598-019-45120-3
PII: 10.1038/s41598-019-45120-3
Knihovny.cz E-zdroje

Aerosol nanoparticle injectors are fundamentally important for experiments where container-free sample handling is needed to study isolated nanoparticles. The injector consists of a nebuliser, a differential pumping unit, and an aerodynamic lens to create and deliver a focused particle beam to the interaction point inside a vacuum chamber. The tightest focus of the particle beam is close to the injector tip. The density of the focusing carrier gas is high at this point. We show here how this gas interacts with a near infrared laser pulse (800 nm wavelength, 120 fs pulse duration) at intensities approaching 1016 Wcm-2. We observe acceleration of gas ions to kinetic energies of 100s eV and study their energies as a function of the carrier gas density. Our results indicate that field ionisation by the intense near-infrared laser pulse opens up a plasma channel behind the laser pulse. The observations can be understood in terms of a Coulomb explosion of the created underdense plasma channel. The results can be used to estimate gas background in experiments with the injector and they open up opportunities for a new class of studies on electron and ion dynamics in nanoparticles surrounded by a low-density gas.

Zobrazit více v PubMed

Chapman HN, et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73–77. doi: 10.1038/nature09750. PubMed DOI PMC

Seibert MM, et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature. 2011;470:78–81. doi: 10.1038/nature09748. PubMed DOI PMC

Hantke MF, et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nature Photonics. 2014;8:943–949. doi: 10.1038/nphoton.2014.270. DOI

van der Schot G, et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nature Communications. 2015;6:5704. doi: 10.1038/ncomms6704. PubMed DOI

Ekeberg T, et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser. Phys. Rev. Lett. 2015;114:098102. doi: 10.1103/PhysRevLett.114.098102. PubMed DOI

Barke I, et al. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nature Communications. 2015;6:6187. doi: 10.1038/ncomms7187. PubMed DOI PMC

Pande K, et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science. 2016;352:725–729. doi: 10.1126/science.aad5081. PubMed DOI PMC

Meyer M, et al. Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr. Phys. Rev. Lett. 2010;104:213001. doi: 10.1103/PhysRevLett.104.213001. PubMed DOI

Fang L, et al. Double core-hole production in N2: Beating the Auger clock. Phys. Rev. Lett. 2010;105:083005. doi: 10.1103/PhysRevLett.105.083005. PubMed DOI

Krikunova M, et al. Strong-field ionization of molecular iodine traced with XUV pulses from a free-electron laser. Phys. Rev. A. 2012;86:043430. doi: 10.1103/PhysRevA.86.043430. DOI

Küpper J, et al. X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser. Phys. Rev. Lett. 2014;112:083002. doi: 10.1103/PhysRevLett.112.083002. DOI

Calegari F, et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science. 2014;346:336–339. doi: 10.1126/science.1254061. PubMed DOI

Erk B, et al. Imaging charge transfer in iodomethane upon X-ray photoabsorption. Science. 2014;345:288–291. doi: 10.1126/science.1253607. PubMed DOI

Young L, et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature. 2010;466:56–61. doi: 10.1038/nature09177. PubMed DOI

Gorkhover T, et al. Nanoplasma dynamics of single large xenon clusters irradiated with superintense X-ray pulses from the Linac coherent light source free-electron laser. Phys. Rev. Lett. 2012;108:245005. doi: 10.1103/PhysRevLett.108.245005. PubMed DOI

Rupp D, et al. Recombination-enhanced surface expansion of clusters in intense soft X-ray laser pulses. Phys. Rev. Lett. 2016;117:153401. doi: 10.1103/PhysRevLett.117.153401. PubMed DOI

Rath AD, et al. Explosion dynamics of sucrose nanospheres monitored by time of flight spectrometry and coherent diffractive imaging at the split-and delay beam line of the FLASH soft X-ray laser. Optics Express. 2014;22:28914–28925. doi: 10.1364/OE.22.028914. PubMed DOI

Zhang X, et al. Numerical characterization of particle beam collimation: Part II Integrated aerodynamic-lens—nozzle system. Aerosol Science and Technology. 2004;38:619–638. doi: 10.1080/02786820490479833. DOI

Wang X, Gidwani A, Girshick SL, McMurry PH. Aerodynamic focusing of nanoparticles: II. Numerical simulation of particle motion through aerodynamic lenses. Aerosol Science and Technology. 2005;39:624–636. doi: 10.1080/02786820500181950. DOI

Wang X, McMurry PH. A design tool for aerodynamic lens systems. Aerosol Science and Technology. 2006;40:320–334. doi: 10.1080/02786820600615063. DOI

Liu PSK, et al. Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer. Aerosol Science and Technology. 2007;41:721–733. doi: 10.1080/02786820701422278. DOI

Hantke MF, et al. Rayleigh-scattering microscopy for tracking and sizing nanoparticles in focused aerosol beams. IUCrJ. 2018;5:673–680. doi: 10.1107/S2052252518010837. PubMed DOI PMC

Bogan MJ, et al. Single particle X-ray diffractive imaging. Nano Lett. 2008;8:310–316. doi: 10.1021/nl072728k. PubMed DOI

Barty A, et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nature Photonics. 2012;6:35–40. doi: 10.1038/nphoton.2011.297. PubMed DOI PMC

Oberthür D. Biological single-particle imaging using XFELs – towards the next resolution revolution. IUCrJ. 2018;5:663–666. doi: 10.1107/S2052252518015129. PubMed DOI PMC

Awel S, et al. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals. Journal of Applied Crystallography. 2018;51:133–139. doi: 10.1107/S1600576717018131. PubMed DOI PMC

Andreasson J, et al. Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Opt. Express. 2014;22:2497–2510. doi: 10.1364/OE.22.002497. PubMed DOI

Flueckiger L, et al. Time-resolved X-ray imaging of a laser-induced nanoplasma and its neutral residuals. New Journal of Physics. 2016;18:043017. doi: 10.1088/1367-2630/18/4/043017. DOI

Gorkhover T, et al. Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles. Nature Photonics. 2016;10:93–97. doi: 10.1038/NPHOTON.2015.264. DOI

Zherebtsov S, et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Physics. 2011;7:656–662. doi: 10.1038/nphys1983. DOI

Zherebtsov S, et al. Carrier-envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields. New Journal of Physics. 2012;14:075010. doi: 10.1088/1367-2630/14/7/075010. DOI

Antonsson E, et al. Signatures of transient resonance heating in photoemission from free NaCl nanoparticles in intense femtosecond laser pulses. Journal of Electron Spectroscopy and Related Phenomena. 2015;200:216–221. doi: 10.1016/j.elspec.2015.04.015. DOI

Seiffert L, et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nature Physics. 2017;13:766–770. doi: 10.1038/NPHYS4129. DOI

Hickstein DD, et al. Mapping nanoscale absorption of femtosecond laser pulses using plasma explosion imaging. ACS Nano. 2014;8:8810–8818. doi: 10.1021/nn503199v. PubMed DOI

Passig J, et al. Nanoplasmonic electron acceleration by attosecond-controlled forward rescattering in silver clusters. Nature Communications. 2017;8:1181. doi: 10.1038/s41467-017-01286-w. PubMed DOI PMC

Ciappina MF, et al. High energy photoelectron emission from gases using plasmonic enhanced near-fields. Laser Phys. Lett. 2013;10:105302. doi: 10.1088/1612-2011/10/10/105302. DOI

Ortmann L, et al. Emergence of a higher energy structure in strong field ionization with inhomogeneous electric fields. Phys. Rev. Lett. 2017;119:053204. doi: 10.1103/PhysRevLett.119.053204. PubMed DOI

DePonte DP, et al. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D. 2008;41:195505. doi: 10.1088/0022-3727/41/19/195505. DOI

Bielecki J, et al. Electrospray sample injection for single-particle imaging with X-ray lasers. bioRxiv. 2018 doi: 10.1101/453456. PubMed DOI PMC

Hickstein DD, et al. Observation and control of shock waves in individual nanoplasmas. Phys. Rev. Lett. 2014;112:115004. doi: 10.1103/PhysRevLett.112.115004. PubMed DOI

Kim S, et al. High-harmonic generation by resonant plasmon field enhancement. Nature. 2008;453:757–760. doi: 10.1038/nature07012. PubMed DOI

Park I-Y, et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photonics. 2011;5:678–682. doi: 10.1038/NPHOTON.2011.258. DOI

Sivis M, Duwe M, Abel B, Ropers C. Extreme-ultraviolet light generation in plasmonic nanostructures. Nature Physics. 2013;9:304–309. doi: 10.1038/NPHYS2590. DOI

Pfullmann N, et al. Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation. New Journal of Physics. 2013;15:093027. doi: 10.1088/1367-2630/15/9/093027. DOI

Horke DA, Roth N, Worbs L, Küpper J. Characterizing gas flow from aerosol particle injectors. Journal of Applied Physics. 2017;121:123106. doi: 10.1063/1.4978914. DOI

Ammosov MV, Delone NB, Krainov VP. Tunnel ionisation of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP. 1986;64:1191–1194.

Altucci C, et al. Characterization of pulsed gas sources for intense laser field-atom interaction experiments. J. Phys. D. 1996;29:68–75. doi: 10.1088/0022-3727/29/1/012. DOI

Ditmire T, Smith RA. Short-pulse laser interferometric measurement of absolute gas densities from a cooled gas jet. Opt. Lett. 1998;23:618–620. doi: 10.1364/OL.23.000618. PubMed DOI

Gañán Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 1998;80:285–288. doi: 10.1103/PhysRevLett.80.285. DOI

Campargue R. Progress in overexpanded supersonic jets and skimmed molecular-beams in free-jet zones of silence. Journal of Physical Chemistry. 1984;88:4466–4474. doi: 10.1021/j150664a004. DOI

Beijerinck HCW, et al. Campargue-type supersonic beam sources - absolute intensities, skimmer transmission and scaling laws for mono-atomic gases He, Ne and Ar. Chemical Physics. 1985;96:153–173. doi: 10.1016/0301-0104(85)80201-9. DOI

Arber TD, et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion. 2015;57:113001. doi: 10.1088/0741-3335/57/11/113001. DOI

Ridgers C, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser—matter interactions. Journal of Computational Physics. 2014;260:273–285. doi: 10.1016/j.jcp.2013.12.007. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...