The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis

. 2024 ; 19 (8) : e0307196. [epub] 20240812

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39133700

The treponemes infecting lagomorphs include Treponema paraluisleporidarum ecovar Cuniculus (TPeC) and ecovar Lepus (TPeL), infecting rabbits and hares, respectively. In this study, we described the first complete genome sequence of TPeL, isolate V3603-13, from an infected mountain hare (Lepus timidus) in Sweden. In addition, we determined 99.0% of the genome sequence of isolate V246-08 (also from an infected mountain hare, Sweden) and 31.7% of the genome sequence of isolate Z27 A77/78 (from a European hare, Lepus europeaus, The Netherlands). The TPeL V3603-13 genome had considerable gene synteny with the TPeC Cuniculi A genome and with the human pathogen T. pallidum, which causes syphilis (ssp. pallidum, TPA), yaws (ssp. pertenue, TPE) and endemic syphilis (ssp. endemicum, TEN). Compared to the TPeC Cuniculi A genome, TPeL V3603-13 contained four insertions and 11 deletions longer than three nucleotides (ranging between 6 and2,932 nts). In addition, there were 25 additional indels, from one to three nucleotides long, altogether spanning 36 nts. The number of single nucleotide variants (SNVs) between TPeC Cuniculi A and TPeL V3603-13 were represented by 309 nucleotide differences. Major proteome coding differences between TPeL and TPeC were found in the tpr gene family, and (predicted) genes coding for outer membrane proteins, suggesting that these components are essential for host adaptation in lagomorph syphilis. The phylogeny revealed that the TPeL sample from the European brown hare was more distantly related to TPeC Cuniculi A than V3603-13 and V246-08.

Zobrazit více v PubMed

Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol. 2016;14(12):744–759. doi: 10.1038/nrmicro.2016.141 PubMed DOI PMC

Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018;61: 92–107. doi: 10.1016/j.meegid.2018.03.015 PubMed DOI

Lumeij JT, Mikalová L, Šmajs D. Is there a difference between hare syphilis and rabbit syphilis? Cross infection experiments between rabbits and hares. Vet Microbiol. 2013;164(1–2):190–4. doi: 10.1016/j.vetmic.2013.02.001 PubMed DOI

Turner TB, Hollander DH. Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957;(35):3–266. PubMed

Strouhal M, Šmajs D, Matějková P, Sodergren E, Amin AG, Howell JK et al.. Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun. 2007;75(12):5859–66. doi: 10.1128/IAI.00709-07 PubMed DOI PMC

Šmajs D, Zobaníková M, Strouhal M, Čejková D, Dugan-Rocha S, Pospíšilová P et al.. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: The loss of infectivity to humans is associated with genome decay. PloS ONE. 2011; 6:e20415. doi: 10.1371/journal.pone.0020415 PubMed DOI PMC

Smith JL, and Pesetsky BR The current status of Treponema cuniculi: review of the literature. Br. J. Vener. Dis. 1967; 43, 117–127. doi: 10.1136/sti.43.2.117 PubMed DOI PMC

Knauf S, Hisgen L, Ågren EO, Barlow AM, Faehndrich M, Voigt U et al.. High prevalence and genetic diversity of Treponema paraluisleporidarum isolates in European lagomorphs. Microbiol Spectr. 2024;12(1):e0177423. doi: 10.1128/spectrum.01774-23 PubMed DOI PMC

Lumeij JT, de Koning J, Bosma RB, van der Sluis JJ, Schellekens JF. Treponemal infections in hares in The Netherlands. J Clin Microbiol. 1994. Feb;32(2):543–6. doi: 10.1128/jcm.32.2.543-546.1994 PubMed DOI PMC

Jakšić BL. Brucelose et syphilis du lievre. Vet. Glas. 1957; 11, 423–425.

Hisgen L, Abel L, Hallmaier‐Wacker LK, Lueert S, Siebert U, Faehndrich M et al.. High syphilis seropositivity in European brown hares (Lepus europaeus), Lower Saxony, Germany. Transbound Emerg Dis. 2020; 67, 2240–2244 doi: 10.1111/tbed.13551 PubMed DOI

Nováková M, Najt D, Mikalová L, Kostková M, Vrbová E, Strouhal M et al.. (2019). First report of hare treponematosis seroprevalence of European brown hares (Lepus europaeus) in the Czech Republic: seroprevalence negatively correlates with altitude of sampling areas. BMC Vet. Res. 2019; 15, 350. doi: 10.1186/s12917-019-2086-3 PubMed DOI PMC

Posautz A, Leidinger E, Knauer F, Hoffman D, Suchentrunk F, Walzer C, et al.. Seroprevalence of Treponema sp. in European brown hares (Lepus europaeus) in Austria and Germany. Wien. Tierarztl. Monat. 2014; 101, 281–285.

Verin R, Pestelli M, Poli A. Treponemal infection in free-ranging European brown hares (Lepus europaeus) in Central Italy: Serology and epidemiology. J Wildl. Dis. 2012; 48, 1079–82. doi: 10.7589/2011-03-069 PubMed DOI

Knauf S, Raphael J, Mitjà O, Lejora IAV, Chuma IS, Batamuzi EK, et al.. Isolation of treponema DNA from necrophagous flies in a natural ecosystem. EBioMedicine. 2016;11:85–90. doi: 10.1016/j.ebiom.2016.07.033 PubMed DOI PMC

Zobaníková M, Strouhal M, Mikalová L, Cejková D, Ambrožová L, Pospíšilová P, et al.. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis. 2013. Apr 18;7(4):e2172. doi: 10.1371/journal.pntd.0002172 ; PMCID: PMC3630124. PubMed DOI PMC

Štaudová B, Strouhal M, Zobaníková M, Čejková D, Fulton LL, Chen L, et al.. Whole Genome Sequence of the Treponema pallidum subsp. endemicum Strain Bosnia A: The Genome Is Related to Yaws Treponemes but Contains Few Loci Similar to Syphilis Treponemes. PLoS Negl Trop Dis. 2014;8: e3261. doi: 10.1371/journal.pntd.0003261 PubMed DOI PMC

Weinstock G.M., Norris S.J., Sodergren E.J. and Šmajs D. (2000). Identification of Virulence Genes in Silico: Infectious Disease Genomics. In Virulence Mechanisms of Bacterial Pathogens (eds Brogden K.A., Roth J.A., Stanton T.B., Bolin C.A., Minion F. Chrisand Wannemuehler M.J. 10.1128/9781555818111.ch17 DOI

Mikalová L, Strouhal M, Čejková D, Zobaníková M, Pospíšilová P, Norris SJ et al.. Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS One. 2010; 5:e15713. doi: 10.1371/journal.pone.0015713 PubMed DOI PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: htTP://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010.

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal. 2011;17: 10–12. doi: 10.14806/ej.17.1.200 DOI

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20: 1297–1303. doi: 10.1101/gr.107524.110 PubMed DOI PMC

Breese MR, Liu Y. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinformatics. 2013;29: 494–496. doi: 10.1093/bioinformatics/bts731 PubMed DOI PMC

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016; 33(7):1870–4. doi: 10.1093/molbev/msw054 PubMed DOI PMC

Stamm LV, Bergen HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother. 2000;44:806–7. PubMed PMC

Matějková P, Flasarová M, Zákoucká H, Bořek M, Křemenová S, Arenberger P, et al.. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol. 2009;58:832–836. PubMed

Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová, et al.. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front. Microbiol. 2019; 10, 1691. doi: 10.3389/fmicb.2019.01691 PubMed DOI PMC

Mikalová L, Strouhal M., Grange PA, Gaudin C, Janier M, Benhaddou N, et al.. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively. PLoS Negl. Trop. Dis. 2017;11:e0005434. doi: 10.1371/journal.pntd.0005434 PubMed DOI PMC

Kumar S, Caimano MJ, Anand A, Dey A, Hawley KL, LeDoyt ME, et al.. Sequence Variation of Rare Outer Membrane Protein β-Barrel Domains in Clinical Strains Provides Insights into the Evolution of Treponema pallidum subsp. pallidum, the Syphilis Spirochete. mBio. 2018;9(3):e01006–18. doi: 10.1128/mBio.01006-18 PubMed DOI PMC

Harper K.N., Liu H., Ocampo P.S., Steiner B.M., Martin A., Levert K., et al.. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol. Med. Microbiol. 2008;53, 322–332. doi: 10.1111/j.1574-695X.2008.00427.x PubMed DOI

Jekl V, Nováková M, Jeklová E, Pospíšilová P, Křenová J, Faldyna M et al.. Penicillin treatment failure in rabbit syphilis due to the persistence of Treponemes (Treponema paraluisleporidarum ecovar Cuniculus) in the focus of infection. Front Vet Sci. 2021;8:675631. doi: 10.3389/fvets.2021.675631 PubMed DOI PMC

Pětrošová H, Pospíšilová P, Strouhal S, Čejková D, Chen L, Mikalová L, et al.. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased diversity of syphilis treponeme subclusters. PLoS One. 2013; 8:e74319. doi: 10.1371/journal.pone.0074319 PubMed DOI PMC

Čejková D, Zobaníková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al.. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains. Journal of Medical Microbiology. 2013;62: 196–207. doi: 10.1099/jmm.0.050658–0 PubMed DOI PMC

Horvath I, Kemenes F, Molnar L, Szeky A, Racz I. Experimental syphilis and serological examination for treponematosis in hares. Infect. Immun. 1980; 27, 231–234. doi: 10.1128/iai.27.1.231-234.1980 PubMed DOI PMC

Lieberman NAP, Armstrong TD, Chung B, Pfalmer D, Hennelly CM, Haynes A, et al.. High-throughput nanopore sequencing of Treponema pallidum tandem repeat genes arp and tp0470 reveals clade-specific patterns and recapitulates global whole genome phylogeny. Front Microbiol. 2022;13:1007056. doi: 10.3389/fmicb.2022.1007056 PubMed DOI PMC

Mikalová L, Pospíšilová P, Woznicová V, Kuklová I, Zákoucká H, Šmajs D. Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient. BMC Microbiol. 2013;13:178. doi: 10.1186/1471-2180-13-178 PubMed DOI PMC

Knauf S, Gogarten JF, Schuenemann VJ, De Nys HM, Düx A, Strouhal M, et al.. Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue. Emerg. Microbes Infect. 2018;7:157. doi: 10.1038/s41426-018-0156-4 PubMed DOI PMC

Šmajs D, McKevitt M, Wang L, Howell JK, Norris SJ, Palzkill T, et al.. BAC Library of T. pallidum DNA in E. coli. Genome Res. 2002;12: 515–522. doi: 10.1101/gr.207302 PubMed DOI PMC

Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, et al.. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: Modular structure of several treponemal genes. PLoS Negl Trop Dis. 2018;12: e0006867. doi: 10.1371/journal.pntd.0006867 PubMed DOI PMC

Mikalová L, Janečková K, Nováková M, Strouhal M, Čejková D, Harper KN, et al.. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: A subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains. PLoS One. 2020;15(4):e0230926. doi: 10.1371/journal.pone.0230926 PubMed DOI PMC

Noda AA, Grillová L, Lienhard R, Blanco O, Rodríguez I, Šmajs D. Bejel in Cuba: molecular identification of Treponema pallidum subsp. endemicum in patients diagnosed with venereal syphilis. Clinical Microbiology and Infection. 2018;24: 1210.e1–1210.e5. doi: 10.1016/j.cmi.2018.02.006 PubMed DOI

Vrbová E, Noda AA, Grillová L, Rodríguez I, Forsyth A, Oppelt J et al.. Whole genome sequences of Treponema pallidum subsp. endemicum isolated from Cuban patients: The non-clonal character of isolates suggests a persistent human infection rather than a single outbreak. PLoS Negl Trop Dis. 2022;16:e0009900. doi: 10.1371/journal.pntd.0009900 PubMed DOI PMC

Kawahata T, Kojima Y, Furubayashi K, Shinohara K, Shimizu T, Komano J et al.. Bejel, a Nonvenereal Treponematosis, among Men Who Have Sex with Men, Japan. Emerg Infect Dis. 2019;25(8):1581–1583. doi: 10.3201/eid2508.181690 PubMed DOI PMC

Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP, Bagheri HC, et al.. Evolutionary processes in the emergence and recent spread of the syphilis agent, Treponema pallidum. Mol Biol Evol. 2022;39(1):msab318. doi: 10.1093/molbev/msab318 PubMed DOI PMC

Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejková P, Smajs D. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76(5):1848–57. doi: 10.1128/IAI.01424-07 PubMed DOI PMC

Maděránková D, Mikalová L, Strouhal M, Vadják Š, Kuklová I, Pospíšilová P, et al.. Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. PLOS Neglected Tropical Diseases. 2019;13: e0007463. doi: 10.1371/journal.pntd.0007463 PubMed DOI PMC

Zobaníková M, Mikolka P, Čejková D, Pospíšilová P, Chen L, Strouhal M, et al.. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci. 2012;7(1):12–21. doi: 10.4056/sigs.2615838 PubMed DOI PMC

Grillová L, Giacani L, Mikalová L, Strouhal M, Strnadel R, Marra C, et al.. Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using Anti-Treponemal Antibodies Enrichment: First complete whole genome sequence obtained directly from human clinical material. PLoS One. 2018;13: e0202619. doi: 10.1371/journal.pone.0202619 PubMed DOI PMC

Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D, Rychlík I, et al.. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis. 2017;11: e0005894. doi: 10.1371/journal.pntd.0005894 PubMed DOI PMC

Lieberman NAP, Lin MJ, Xie H, Shrestha L, Nguyen T, Huang ML, et al.. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl Trop Dis. 2021;15(12):e0010063. doi: 10.1371/journal.pntd.0010063 PubMed DOI PMC

Arora N, Schuenemann VJ, Jäger G, Peltzer A, Seitz A, Herbig A, et al.. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat Microbiol. 2016;2:16245. doi: 10.1038/nmicrobiol.2016.245 PubMed DOI

Šmajs D, Paštěková L, Grillová L. Macrolide Resistance in the Syphilis Spirochete, Treponema pallidum ssp. pallidum: Can We Also Expect Macrolide-Resistant Yaws Strains? Am J Trop Med Hyg. 2015;93(4):678–83. doi: 10.4269/ajtmh.15-0316 PubMed DOI PMC

Mitjà O, Godornes C, Houinei W, Kapa A, Paru R, Abel H, et al.. Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet. 2018;391:1599–1607. doi: 10.1016/S0140-6736(18)30204-6 PubMed DOI PMC

John LN, Beiras CG, Houinei W, Medappa M, Sabok M, Kolmau R, et al.. Trial of Three Rounds of Mass Azithromycin Administration for Yaws Eradication. N Engl J Med. 2022;386(1):47–56. doi: 10.1056/NEJMoa2109449 PubMed DOI PMC

Kojima Y, Furubayashi K, Kawahata T, Mori H, Komano J. Circulation of distinct Treponema pallidum strains in individuals with heterosexual orientation and men who have sex with men. J Clin Microbiol. 2019;57(1):e01148–18. doi: 10.1128/JCM.01148-18 PubMed DOI PMC

Shinohara K, Furubayashi K, Kojima Y, Mori H, Komano J, Kawahata T. Clinical perspectives of Treponema pallidum subsp. endemicum infection in adults, particularly men who have sex with men in the Kansai area, Japan: A case series. J Infect Chemother. 2022;28(3):444–450. doi: 10.1016/j.jiac.2021.11.012 PubMed DOI

Chuma IS, Roos C, Atickem A, Bohm T, Collins DA, Grillová L, et al.. Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates. Sci Rep. 2019;9, 14243 doi: 10.1038/s41598-019-50779-9 PubMed DOI PMC

Janečková K, Roos C, Fedrová P, Tom N, Čejková D, Lueert S et al.. The genomes of the yaws bacterium, Treponema pallidum subsp. pertenue, of nonhuman primate and human origin are not genomically distinct. PLoS Negl Trop Dis. 2023; 17:e0011602. doi: 10.1371/journal.pntd.0011602 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...