Root-Associated Fungal Communities From Two Phenologically Contrasting Silver Fir (Abies alba Mill.) Groups of Trees

. 2019 ; 10 () : 214. [epub] 20190305

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30891052

Root-associated fungal communities are important components in ecosystem processes, impacting plant growth and vigor by influencing the quality, direction, and flow of nutrients and water between plants and fungi. Linkages of plant phenological characteristics with belowground root-associated fungal communities have rarely been investigated, and thus our aim was to search for an interplay between contrasting phenology of host ectomycorrhizal trees from the same location and root-associated fungal communities (ectomycorrhizal, endophytic, saprotrophic and pathogenic root-associated fungi) in young and in adult silver fir trees. The study was performed in a managed silver fir forest site. Twenty-four soil samples collected under two phenologically contrasting silver fir groups were analyzed for differences in root-associated fungal communities using Illumina sequencing of a total root-associated fungal community. Significant differences in beta diversity and in mean alpha diversity were confirmed for overall community of ectomycorrhizal root-associated fungi, whereas for ecologically different non-ectomycorrhizal root-associated fungal communities the differences were significant only for beta diversity and not for mean alpha diversity. At genus level root-associated fungal communities differed significantly between early and late flushing young and adult silver fir trees. We discuss the interactions through which the phenology of host plants either drives or is driven by the root-associated fungal communities in conditions of a sustainably co-naturally managed silver fir forest.

Zobrazit více v PubMed

Agerer R. (2008). Colour Atlas of Ectomycorrhizae, 1st–12th Edn. Schwäbisch Gmünd: Einhorn-Verlag.

Arguelles-Moyao A., Garibay-Orijel R., Marquez-Valdelamar L. M., Arellano-Torres E. (2017). Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza 27 53–65. 10.1007/s00572-016-0724-1 PubMed DOI

Aronesty E. (2011). ea-utils: Command-Line Tools for Processing Biological Sequencing Data. Available from: https://github.com/ExpressionAnalysis/ea-utils.

Baar J., Horton T. R., Kretzer A. M., Bruns T. D. (1999). Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand- replacing fire. New Phytol. 143 409–418. 10.1046/j.1469-8137.1999.00452.x DOI

Barrow J. R., Aaltonen R. E. (2001). Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. Roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11 177–185.

Bengtsson-Palme J., Veldre V., Ryberg M., Hartmann M., Branco S., Wang Z., et al. (2013). ITSx: improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. Methods Ecol. Evol. 4 914–919.

Bödeker I. T. M., Lindahl B. D., Olson Å., Clemmensen K. E. (2016). Mycorrhizal and saprotrophic fungal guild compete for the same organic substrates but affect decomposition differently. Funct. Ecol. 30 1967–1978. 10.1111/1365-2435.12677 DOI

Chen W., Koide R. T., Adams T. S., DeForest J. L., Cheng L., Eissenstat D. M. (2016). Root morphology and mycorrhizal symbiosis together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. U.S.A. 113 8741–8746. 10.1073/pnas.1601006113 PubMed DOI PMC

Clemmensen K., Finlay R. D., Dahlberg A., Stenlid J., Wardle D. A., Lindhal B. D. (2014). Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205 1525–1536. 10.1111/nph.13208 PubMed DOI

Comandini O., Pacioni G., Rinaldi A. C. (1998). Fungi in ectomycorrhizal associations of silver fir (Abies alba Miller) in Central Italy. Mycorrhiza 7 323–328. 10.1007/s005720050 DOI

Courty P.-E., Buee M., Diedhiou A. G., Frey-Klett P., Le Tacon F., Rineau F., et al. (2010). The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol. Biochem. 42 679–698. 10.1016/j.soilbio.2009.12.006 DOI

Croft H., Chen J. M., Noland T. L. (2014). Stand age effects on boreal forest physiology using a long time-series of satellite data. For. Ecol. Manag. 328 202–208. 10.1016/j.foreco.2014.05.023 DOI

Crous P. W., Schubert K., Braun U., de Hoog G. S., Hocking A. D., Shin H. D., et al. (2007). Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud. Mycol. 58 185–217. 10.3114/sim.2007.58.07 PubMed DOI PMC

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI

Egli S., Ayer F., Peter M., Eilmann B., Rigling A. (2010). Is forest mushroom productivity driven by tree growth? Results from a thinning experiment. Ann. For. Sci. 67 509–509. 10.1051/forest/2010011 DOI

Fernandez-Toiran L. M., Agreda T., Olano J. M. (2006). Stand age and sampling year effect on the fungal fruit body community in Pinus pinaster forests in central Spain. Can. J. Bot. 84 1249–1258. 10.1139/B06-087 DOI

Gallaud I. (1905). Études sur les mycorrhizas endotrophes. Rev. Gén. Bot. 17 5–48, 66,–83, 123,–136, 223,–239, 313,–325, 425,–433, 479–500.

Ganley R. J., Brunsfeld S. J., Newcombe G. (2004). A community of unknown, endophytic fungi in western white pine. Proc. Natl. Acad. Sci. U.S.A. 101 10107–10112. 10.1073/pnas.0401513101 PubMed DOI PMC

Geml J., Davis D. D., Geiser D. M. (2005). Systematics of the genus Sphaerobolus based on molecular and morphological data, with the description of Sphaerobolus ingoldii sp. nov. Mycologia 97 680–694. 10.1080/15572536.2006.11832798 PubMed DOI

Gianinazzi-Pearson V. (1984). “Host-Fungus Specificity, Recognition and Compatibility in Mycorrhizae,” in Genes Involved in Microbe-Plant Interactions. Plant Gene Research (Basic Knowledge and Application), eds Verma D. P. S., Hohn T. (Vienna: Springer-Verlag; ), 225–254.

Gogala N. (1991). Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47 331–340. 10.1007/BF01972074 DOI

Hambleton S., Sigler L. (2005). Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae ( = Hymenoscyphus ericae), Leotimycetes. Stud. Mycol. 53 1–27. 10.3114/sim.53.1.1 DOI

Hill M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54 427–473. 10.2307/1934352 DOI

Hilszczanska D. (2016). Endophytes – characteristics and possibilities of application in forest management. For. Res. Papers 77 276–282. 10.1515/frp-2016-0029 DOI

Hupperts S. F., Karst J., Pritsch K., Landhausser S. M. (2017). Host phenology and potential saprotrophism of ectomycorrhizal fungi in boreal forests. Funct. Ecol. 31 116–126. 10.1111/1365-2435.12695 DOI

Igiehon N. O., Babalola O. O. (2018). Below-ground-above-ground plant-microbial interactions: focusing on soybean, rhizobacteria and mycorrhizal fungi. Open Microbiol. J. 12 261–279. 10.2174/1874285801812010261 PubMed DOI PMC

Ihrmark K., Bödeker I. T., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., et al. (2012). New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82 666–677. 10.1111/j.1574-6941.2012.01437.x PubMed DOI

Jumpponen A. (2001). Dark septate endophytes – are they mycorrhizal? Mycorrhiza 11 207–211. 10.1007/s005720100112 DOI

Jumpponen A., Mattson K. G., Trappe J. M. (1998). Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza 7 261–265. 10.1007/s005720050190 PubMed DOI

Jumpponen A., Trappe J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 140 295–310. 10.1046/j.1469-8137.1998.00265.x PubMed DOI

Kaiser C., Koranda M., Kitzler B., Fuchslueger L., Schnecker J., Schweiger P., et al. (2010). Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187 843–858. 10.1111/j.1469-8137.2010.03321.x PubMed DOI PMC

Katoh K., Asimenos G., Toh H. (2009). “Multiple alignment of DNA sequences with MAFFT,” in Bioinformatics for DNA Sequence Analysis, ed. Posada D. (New Jersey, NJ: Humana Press; ), 39. 10.1007/978-1-59745-251-9_3 PubMed DOI

Kernaghan G., Patriquin G. (2011). Host associations between fungal root endophytes and boreal trees. Microb. Ecol. 62 460–473. 10.1007/s00248-011-9851-6 PubMed DOI

Kõljalg U., Nilsson R. H., Abarenkov K., Tedersoo L., Taylor A. F., Bahram M., et al. (2013). Towards unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22 5271–5277. 10.1111/mec.12481 PubMed DOI

Korkama T., Pakkanen A., Pennanen T. (2006). Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol. 171 815–824. 10.1111/j.1469-8137.2006.01786.x PubMed DOI

Kraigher H. (1996). Types of ectomycorrhizae – their taxonomy, role and application. Acta Silvae et Ligni. 49 33–66.

Kraigher H., Grayling A., Wang T. L., Hanke D. E. (1991). Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochemistry 30 2249–2254. 10.1016/0031-9422(91)83623-S DOI

Kraigher H., Grebenc T., Hanke D. (2008). “Ozone stress and ectomycorrhizal root-shoot signaling,” in Mycorrhiza, ed. Varma A. (Berlin: Springer; ).

Kyaschenko J., Clemmensen K. E., Hagenbo A., Karltun E., Lindahl B. D. (2017). - Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 11 863–874. 10.1038/ismej.2016.184 PubMed DOI PMC

Last F. T., Dighton J., Mason P. A. (1987). Successions of sheathing mycorrhizal fungi. Trends Ecol. Evol. 2 157–161. 10.1016/0169-5347(87)90066-8 PubMed DOI

Lodge D. J., Padamsee M., Matheny P. B., Aime M. C., Cantrell S. A., Boertmann D., et al. (2014). Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fung. Diver 64 1–99. 10.1007/s13225-013-0259-0 DOI

Lukešova T., Kohout P., Vetrovsky T., Vohnik M. (2015). The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLoS One 10:e0124752. 10.1371/journal.pone.0124752 PubMed DOI PMC

Mandyam K., Jumpponen A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud. Mycol. 53 173–189. 10.3114/sim.53.1.173 DOI

Newsham K. K. (1999). Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata spp. ambiqua. New Phytol. 144 517–524. 10.1046/j.1469-8137.1999.00537.x PubMed DOI

Oksanen J. F., Blanchet G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018). vegan: Community Ecology Package. R Package Version 2.4-6. Available at: https://CRAN.R-project.org/package=vegan.

Pena R., Offermann C., Simon J., Neumann P. S., Geßler A., Holst J., et al. (2010). Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl. Environ. Microbiol. 76 1831–1841. 10.1128/AEM.01703-09 PubMed DOI PMC

Peter M., Ayer F., Egli S., Honegger R. (2001). Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can. J. Bot. 79 1134–1151. 10.1139/cjb-79-10-1134 DOI

Porras-Alfaro A., Bayman P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49 291–315. 10.1146/annurev-phyto-080508-081831 PubMed DOI

Porras-Alfaro A., Liu K. L., Kuske C. R., Xie G. (2014). From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl. Environ. Microbiol. 80 829–840. 10.1128/AEM.02894-13 PubMed DOI PMC

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rinaldi A. C., Comandini O., Kuyper T. W. (2008). Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers. 33 1–45.

Rognes T., Flouri T., Nichols B., Quince C., Mahé F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. 10.7717/peerj.2584 PubMed DOI PMC

Rudawska M., Pietras M., Smutek I., Strzelinski P., Leski T. (2016). Ectomycorrhizal fungal assemblages of Abies alba Mill. Outside its native range in Poland. Mycorrhiza 26 57–65. 10.1007/s00572-015-0646-3 PubMed DOI PMC

Sato H., Morimoto S., Hattori T. (2012). A thirty-year survey reveals that ecosystem function of fungi predicts phenology of mushroom fruiting. PLoS One 7:e49777. 10.1371/journal.pone.0049777 PubMed DOI PMC

Sato H., Yumoto T., Murakami N. (2007). Cryptic species and host specificity in the ectomycorrhizal genus Strobilomyces (Strobilomycetaceae). Am. J. Bot. 94 1630–1641. 10.3732/ajb.94.10.1630 PubMed DOI

Sieber T. N. (2007). Endophytic fungi in forest trees. Are they mutualists? Fungal Biol. Rev. 21 75–89. 10.1016/j.fbr.2007.05.004 DOI

Sigler L., Lumley T. C., Currah R. S. (2000). New species and records of saprophytic ascomycetes (Myxotrichaceae) from decaying logs in the boreal forest. Mycoscience 41 495–502. 10.1007/BF02461670 DOI

Simard S. W. (2009). The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. For. Ecol. Manage. 258 S95–S107. 10.1016/j.foreco.2009.05.001 DOI

Smith J. E., Molina R., Huso M. M., Luoma D. L., McKay D., Castellano M. A., et al. (2002). Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the cascade range of oregon, U.S.A. Can. J. Bot. 80 186–204. 10.1139/b02-003 DOI

Smith S. E., Gianinazzi-Pearson V. (1988). Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39 221–244. 10.1146/annurev.pp.39.060188.001253 DOI

Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis, 3 Edn. London: Academic Press.

Taylor D. L., Bruns T. D. (1999). Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol. Ecol. 8 1837–1850. 10.1046/j.1365-294x.1999.00773.x PubMed DOI

Tedersoo L., May T. W., Smith M. E. (2010). Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20 217–263. 10.1007/s00572-009-0274-x PubMed DOI

Toju H., Yamamoto S., Sato H., Tanabe A. S., Gilbert G. S., Kadowaki K. (2013). Community composition of root-associated fungi in a quercus-dominated temperate forests: “codominance” of mycorrhizal and root-endophytic fungi. Ecol. Evol. 3 1281–1293. 10.1002/ece3.546 PubMed DOI PMC

Twieg B. D., Durall D. M., Simard S. W. (2007). Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 176 437–447. 10.1111/j.1469-8137.2007.02173.x PubMed DOI

van der Heijden M. G. A., Martin F. M., Selosse M.-A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: the pas, the present, and the future. New Phytol. 205 1406–1423. 10.1111/nph.13288 PubMed DOI

Varela-Cervero S., Vasar M., Davison J., Barea J. M., Opik M., Azcon-Aguilar C. (2015). The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five mediterranean plant species. Environ. Microbiol. 17 2882–2895. 10.1111/1462-2920.12810 PubMed DOI

Vaz A. B. M., Fonseca P. L. C., Leite L. R., Badotti F., Salim A. C. M., Araujo F. M. G., et al. (2017). Using Next-Generation Sequencing (NGS) to uncover diversity of wood-decaying fungi in neotropical Atlantic forests. Phytotaxa 1 1–21. 10.11646/phytotaxa DOI

Větrovský T., Baldrian P. (2013). Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fertil. Soils 49 1027–1037. 10.1007/s00374-013-0801-y DOI

Voriškova J., Baldrian P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7 477–486. 10.1038/ismej.2012.116 PubMed DOI PMC

Walker J. F., Aldrich-Wolfe L., Riffel A., Barbare H., Simpson N. B., Trowbridge J., et al. (2011). Diverse helotiales associated with the roots of three species of artic ericaceae provide no evidence for host specificity. New Phytol. 191 515–527. 10.1111/j.1469-8137.2011.03703.x PubMed DOI

Wallander H., Johansson U., Sterkenburg E., Brandstrom Durling M., Lindahl B. D. (2010). Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol. 187 1124–1134. 10.1111/j.1469-8137.2010.03324.x PubMed DOI

Wang Y., Naumann U., Wright S. T., Warton D. I. (2012). mvabund –An R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3 471–474. 10.1111/j.2041-210X.2012.00190.x DOI

Wardle D. A., Bardagett R. D., Klironomos J. N., Setala H., van der Putten W. H., Wall D. H. (2004). Ecological linkages between aboveground and belowground biota. Science 304 1629–1633. 10.1126/science.1094875 PubMed DOI

Wazny R. (2014). Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in scots pine forecrops. Ann. For. Sci. 71 801–810. 10.1007/s13595-014-0378-0 DOI

Ważny R., Kowalski S. (2017). Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrops. Trees 31 929–939. 10.1007/s00468-016-1518-y DOI

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag; 10.1007/978-3-319-24277-4 DOI

Železnik P., Hrenko M., Then C., Koch N., Grebenc T., Levanič T., et al. (2007). CASIROZ: root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Plant Biol. 9 298–308. 10.1055/s-2006-955916 PubMed DOI

Železnik P., Vilhar U., Starr M., de Groot M., Kraigher H. (2016). Fine root dynamics in slovenian beech forests in relation to soil temperature and water availability. Trees 30 375–384. 10.1007/s00468-015-1218-z DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...