Characterising Correlations between Electric Conductivity and Structural Features in Rotary Swaged Al/Cu Laminated Conductors
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-15479S
Czech Science Foundation
PubMed
35160946
PubMed Central
PMC8839087
DOI
10.3390/ma15031003
PII: ma15031003
Knihovny.cz E-zdroje
- Klíčová slova
- aluminium, composite, copper, electric properties, microstructure, rotary swaging,
- Publikační typ
- časopisecké články MeSH
This study aims to characterize the correlations between electric characteristics and selected structural features of newly designed Al/Cu laminated conductors manufactured via room temperature rotary swaging. After swaging, the laminates with diameters of 15 mm were subjected to two different post-process annealing treatments. Structure analyses performed to evaluate the effects of thermomechanical processing were performed via scanning and transmission electron microscopies. Electric conductivity and resistivity of the laminates were experimentally measured and numerically simulated using models designed according to the real conditions. The results showed that the electric resistivity was affected by the grain size, bimodal grains' distribution (where observed), the presence of twins, and, last but not least, dislocation density. Among the influencing factors were the area fractions of Al and Cu at the cross-sections of the of the laminated conductors, too. The results revealed that fabrication of the laminate via the technology of rotary swaging introduced more advantageous combinations of electric and mechanical properties than fabrication by conventional manufacturing techniques. The lowest specific electric resistivity of 20.6 Ωm × 10-9 was measured for the laminated conductor subjected to the post-process annealing treatment at 350 °C, which imparted significant structure restoration (confirmed by the presence of fine, equiaxed, randomly oriented grains).
Zobrazit více v PubMed
Velmurugan C., Subramanian R., Thirugnanam S., Anandavel B. Investigation of friction and wear behavior of hybrid aluminium composites. Ind. Lubr. Tribol. 2012;64:152–163. doi: 10.1108/00368791211218687. DOI
Rajesh A.M., Kaleemulla M. Experimental investigations on mechanical behavior of aluminium metal matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 2016;149:012121. doi: 10.1088/1757-899X/149/1/012121. DOI
Mendes R., Ribeiro J.B., Loureiro A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration. Mater. Des. 2013;51:182–192. doi: 10.1016/j.matdes.2013.03.069. DOI
Jamili A.M., Zarei-Hanzaki A., Abedi H.R., Mosayebi M., Kocich R., Kunčická L. Development of fresh and fully recrystallized microstructures through friction stir processing of a rare earth bearing magnesium alloy. Mater. Sci. Eng. A. 2019;775:138837. doi: 10.1016/j.msea.2019.138837. DOI
Shen W., Yu L., Liu H., He Y., Zhou Z., Zhang Q. Diffusion welding of powder metallurgy high speed steel by spark plasma sintering. J. Mater. Process. Technol. 2020;275:116383. doi: 10.1016/j.jmatprotec.2019.116383. DOI
Kunčická L., Král P., Dvořák J., Kocich R. Texture evolution in biocompatible Mg-Y-Re alloy after friction stir processing. Metals. 2019;9:1181. doi: 10.3390/met9111181. DOI
Montufar E.B., Horynová M., Casas-Luna M., Diaz-de-la-Torre S., Celko L., Klakurková L., Spotz Z., Diéguez-Trejo G., Fohlerová Z., Dvořák K., et al. Spark Plasma Sintering of Load-Bearing Iron–Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications. JOM. 2016;684:1134–1142. doi: 10.1007/s11837-015-1806-9. DOI
Lukac P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg alloys prepared by rolling and ECAP. Kov. Mater. 2007;45:115–120.
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ cutting of copper processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Kunčická L., Kocich R., Ryukhtin V., Cullen J.C.T., Lavery N.P. Study of structure of naturally aged aluminium after twist channel angular pressing. Mater. Charact. 2019;152:94–100. doi: 10.1016/j.matchar.2019.03.045. DOI
Kocich R., Kunčická L., Macháčková A. Twist Channel Multi-Angular Pressing (TCMAP) as a method for increasing the efficiency of SPD. IOP Conf. Ser. Mater. Sci. Eng. 2014;63:012006. doi: 10.1088/1757-899X/63/1/012006. DOI
Derakhshan J.F., Parsa M.H., Jafarian H.R. Microstructure and mechanical properties variations of pure aluminum subjected to one pass of ECAP-Conform process. Mater. Sci. Eng. A. 2019;747:120–129. doi: 10.1016/j.msea.2019.01.058. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behaviour. Proc. Met. 2013;22:391–396.
Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 2018;369:012029. doi: 10.1088/1757-899X/369/1/012029. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Zach L., Kunčická L., Růžička P., Kocich R. Design, analysis and verification of a knee joint oncological prosthesis finite element model. Comput. Biol. Med. 2014;54:53–60. doi: 10.1016/j.compbiomed.2014.08.021. PubMed DOI
Lee K.S., Lee S.E., Sung H.K., Lee D.H., Kim J.S., Chang Y.W., Lee S., Kwon Y.N. Influence of reduction ratio on the interface microstructure and mechanical properties of roll-bonded Al/Cu sheets. Mater. Sci. Eng. A. 2013;583:177–181. doi: 10.1016/j.msea.2013.06.077. DOI
Cawthorn C.J., Minton J.J., Brambley E.J. Asymptotic analysis of cold sandwich rolling. Int. J. Mech. Sci. 2016;106:184–193. doi: 10.1016/j.ijmecsci.2015.12.012. DOI
Torres-Rodríguez J., Kalmár J., Menelaou M., Čelko L., Dvořak K., Cihlář J., Cihlař J., Kaiser J., Győri E., Veres P., et al. Heat treatment induced phase transformations in zirconia and yttria-stabilized zirconia monolithic aerogels. J. Supercrit. Fluids. 2019;149:54–63. doi: 10.1016/j.supflu.2019.02.011. DOI
Wu K., Chang H., Maawad E., Gan W.M., Brokmeier H.G., Zheng M.Y. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB) Mater. Sci. Eng. A. 2010;527:3073–3078. doi: 10.1016/j.msea.2010.02.001. DOI
Mozaffari A., Manesh H.D., Janghorban K. Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process. J. Alloys Compd. 2010;489:103–109. doi: 10.1016/j.jallcom.2009.09.022. DOI
Ghalandari L., Mahdavian M.M., Reihanian M., Mahmoudiniya M. Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): A study of microstructure and mechanical properties. Mater. Sci. Eng. A. 2016;661:179–186. doi: 10.1016/j.msea.2016.02.070. DOI
Tayyebi M., Eghbali B. Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding. Mater. Sci. Eng. A. 2013;559:759–764. doi: 10.1016/j.msea.2012.09.021. DOI
Hosseini M., Manesh H.D. Bond strength optimization of Ti/Cu/Ti clad composites produced by roll-bonding. Mater. Des. 2015;81:122–132. doi: 10.1016/j.matdes.2015.05.010. DOI
Mahdavian M.M., Ghalandari L., Reihanian M. Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2013;579:99–107. doi: 10.1016/j.msea.2013.05.002. DOI
Motevalli P.D., Eghbali B. Microstructure and mechanical properties of laminated Al–Cu–Mg composite fabricated by accumulative roll bonding. Bull. Mater. Sci. 2017;40:1481–1488. doi: 10.1007/s12034-017-1504-z. DOI
Kim I.-K., Hong S.I. Roll-Bonded Tri-Layered Mg/Al/Stainless Steel Clad Composites and their Deformation and Fracture Behavior. Metall. Mater. Trans. A. 2013;44:3890–3900. doi: 10.1007/s11661-013-1697-8. DOI
Jafarian H.R., Mahdavian M.M., Shams S.A.A., Eivani A.R. Microstructure analysis and observation of peculiar mechanical properties of Al/Cu/Zn/Ni multi-layered composite produced by Accumulative-Roll-Bonding (ARB) Mater. Sci. Eng. A. 2021;805:140556. doi: 10.1016/j.msea.2020.140556. DOI
Uscinowicz R. Impact of temperature on shear strength of single lap Al–Cu bimetallic joint. Compos. Part B Eng. 2013;44:344–356. doi: 10.1016/j.compositesb.2012.04.073. DOI
Russell A., Lee K.L. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.
Kocich R., Macháčková A., Kunčická L., Fojtík F. Fabrication and characterization of cold-swaged multilayered Al-Cu clad composites. Mater. Des. 2015;71:36–47. doi: 10.1016/j.matdes.2015.01.008. DOI
Kocich R., Kunčická L., Král P., Strunz P. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018;160:160828–160835. doi: 10.1016/j.matdes.2018.10.027. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–146. doi: 10.1016/j.matdes.2017.03.048. DOI
Webster J.G. Electrical Measurement, Signal Processing, and Displays (Principles and Applications in Engineering) 1st ed. CRC Press; Boca Raton, FL, USA: 2003.
Gennesson M., Zollinger J., Daloz D., Rouat B., Demurger J., Combeau H. Three Dimensional Methodology to Characterize Large Dendritic Equiaxed Grains in Industrial Steel Ingots. Materials. 2018;11:1007. doi: 10.3390/ma11061007. PubMed DOI PMC
Toth L.S., Biswas S., Gu C., Beausir B. Notes on representing grain size distributions obtained by electron backscatter diffraction. Mater. Charact. 2013;84:67–71. doi: 10.1016/j.matchar.2013.07.013. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Kocich R., Macháčková A., Kunčická L. Twist channel multi-angular pressing (TCMAP) as a new SPD process: Numerical and experimental study. Mater. Sci. Eng. A. 2014;612:445–455. doi: 10.1016/j.msea.2014.06.079. DOI
Humphreys F.J., Hetherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. Elsevier Ltd.; Oxford, UK: 2004.