Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31578447
PubMed Central
PMC6775232
DOI
10.1038/s41598-019-50779-9
PII: 10.1038/s41598-019-50779-9
Knihovny.cz E-resources
- MeSH
- Chlorocebus aethiops microbiology MeSH
- Cercopithecus microbiology MeSH
- Species Specificity MeSH
- Feces microbiology MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Genetic Association Studies MeSH
- Gorilla gorilla microbiology MeSH
- Host Specificity * MeSH
- Treponemal Infections epidemiology microbiology transmission veterinary MeSH
- Polymorphism, Single Nucleotide MeSH
- Multilocus Sequence Typing MeSH
- Ape Diseases epidemiology microbiology transmission MeSH
- Monkey Diseases epidemiology microbiology transmission MeSH
- Papio anubis microbiology MeSH
- Papio cynocephalus microbiology MeSH
- Treponema classification genetics isolation & purification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Congo epidemiology MeSH
- Tanzania epidemiology MeSH
In our most recent study, we found that in Tanzania infection with Treponema pallidum (TP) subsp. pertenue (TPE) is present in four different monkey species. In order to gain information on the diversity and epidemiological spread of the infection in Tanzanian nonhuman primates (NHP), we identified two suitable candidate genes for multi-locus sequence typing (MLST). We demonstrate the functionality of the MLST system in invasively and non-invasively collected samples. While we were not able to demonstrate frequent interspecies transmission of TPE in Tanzanian monkeys, our results show a clustering of TPE strains according to geography and not host species, which is suggestive for rare transmission events between different NHP species. In addition to the geographic stability, we describe the relative temporal stability of the strains infecting NHPs and identified multi-strain infection. Differences between TPE strains of NHP and human origin are highlighted. Our results show that antibiotic resistance does not occur in Tanzanian TPE strains of NHP origin.
African Parks Odzala Kokoua National Park Brazzaville Republic of the Congo
Biology of Spirochetes Unit Department of Microbiology Institut Pasteur Paris France
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Zoological Sciences Addis Ababa University Addis Ababa Ethiopia
Division of Microbiology and Animal Hygiene University of Goettingen Goettingen Germany
Greater Mahale Ecosystem Research and Conservation Project Dar es Salaam Tanzania
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Jane Goodall Institute Kigoma Tanzania
School of Natural Sciences and Psychology Liverpool John Moores University Liverpool UK
See more in PubMed
Knauf S, et al. Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue. Emerg Microbes Infect. 2018;7:157. doi: 10.1038/s41426-018-0156-4. PubMed DOI PMC
Chuma IS, et al. Widespread Treponema pallidum infection in nonhuman primates, Tanzania. Emerg Infect Dis. 2018;24:1002–1009. doi: 10.3201/eid2406.180037. PubMed DOI PMC
Hallmaier-Wacker LK, Munster VJ, Knauf S. Disease reservoirs: from conceptual frameworks to applicable criteria. Emerg Microbes Infect. 2017;6:e79. doi: 10.1038/emi.2017.65. PubMed DOI PMC
Knauf S, Liu H, Harper KN. Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerg Infect Dis. 2013;19:2058–60. doi: 10.3201/eid1912.130863. PubMed DOI PMC
Peng R, et al. Molecular typing of Treponema pallidum: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2011;5:e1273. doi: 10.1371/journal.pntd.0001273. PubMed DOI PMC
Salado-Rasmussen K, et al. Molecular typing of Treponema pallidum in Denmark: A nationwide study of syphilis. Acta Derm Venereol. 2016;96:202–6. doi: 10.2340/00015555-2190. PubMed DOI
Grange P, et al. Molecular subtyping of Treponema pallidum in Paris, France. Sex Transm Dis. 2013;40:641–4. doi: 10.1097/OLQ.0000000000000006. PubMed DOI
Pope V, et al. Molecular subtyping of Treponema pallidum from North and South Carolina. J Clin Microbiol. 2005;43:3743–3746. doi: 10.1128/JCM.43.8.3743-3746.2005. PubMed DOI PMC
Pillay A, et al. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis. 1998;25:408–414. doi: 10.1097/00007435-199809000-00004. PubMed DOI
Grillová L, et al. Molecular typing of Treponema pallidum in the Czech Republic during 2011 to 2013: increased prevalence of identified genotypes and of isolates with macrolide resistance. J Clin Microbiol. 2014;52:3693–3700. doi: 10.1128/JCM.01292-14. PubMed DOI PMC
Godornes C, Giacani L, Barry A, Mitjà O, Lukehart S. Development of a Multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pertenue: Application to yaws in Lihir Island, Papua New Guinea. PLoS Neglect Trop Dis. 2017;11:e0006113. doi: 10.1371/journal.pntd.0006113. PubMed DOI PMC
Katz SS, et al. Molecular strain typing of the yaws pathogen, Treponema pallidum subspecies pertenue. PLoS ONE. 2018;13:e0203632. doi: 10.1371/journal.pone.0203632. PubMed DOI PMC
Knauf S, et al. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol. 2011;49:292–303. doi: 10.1177/0300985811402839. PubMed DOI
Matějková P, et al. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in the 23S rRNA gene of Treponema pallidum subsp. pallidum. J Med Microbiol. 2009;58:832–836. doi: 10.1099/jmm.0.007542-0. PubMed DOI
Chen C, et al. Detection of the A2058G and A2059G 23S rRNA gene point mutations associated with azithromycin resistance in Treponema pallidum by use of a TaqMan real-time multiplex PCR assay. J Clin Microbiol. 2013;51:908–913. doi: 10.1128/JCM.02770-12. PubMed DOI PMC
Stamm L, Bergen H. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents and Chemother. 2000;44:806–807. doi: 10.1128/AAC.44.3.806-807.2000. PubMed DOI PMC
Lukehart S, et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. N Engl J Med. 2014;351:154–158. doi: 10.1056/NEJMoa040216. PubMed DOI
Bandelt H, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol and Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Nguyen L-TT, Schmidt HA, Haeseler A, von Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol and Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Strouhal M, et al. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis. 2017;11:e0005894. doi: 10.1371/journal.pntd.0005894. PubMed DOI PMC
Grillová L, et al. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PloS ONE. 2018;13:e0200773. doi: 10.1371/journal.pone.0200773. PubMed DOI PMC
Grillová L, et al. Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using anti-treponemal antibodies enrichment: First complete whole genome sequence obtained directly from human clinical material. PLoS ONE. 2018;13:e0202619. doi: 10.1371/journal.pone.0202619. PubMed DOI PMC
Knauf S, et al. Isolation of Treponema DNA from necrophagous flies in a natural ecosystem. EBioMed. 2016;11:85–90. doi: 10.1016/j.ebiom.2016.07.033. PubMed DOI PMC
Zinner, D., Chuma, I. S., Knauf, S. & Roos, C. Inverted intergeneric introgression between critically endangered kipunjis and yellow baboons in two disjunct populations. Biol Lett, 14 (2018). PubMed PMC
Collins, D., Sindimwo, A. & Wallis, P. Reproductive disease of olive baboons (Papio anubis) of Gombe National Park: outbreak, time-course, and attempts to limit recurrence. In: Climate change: challenges and opportunities towards sustainable wildlife conservation and development. 236–248 (Tanzania Wildlife Research Institute, 2011).
Mitjà O, et al. Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet. 2018;391:1599–1607. doi: 10.1016/S0140-6736(18)30204-6. PubMed DOI PMC
Šmajs D, Pospíšilová P. Macrolide resistance in yaws. Lancet. 2018;391:1555–1556. doi: 10.1016/S0140-6736(18)30205-8. PubMed DOI
Turner T, Hollander D. Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957;35:3–266. PubMed
Pětrošová H, et al. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis. 2012;6:e1832. doi: 10.1371/journal.pntd.0001832. PubMed DOI PMC
Grange P, et al. Treponema pallidum 11qj subtype may correspond to a Treponema pallidum subsp. endemicum strain. Sex Transm Dis. 2016;43:517–518. doi: 10.1097/OLQ.0000000000000474. PubMed DOI
Mikalová L, et al. Human Treponema pallidum 11q/j isolate belongs to subsp. endemicum but contains two loci with a sequence in TP0548 and TP0488 similar to subsp. pertenue and subsp. pallidum, respectively. PLoS Negl Trop Dis. 2017;11:e0005434. doi: 10.1371/journal.pntd.0005434. PubMed DOI PMC
Marra C, et al. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis. 2010;202:1380–1388. doi: 10.1086/656533. PubMed DOI PMC
Levrero F, Gatti S, Gauthier-Hion A, Menard N. Yaws disease in a wild gorilla population and its impact on the reproductive status of males. Am J Phys Anthropol. 2007;132:568–575. doi: 10.1002/ajpa.20560. PubMed DOI
Brinkman M, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76:1848–1857. doi: 10.1128/IAI.01424-07. PubMed DOI PMC
Radolf JD, Kumar S. The Treponema pallidum outer membrane. Curr Top Microbiol Immunol. 2018;415:1–38. PubMed PMC
The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis