Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
Grantová podpora
H75 TP000326
OPHPR CDC HHS - United States
PubMed
23029591
PubMed Central
PMC3447947
DOI
10.1371/journal.pntd.0001832
PII: PNTD-D-12-00277
Knihovny.cz E-zdroje
- MeSH
- DNA bakterií chemie genetika MeSH
- frambézie mikrobiologie MeSH
- genom bakteriální * MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- otevřené čtecí rámce MeSH
- rekombinace genetická MeSH
- sekvenční analýza DNA * MeSH
- syfilis mikrobiologie MeSH
- syntenie MeSH
- Treponema pallidum genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Mexiko MeSH
- Názvy látek
- DNA bakterií MeSH
BACKGROUND: Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, and Treponema pallidum ssp. pertenue (TPE), the causative agent of yaws, are closely related spirochetes causing diseases with distinct clinical manifestations. The TPA Mexico A strain was isolated in 1953 from male, with primary syphilis, living in Mexico. Attempts to cultivate TPA Mexico A strain under in vitro conditions have revealed lower growth potential compared to other tested TPA strains. METHODOLOGY/PRINCIPAL FINDINGS: The complete genome sequence of the TPA Mexico A strain was determined using the Illumina sequencing technique. The genome sequence assembly was verified using the whole genome fingerprinting technique and the final sequence was annotated. The genome size of the Mexico A strain was determined to be 1,140,038 bp with 1,035 predicted ORFs. The Mexico A genome sequence was compared to the whole genome sequences of three TPA (Nichols, SS14 and Chicago) and three TPE (CDC-2, Samoa D and Gauthier) strains. No large rearrangements in the Mexico A genome were found and the identified nucleotide changes occurred most frequently in genes encoding putative virulence factors. Nevertheless, the genome of the Mexico A strain, revealed two genes (TPAMA_0326 (tp92) and TPAMA_0488 (mcp2-1)) which combine TPA- and TPE- specific nucleotide sequences. Both genes were found to be under positive selection within TPA strains and also between TPA and TPE strains. CONCLUSIONS/SIGNIFICANCE: The observed mosaic character of the TPAMA_0326 and TPAMA_0488 loci is likely a result of inter-strain recombination between TPA and TPE strains during simultaneous infection of a single host suggesting horizontal gene transfer between treponemal subspecies.
Zobrazit více v PubMed
Schaudin FR, Hoffmann E (1905) Vorläufiger Bericht über das Vorkommen von Spirochaeten in syphilitischen Krankheitsprodukten und bei Papillomen. Arb K Gesund 22: 527–534. PubMed
Castellani A (1905) Further Observations on Parangi (Yaws). Br Med J 2: 1330–1331. PubMed PMC
World Health Organization (1998) The world health report - Life in the 21st Century: A vision for all.
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, et al. (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281: 375–388. PubMed
Matejkova P, Strouhal M, Smajs D, Norris SJ, Palzkill T, et al. (2008) Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 8: 76. PubMed PMC
Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA, et al. (2010) Complete genome sequence and annotation of the Treponema pallidum subsp. pallidum Chicago strain. J Bacteriol 192: 2645–2646. PubMed PMC
Cejkova D, Zobanikova M, Chen L, Pospisilova P, Strouhal M, et al. (2012) Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence. PLoS Negl Trop Dis 6: e1471. PubMed PMC
Smajs D, Zobanikova M, Strouhal M, Cejkova D, Dugan-Rocha S, et al. (2011) Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS One 6: e20415. PubMed PMC
Mikalova L, Strouhal M, Cejkova D, Zobanikova M, Pospisilova P, et al. (2010) Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS One 5: e15713. PubMed PMC
Smajs D, Norris SJ, Weinstock GM (2012) Genetic diversity in Treponema pallidum: Implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol PubMed PMC
Centurion-Lara A, Sun ES, Barrett LK, Castro C, Lukehart SA, et al. (2000) Multiple alleles of Treponema pallidum repeat gene D in Treponema pallidum isolates. J Bacteriol 182: 2332–2335. PubMed PMC
Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, et al. (2006) Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol 23: 2220–2233. PubMed
Turner TB, Hollander DH (1957) Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ 3–266. PubMed
Cox DL, Moeckli RA, Fieldsteel AH (1984) Cultivation of pathogenic treponema in tissue cultures of SflEp cells. In Vitro 20: 879–883. PubMed
Strouhal M, Smajs D, Matejkova P, Sodergren E, Amin AG, et al. (2007) Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun 75: 5859–5866. PubMed PMC
Weinstock GM, Norris SJ, Sodergren E, Smajs D (2000) Identification of virulence genes in silico: Infection disease genomics. Virulence mechanisms of Bacterial Pathogens 378.
Garcia-Vallve S, Romeu A, Palau J (2000) Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Res 10: 1719–1725. PubMed PMC
Smajs D, Mikalova L, Cejkova D, Strouhal M, Zobanikova M, et al.. (2011) Whole Genome Analyses of Treponemes: New Targets for Strain- and Subspecies-Specific Molecular Diagnostics. In: Sato NS, editor. Syphilis - Recognition, Description and Diagnosis: InTech. pp. 130.
Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, et al. (2008) On the origin of the treponematoses: a phylogenetic approach. PLoS Negl Trop Dis 2: e148. PubMed PMC
Wang GC, Wang Y (1996) The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 142 (Pt 5) 1107–1114. PubMed
Flasarova M, Pospisilova P, Mikalova L, Valisova Z, Dastychova E, et al. (2012) Sequencing-based Molecular Typing of Treponema pallidum Strains in the Czech Republic: All Identified Genotypes are Related to the Sequence of the SS14 Strain. Acta Derm Venereol PubMed
Smith JM, Dowson CG, Spratt BG (1991) Localized sex in bacteria. Nature 349: 29–31. PubMed
Feavers IM, Heath AB, Bygraves JA, Maiden MC (1992) Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Mol Microbiol 6: 489–495. PubMed
Kulick S, Moccia C, Didelot X, Falush D, Kraft C, et al. (2008) Mosaic DNA imports with interspersions of recipient sequence after natural transformation of Helicobacter pylori. PLoS One 3: e3797. PubMed PMC
Abastado JP, Cami B, Dinh TH, Igolen J, Kourilsky P (1984) Processing of complex heteroduplexes in Escherichia coli and Cos-1 monkey cells. Proc Natl Acad Sci U S A 81: 5792–5796. PubMed PMC
Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, et al. (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol 52: 1579–1596. PubMed
Kobayashi I (1992) Mechanisms for gene conversion and homologous recombination: the double-strand break repair model and the successive half crossing-over model. Adv Biophys 28: 81–133. PubMed
Seshadri R, Myers GS, Tettelin H, Eisen JA, Heidelberg JF, et al. (2004) Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 101: 5646–5651. PubMed PMC
Walker EM, Arnett JK, Heath JD, Norris SJ (1991) Treponema pallidum subsp. pallidum has a single, circular chromosome with a size of approximately 900 kilobase pairs. Infect Immun 59: 2476–2479. PubMed PMC
Kuramitsu HK, Chi B, Ikegami A (2005) Genetic manipulation of Treponema denticola. Curr Protoc Microbiol Chapter 12: Unit 12B 12. PubMed
Hyde JA, Weening EH, Skare JT (2011) Genetic transformation of Borrelia burgdorferi. Curr Protoc Microbiol Chapter 12: Unit 12C 14. PubMed PMC
Tilly K, Elias AF, Bono JL, Stewart P, Rosa P (2000) DNA exchange and insertional inactivation in spirochetes. J Mol Microbiol Biotechnol 2: 433–442. PubMed
Miller JN (1973) Immunity in experimental syphilis. VI. Successful vaccination of rabbits with Treponema pallidum, Nichols strain, attenuated by -irradiation. J Immunol 110: 1206–1215. PubMed
Chan JK, Schell RF, Le Frock JL (1982) Mitogenic responses of hamsters infected with Treponema pertenue Lack of correlation with passive transfer of resistance. Br J Vener Dis 58: 292–297. PubMed PMC
Centurion-Lara A, Castro C, Castillo R, Shaffer JM, Van Voorhis WC, et al. (1998) The flanking region sequences of the 15-kDa lipoprotein gene differentiate pathogenic treponemes. J Infect Dis 177: 1036–1040. PubMed
Cameron CE, Castro C, Lukehart SA, Van Voorhis WC (1999) Sequence conservation of glycerophosphodiester phosphodiesterase among Treponema pallidum strains. Infect Immun 67: 3168–3170. PubMed PMC
Mansilla J, Rothschild BM, Pijoan C, Rothchild C (2000) Transitions among treponematoses in ancient Mexico. Chungará (Arica) 32.
de Melo FL, de Mello JC, Fraga AM, Nunes K, Eggers S (2010) Syphilis at the crossroad of phylogenetics and paleopathology. PLoS Negl Trop Dis 4: e575. PubMed PMC
Perine PL, Hopkins DR, Niemel PLA, St John RK, Causse G, et al.. (1984) Handbook of endemic treponematoses. Geneva: World Health Organization.
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, et al. (2010) Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78: 5178–5194. PubMed PMC
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, et al. (2011) TP0326, a Treponema pallidum beta-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80: 1496–1515. PubMed PMC
Van Voorhis WC, Barrett LK, Lukehart SA, Schmidt B, Schriefer M, et al. (2003) Serodiagnosis of syphilis: antibodies to recombinant Tp0453, Tp92, and Gpd proteins are sensitive and specific indicators of infection by Treponema pallidum. J Clin Microbiol 41: 3668–3674. PubMed PMC
Brinkman MB, McKevitt M, McLoughlin M, Perez C, Howell J, et al. (2006) Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J Clin Microbiol 44: 888–891. PubMed PMC
Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, et al. (2000) Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis 181: 1401–1413. PubMed
Greene SR, Stamm LV (1998) Molecular characterization of Treponema pallidum mcp2, a putative chemotaxis protein gene. Infect Immun 66: 2999–3002. PubMed PMC
Smajs D, McKevitt M, Howell JK, Norris SJ, Cai WW, et al. (2005) Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J Bacteriol 187: 1866–1874. PubMed PMC
Anantharaman V, Aravind L (2000) Cache - a signaling domain common to animal Ca(2+)-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci 25: 535–537. PubMed
Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, et al. (2012) TprC/D (Tp0117/131), a Trimeric, Pore-Forming Rare Outer Membrane Protein of Treponema pallidum, Has a Bipartite Domain Structure. J Bacteriol 194: 2321–2333. PubMed PMC
Morgan CA, Lukehart SA, Van Voorhis WC (2002) Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun 70: 6811–6816. PubMed PMC
Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum
Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen
GENBANK
AE000520, CP000805, CP001752, CP002103, CP002374, CP002375, CP002376, CP003064, EU101896, EU101902, EU101910, EU101922, EU102075, EU102088, EU102098, EU102160, EU102170, JX392330, JX392331