Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
R01 DA013759
NIDA NIH HHS - United States
U54 HG003273
NHGRI NIH HHS - United States
R01 AI49252
NIAID NIH HHS - United States
R03 AI069107
NIAID NIH HHS - United States
R01 DE12488
NIDCR NIH HHS - United States
R01 DE13759
NIDCR NIH HHS - United States
R01 EY013759
NEI NIH HHS - United States
R03 AI69107
NIAID NIH HHS - United States
R01 AI049252
NIAID NIH HHS - United States
PubMed
22292095
PubMed Central
PMC3265458
DOI
10.1371/journal.pntd.0001471
PII: PNTD-D-11-00815
Knihovny.cz E-zdroje
- MeSH
- DNA bakterií chemie genetika MeSH
- frambézie mikrobiologie MeSH
- genetická variace MeSH
- genom bakteriální * MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- pořadí genů MeSH
- sekvenční analýza DNA MeSH
- syfilis mikrobiologie MeSH
- syntenie MeSH
- Treponema pallidum genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- DNA bakterií MeSH
BACKGROUND: The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents. METHODOLOGY/PRINCIPAL FINDINGS: To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (d(A)) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function. CONCLUSIONS/SIGNIFICANCE: Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics.
Zobrazit více v PubMed
Castellani A. Further observations on parangi (Yaws). Brit Med Jour. 1905;1905:1330–1331. PubMed PMC
Schaudin FR, Hoffmann E. Vorläufiger Bericht über das Vorkommen von Spirochäten in syphilitischen Krandkheitprodukten und bei Papillomen. Arb K Gesund. 1905;22:527–534.
World Health Organization. The world health report 1998 - Life in the 21st century: A vision for all. Geneva: World Health Organization; 1998. 132
Guthe T. The treponematoses as a world problem. Br J Vener Dis. 1960;36:67–77. PubMed PMC
Antal GM, Causse G. The control of endemic treponematoses. Rev Infect Dis. 1985;7:S220–S226. PubMed
World Health Assembly. Control of endemic treponematoses. World Health Assembly Resolution WHA 31.58. Geneva: World Health Organisation; 1978.
Asiedu K, Amouzou B, Dhariwal A, Karam M, Lobo D, et al. Yaws eradication: past efforts and future perspective. Bull World Health Organ. 2008;86:499–499A. PubMed PMC
Thornburg RW, Baseman JB. Comparison of major protein antigens and protein profiles of Treponema pallidum and Treponema pertenue. Infect Immun. 1983;42:623–627. PubMed PMC
Norris SJ, Cox DL, Weinstock GM. Biology of Treponema pallidum: Correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol. 2001;3:37–62. PubMed
Miao RM, Fieldsteel AH. Genetic relationship between Treponema pallidum and Treponema pertenue, two noncultivable human pathogens. J Bacteriol. 1980;141:427–429. PubMed PMC
Smibert RM. Genus III: Treponema Schaudinn 1905, 1728AL. In: Kreig NR, Holt JG, editors. Bergey's manual of systematic bacteriology. Baltimore: The Williams and Wilkins Co; 1984. pp. 49–57.
Noordhoek GT, Hermans PWM, Paul AN, Schouls LM, Vandersluis JJ, et al. Treponema pallidum subspecies pallidum (Nichols) and Treponema pallidum subspecies pertenue (CDC 2575) differ in at least one nucleotide: comparison of two homologous antigens. Microb Pathogenesis. 1989;6:29–42. PubMed
Noordhoek GT, Wieles B, Vandersluis JJ, Vanembden JDA. Polymerase chain reaction and synthetic DNA probes: a means of distinguishing the causative agents of syphilis and yaws? Infect Immun. 1990;58:2011–2013. PubMed PMC
Walker EM, Howell JK, You Y, Hoffmaster AR, Heath JD, et al. Physical map of the genome of Treponema pallidum subsp. pallidum (Nichols). J Bacteriol. 1995;177:1797–1804. PubMed PMC
Centurion-Lara A, Castro C, Castillo R, Shaffer JM, Van Voorhis WC, et al. The flanking region sequences of the 15-kDa lipoprotein gene differentiate pathogenic treponemes. J Infect Dis. 1998;177:1036–1040. PubMed
Cameron CE, Centurion-Lara A, Barrett LK, Castro CD, Lukehart SA, et al. Progress in vaccine candidates for syphilis. J Invest Med. 1999;47:75A–75A.
Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, et al. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis. 2000;181:1401–1413. PubMed
Centurion-Lara A, Molini BJ, Godornes C, Sun E, Hevner K, et al. Molecular differentiation of Treponema pallidum subspecies. J Clin Microbiol. 2006;44:3377–3380. PubMed PMC
Mikalová L, Strouhal M, Čejková D, Zobaníková M, Pospíšilová P, et al. Genome analysis of Treponema pallidum subsp pallidum and subsp pertenue strains: Most of the genetic differences are localized in six regions. PLoS ONE. 2010;5:e15713. PubMed PMC
Roman GC, Roman LN. Occurrence of congenital, cardiovascular,visceral, neurologic, and neuro-ophthalmologic complications in late yaws: A theme for future research. Rev Infect Dis. 1986;8:760–770. PubMed
Mulligan CJ, Norris SJ, Lukehart SA. Molecular studies in Treponema pallidum evolution: Toward Clarity? PLoS Negl Trop Dis. 2008;2:e184. PubMed PMC
Baseman JB, Nichols JC, Rumpp JW, Hayes NS. Purification of Treponema pallidum from infected rabbit tissue - resolution into two treponemal populations. Infect Immun. 1974;10:1062–1067. PubMed PMC
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science. 1998;281:375–388. PubMed
Albert TJ, Dailidiene D, Dailide G, Norton JE, Kalia A, et al. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nature Methods. 2005;2:951–953. PubMed
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–380. PubMed PMC
Bennett S. Solexa Ltd. Pharmacogenomics. 2004;5:433–438. PubMed
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–829. PubMed PMC
Strouhal M, Šmajs D, Matějková P, Sodergren E, Amin AG, et al. Genome differences between Treponema pallidum subsp pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun. 2007;75:5859–5866. PubMed PMC
Matějková P, Strouhal M, Šmajs D, Norris SJ, Palzkill T, et al. Complete genome sequence of Treponema pallidum ssp pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol. 2008;8:76. PubMed PMC
Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA. A “double adaptor” method for improved shotgun library construction. Anal Biochem. 1996;236:107–113. PubMed
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Šmajs D, Zobaníková M, Strouhal M, Čejková D, Dugan-Rocha S, et al. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: The loss of infectivity to humans is associated with genome decay. PLoS ONE. 2011;6:e20415. PubMed PMC
Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 1998;26:1107–1115. PubMed PMC
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27:4636–4641. PubMed PMC
McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, et al. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol. 2004;186:5842–5855. PubMed PMC
Highlander SK, Hulten KG, Qin X, Jiang H, Yerrapragada S, et al. Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol. 2007;7:99. PubMed PMC
Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. PubMed PMC
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. PubMed PMC
Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, et al. Rfam: updates to the RNA families database. Nucleic Acids Res. 2009;37:D136–D140. PubMed PMC
Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2010;38:D5–D16. PubMed PMC
Gioia J, Yerrapragada S, Qin X, Jiang HY, Igboeli OC, et al. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. PLoS ONE. 2007;2:e928. PubMed PMC
Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 1998;26:544–548. PubMed PMC
Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA, et al. Complete genome sequence and annotation of the Treponema pallidum subsp pallidum Chicago strain. J Bacteriol. 2010;192:2645–2646. PubMed PMC
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. PubMed
Preacher KJ. Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence. 2001. Available from http://quantpsy.org.
Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford: Oxford University Press; 2000. 333
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599. PubMed
Martin DP, Lemey P, Lott M, Moulton V, Posada D, et al. RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics. 2010;26:2462–2463. PubMed PMC
Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–225. PubMed
Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–129. PubMed
Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc Natl Acad Sci U S A. 2001;98:13757–13762. PubMed PMC
Titz B, Rajagopala SV, Goll J, Hauser R, McKevitt MT, et al. The binary protein interactome of Treponema pallidum - the syphilis spirochete. PLoS ONE. 2008;3:e2292. PubMed PMC
McKevitt M, Brinkman MB, McLoughlin M, Perez C, Howell JK, et al. Genome scale identification of Treponema pallidum antigens. Infect Immun. 2005;73:4445–4450. PubMed PMC
Setubal JC, Reis M, Matsunaga J, Haake DA. Lipoprotein computational prediction in spirochaetal genomes. Microbiology. 2006;152:113–121. PubMed PMC
Gray RR, Mulligan CJ, Molini BJ, Sun EE, Giacani L, et al. Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus treponema. Mol Biol Evol. 2006;23:2220–2233. PubMed
LaFond RE, Centurion-Lara A, Godornes C, Rompalo AM, Van Voorhis WC, et al. Sequence diversity of Treponema pallidum subsp pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol. 2003;185:6262–6268. PubMed PMC
Šmajs D, McKevitt M, Howell JK, Norris SJ, Cai WW, et al. Transcriptome of Treponema pallidum: Gene expression profile during experimental rabbit infection. J Bacteriol. 2005;187:1866–1874. PubMed PMC
Weinstock GM, Norris SJ, Sodergren E, Šmajs D. Identification of virulence genes in silico: infectious disease genomics. In: Brogden KA, et al., editors. Virulence Mechanisms of Bacterial Pathogens. 3rd ed. Washington, DC: American Society for Microbiology Press; 2000. pp. 251–261.
McKevitt M, Patel K, Smajs D, Marsh M, McLoughlin M, et al. Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome Res. 2003;13:1665–1674. PubMed PMC
Weinstock GM, Šmajs D, Hardham J, Norris SJ. From microbial genome sequence to applications. Res Microbiol. 2000;151:151–158. PubMed
Šmajs D, McKevitt M, Wang L, Howell JK, Norris SJ, et al. BAC library of T. pallidum DNA in E. coli. Genome Res. 2002;12:515–522. PubMed PMC
Turner TB, Hollander DH. Biology of the treponematoses based on studies carried out at the International Treponematosis Laboratory Center of the Johns Hopkins University under the auspices of the World Health Organization. Monogr Ser World Health Organ. 1957;35:3–266. PubMed
Liska SL, Perine PL, Hunter EF, Crawford JA, Feeley JC. Isolation and transportation of Treponema pertenue in golden hamsters. Curr Microbiol. 1982;7:41–43.
Gastinel P, Vaisman A, Hamelin A, Dunoyer F. [Study of a recently isolated strain of Treponema pertenue.]. Ann Dermatol Syphiligr (Paris) 1963;90:155–161. PubMed
Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci. 2006;361:1929–1940. PubMed PMC
Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, et al. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol. 2008;53:322–332. PubMed
Fribourg-Blanc A, Niel G, Mollaret HH. [Note of Some Imunological Aspects of the African Cynocephalus. 1. Antigenic Relationship of Its Gamma Globulin with Human Gamma Globulin. 2. Guinean Endemic Focus of Treponematosis.]. Bull Soc Pathol Exot Filiales. 1963;56:474–485. PubMed
Smith JL, David NJ, Indgin S, Israel CW, Levine BM, et al. Neuro-ophthalmological study of late yaws and pinta. II. The Caracas project. Br J Vener Dis. 1971;47:226–251. PubMed PMC
Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Microbes Infect. 2002;4:83–94. PubMed
Cullen TW, Trent MS. A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc Natl Acad Sci U S A. 2010;107:5160–5165. PubMed PMC
Giacani L, Sun ES, Hevner K, Molini BJ, Van Voorhis WC, et al. Tpr homologs in Treponema paraluiscuniculi Cuniculi A strain. Infect Immun. 2004;72:6561–6576. PubMed PMC
Centurion-Lara A, Castro C, Barrett LK, Cameron C, Mostowfi M, et al. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med. 1999;189:647–656. PubMed PMC
Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun. 2000;68:824–831. PubMed PMC
Centurion-Lara A, Sun ES, Barrett LK, Castro C, Lukehart SA, et al. Multiple alleles of Treponema pallidum repeat gene D in Treponema pallidum isolates. J Bacteriol. 2000;182:2332–2335. PubMed PMC
Centurion-Lara A, LaFond RE, Hevner K, Godornes C, Molini BJ, et al. Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol. 2004;52:1579–1596. PubMed
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun. 2010;78:5178–5194. PubMed PMC
Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejkova P, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76:1848–1857. PubMed PMC
Van Voorhis WC, Barrett LK, Lukehart SA, Schmidt B, Schriefer M, et al. Serodiagnosis of syphilis: Antibodies to recombinant Tp0453, Tp92, and Gpd proteins are sensitive and specific indicators of infection by Treponema pallidum. J Clin Microbiol. 2003;41:3668–3674. PubMed PMC
Jun HK, Kang YM, Lee HR, Lee SH, Choi BK. Highly conserved surface proteins of and potent inducers of proinflammatory oral spirochetes as adhesins and osteoclastogenic factors. Infect Immun. 2008;76:2428–2438. PubMed PMC
Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, et al. Molecular subtyping of Treponema pallidum subspecies pallidum. Sex Transm Dis. 1998;25:408–414. PubMed
Liu H, Rodes B, George R, Steiner B. Molecular characterization and analysis of a gene encoding the acidic repeat protein (Arp) of Treponema pallidum. J Med Microbiol. 2007;56:715–721. PubMed
Citti C, Kim MF, Wise KS. Elongated versions of Vlp surface lipoproteins protect Mycoplasma hyorhinis escape variants from growth-inhibiting host antibodies. Infect Immun. 1997;65:1773–1785. PubMed PMC
Coil DA, Vandersmissen L, Ginevra C, Jarraud S, Lammertyn E, et al. Intragenic tandem repeat variation between Legionella pneumophila strains. BMC Microbiol. 2008;8:218. PubMed PMC
Julvez J, Michault A, Kerdelhue V. Serologic studies of non-venereal treponematoses in infants in Niamey, Niger. Med Trop (Mars) 1998;58:38–40. PubMed
Wilson J, Mauger DG. Syphilis in pregnancy supervening on yaws: case report. N Z Med J. 1973;77:384–388. PubMed
Evolutionary Processes in the Emergence and Recent Spread of the Syphilis Agent, Treponema pallidum
Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen