Proteome Analysis of Seven Treponema pallidum subsp. pallidum Strains Grown In Vitro
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
U19 AI144177
NIAID NIH HHS - United States
PubMed
41070961
PubMed Central
PMC12687308
DOI
10.1021/acs.jproteome.5c00624
Knihovny.cz E-zdroje
- Klíčová slova
- Treponema pallidum, Treponema pallidum subsp. pallidum, in vitro, proteome, syphilis,
- MeSH
- algoritmy MeSH
- anotace sekvence MeSH
- bakteriální proteiny * genetika analýza metabolismus MeSH
- chromatografie kapalinová MeSH
- otevřené čtecí rámce MeSH
- proteom * genetika analýza MeSH
- proteomika metody MeSH
- tandemová hmotnostní spektrometrie MeSH
- Treponema pallidum * genetika růst a vývoj metabolismus chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- proteom * MeSH
Treponema pallidum subsp. pallidum (T. pallidum), the fastidious causative agent of syphilis, has become more accessible for research with its recently developed in vitro cultivation method. In this work, the proteomes of seven T. pallidum strains (Nichols-like: DAL-1, Haiti B, and Madras; SS14-like: SS14, Mexico A, Philadelphia 1, and Grady), cultivated in vitro, were analyzed in biological triplicates by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The MS/MS data were processed against their corresponding genomes using various annotation algorithms (DFAST, PGAP, Prodigal, Prokka, RAST, GeneMarkS, and manual GenBank annotation). Additionally, ORFfinder was used to predict all ORFs encoding polypeptides exceeding 50 amino acids. While the RAST algorithm predicted the highest number of genes per genome, GeneMarkS offered the best coverage of annotated genes (up to 88.9%). By combining annotations from seven T. pallidum strains, we identified 911 unique treponemal proteins (74.9% of 1216 predicted sequences). The confidence of protein identifications was high, with 85.5% identified by two or more peptides and 72.4% by three or more peptides. Overall, 51 proteins showed statistically significant quantitative differences in intensity across T. pallidum strains. Furthermore, our proteome analysis revealed detectable quantitative proteomic differences between strains in the Nichols-like and SS14-like groups.
Zobrazit více v PubMed
Newman L., Rowley J., Vander Hoorn S., Wijesooriya N. S., Unemo M., Low N., Stevens G., Gottlieb S., Kiarie J., Temmerman M.. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10(12):e0143304. doi: 10.1371/journal.pone.0143304. PubMed DOI PMC
Peeling R., Mabey D., Kamb M., Chen X., Radolf J. D., Benzaken A.. Syphilis. Nat. Rev. Dis. Prim. 2017;3:e17073. doi: 10.1038/nrdp.2017.73. PubMed DOI PMC
McGill M. A., Edmondson D. G., Carroll J. A., Cook R. G., Orkiszewski R. S., Norris S. J.. Characterization and serologic analysis of the Treponema pallidum proteome. Infect. Immun. 2010;78(6):2631–2643. doi: 10.1128/IAI.00173-10. PubMed DOI PMC
Osbak K. K., Houston S., Lithgow K. V., Meehan C. J., Strouhal M., Šmajs D., Cameron C. E., Van Ostade X., Kenyon C. R., Van Raemdonck G. A.. Characterizing the syphilis-causing Treponema pallidum ssp. pallidum proteome using complementary mass spectrometry. PLoS Negl. Trop. Dis. 2016;10(9):e0004988. doi: 10.1371/journal.pntd.0004988. PubMed DOI PMC
Houston S., Gomez A., Geppert A., Eshghi A., Smith D. S., Waugh S., Hardie D. B., Goodlett D. R., Cameron C. E.. Deep proteome coverage advances knowledge of Treponema pallidum protein expression profiles during infection. Sci. Rep. 2023;13(1):e18259. doi: 10.1038/s41598-023-45219-8. PubMed DOI PMC
Houston S., Gomez A., Geppert A., Goodyear M. C., Cameron C. E.. In-depth proteome coverage of in vitro-cultured Treponema pallidum and quantitative comparison analyses with in vivo-grown treponemes. J. Proteome Res. 2024;23(5):1725–1743. doi: 10.1021/acs.jproteome.3c00891. PubMed DOI PMC
Houston S., Marshall S., Gomez A., Cameron C. E.. Proteomic analysis of the Treponema pallidum subsp. pallidum SS14 strain: Coverage and comparison with the Nichols strain proteome. Front. Microbiol. 2024;15:e1505893. doi: 10.3389/fmicb.2024.1505893. PubMed DOI PMC
Edmondson D. G., Hu B., Norris S. J.. Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. pallidum . MBio. 2018;9(3):e01153-18. doi: 10.1128/mBio.01153-18. PubMed DOI PMC
Nechvátal L., Pětrošová H., Grillová L., Pospíšilová P., Mikalová L., Strnadel R., Kuklová I., Kojanová M., Kreidlová M., Vaňousová D., Procházka P., Zákoucká H., Krchňáková A., Šmajs D.. Syphilis-causing strains belong to separate SS14-like or Nichols-like groups as defined by multilocus analysis of 19 Treponema pallidum strains. Int. J. Med. Microbiol. 2014;304(5–6):645–653. doi: 10.1016/j.ijmm.2014.04.007. PubMed DOI
Pětrošová H., Pospíšilová P., Strouhal M., Čejková D., Zobaníková M., Mikalová L., Sodergren E., Weinstock G. M., Šmajs D.. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: Correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8(9):e74319. doi: 10.1371/journal.pone.0074319. PubMed DOI PMC
Arora N., Schuenemann V. J., Jäger G., Peltzer A., Seitz A., Herbig A., Strouhal M., Grillová L., Sánchez-Busó L., Kühnert D., Bos K. I., Davis L. R., Mikalová L., Bruisten S., Komericki P., French P., Grant P. R., Pando M. A., Vaulet L. G., Fermepin M. R., Martinez A., Centurion Lara A., Giacani L., Norris S. J., Šmajs D., Bosshard P. P., González-Candelas F., Nieselt K., Krause J., Bagheri H. C.. Origin of modern syphilis and emergence of a pandemic Treponema pallidum cluster. Nat. Microbiol. 2017;2:e16245. doi: 10.1038/nmicrobiol.2016.245. PubMed DOI
Šmajs D., Mikalová L., Strouhal M., Grillová L.. Why there are two genetically distinct syphilis-causing strains? Forum Immun Dis Ther. 2016;7(3–4):181–190. doi: 10.1615/ForumImmunDisTher.2017020184. DOI
Šmajs D., Strouhal M., Knauf S.. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018;61:92–107. doi: 10.1016/j.meegid.2018.03.015. PubMed DOI
Bosák J., Mikalová L., Hrala M., Pospíšilová P., Faldyna M., Šmajs D.. Treponema pallidum subsp. pallidum strains DAL-1 and Philadelphia 1 differ in generation times in vitro as well as during experimental rabbit infection. PLoS One. 2024;19(5):e0304033. doi: 10.1371/journal.pone.0304033. PubMed DOI PMC
Edmondson D. G., Norris S. J.. In vitro cultivation of the syphilis spirochete Treponema pallidum . Curr. Protoc. 2021;1(2):e44. doi: 10.1002/cpz1.44. PubMed DOI PMC
Wiśniewski J. R., Ostasiewicz P., Mann M.. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011;10(7):3040–3049. doi: 10.1021/pr200019m. PubMed DOI
Yeung Y. G., Nieves E., Angeletti R. H., Stanley E. R.. Removal of detergents from protein digests for Mass spectrometry analysis. Anal. Biochem. 2008;382(2):135–137. doi: 10.1016/j.ab.2008.07.034. PubMed DOI PMC
Martinková P., Konečná H., Gintar P., Kryštofová K., Potěšil D., Trtílek M., Zdráhal Z.. Benchmarking of two peptide clean-up protocols: SP2 and ethyl acetate extraction for sodium dodecyl sulfate or polyethylene glycol removal from plant samples before LC-MS/MS. Int. J. Mol. Sci. 2023;24(24):No. e17347. doi: 10.3390/ijms242417347. PubMed DOI PMC
Demichev V., Messner C. B., Vernardis S. I., Lilley K. S., Ralser M.. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods. 2020;17(1):41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC
Perez-Riverol Y., Bandla C., Kundu D. J., Kamatchinathan S., Bai J., Hewapathirana S., John N. S., Prakash A., Walzer M., Wang S., Vizcaíno J. A.. The PRIDE database at 20 years: 2025 Update. Nucleic Acids Res. 2025;53(D1):D543–D553. doi: 10.1093/nar/gkae1011. PubMed DOI PMC
Tanizawa Y., Fujisawa T., Nakamura Y.. DFAST: A flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics. 2018;34(6):1037–1039. doi: 10.1093/bioinformatics/btx713. PubMed DOI PMC
Li W., O’Neill K. R., Haft D. H., Dicuccio M., Chetvernin V., Badretdin A., Coulouris G., Chitsaz F., Derbyshire M. K., Durkin A. S., Gonzales N. R., Gwadz M., Lanczycki C. J., Song J. S., Thanki N., Wang J., Yamashita R. A., Yang M., Zheng C., Marchler-Bauer A., Thibaud-Nissen F.. RefSeq: Expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res. 2021;49(D1):D1020–D1028. doi: 10.1093/nar/gkaa1105. PubMed DOI PMC
Hyatt D., Chen G. L., LoCascio P. F., Land M. L., Larimer F. W., Hauser L. J.. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:e119. doi: 10.1186/1471-2105-11-119. PubMed DOI PMC
Seemann T.. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics. 2014;30(14):2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Brettin T., Davis J. J., Disz T., Edwards R. A., Gerdes S., Olsen G. J., Olson R., Overbeek R., Parrello B., Pusch G. D., Shukla M., Thomason J. A., Stevens R., Vonstein V., Wattam A. R., Xia F.. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015;5:e8365. doi: 10.1038/srep08365. PubMed DOI PMC
Lomsadze A., Gemayel K., Tang S., Borodovsky M.. Modeling Leaderless Transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Res. 2018;28(7):1079–1089. doi: 10.1101/gr.230615.117. PubMed DOI PMC
Wheeler D. L., Church D. M., Edgar R., Federhen S., Helmberg W., Madden T. L., Pontius J. U., Schuler G. D., Schriml L. M., Sequeira E., Suzek T. O., Tatusova T. A., Wagner L.. Database resources of the National Center for Biotechnology Information: Update. Nucleic Acids Res. 2004;32(suppl_1):D35–D40. doi: 10.1093/NAR/GKH073. PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L.. BLAST+: Architecture and applications. BMC Bioinformatics. 2009;10:e421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Fraser C. M., Norris S. J., Weinstock G. M., White O., Sutton G. G., Dodson R., Gwinn M., Hickey E. K., Clayton R., Ketchum K. A., Sodergren E., Hardham J. M., McLeod M. P., Salzberg S., Peterson J., Khalak H., Richardson D., Howell J. K., Chidambaram M., Utterback T., McDonald L., Artiach P., Bowman C., Cotton M. D., Fujii C., Garland S., Hatch B., Horst K., Roberts K., Sandusky M., Weidman J., Smith H. O., Venter J. C.. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science (80-.). 1998;281(5375):375–388. doi: 10.1126/science.281.5375.375. PubMed DOI
Zobaníková M., Mikolka P., Čejková D., Pospíšilová P., Chen L., Strouhal M., Qin X., Weinstock G. M., Šmajs D.. Complete genome sequence of Treponema pallidum strain DAL-1. Stand. Genomic Sci. 2012;7(1):12–21. doi: 10.4056/sigs.2615838. PubMed DOI PMC
Grillová L., Oppelt J., Mikalová L., Nováková M., Giacani L., Niesnerová A., Noda A. A., Mechaly A. E., Pospíšilová P., Čejková D., Grange P. A., Dupin N., Strnadel R., Chen M., Denham I., Arora N., Picardeau M., Weston C., Forsyth R. A., Šmajs D.. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front. Microbiol. 2019;10:e1691. doi: 10.3389/fmicb.2019.01691. PubMed DOI PMC
Šmajs D., McKevitt M., Howell J. K., Norris S. J., Cai W. W., Palzkill T., Weinstock G. M.. Transcriptome of Treponema pallidum: Gene expression profile during experimental rabbit infection. J. Bacteriol. 2005;187(5):1866–1874. doi: 10.1128/JB.187.5.1866-1874.2005. PubMed DOI PMC
de Lay B. D., Cameron T. A., de Lay N. R., Norris S. J., Edmondson D. G.. Comparison of transcriptional profiles of Treponema pallidum during experimental infection of rabbits and in vitro culture: Highly similar, yet different. PLoS Pathog. 2021;17(9):e1009949. doi: 10.1371/journal.ppat.1009949. PubMed DOI PMC
Čejková D., Zobaníková M., Chen L., Pospíšilová P., Strouhal M., Qin X., Mikalová L., Norris S. J., Muzny D. M., Gibbs R. A., Fulton L. L., Sodergren E., Weinstock G. M., Šmajs D.. Whole genome sequences of three Treponema pallidum ssp. pertenue strains: Yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLoS Negl. Trop. Dis. 2012;6(1):e1471. doi: 10.1371/journal.pntd.0001471. PubMed DOI PMC
Edmondson D. G., Delay B. D., Kowis L. E., Norris S. J.. Parameters affecting continuous in vitro culture of Treponema pallidum strains. MBio. 2021;12(1):1–21. doi: 10.1128/mBio.03536-20. PubMed DOI PMC
Taouk M. L., Taiaroa G., Pasricha S., Herman S., Chow E. P. F., Azzatto F., Zhang B., Sia C. M., Duchene S., Lee A., Higgins N., Prestedge J., Lee Y. W., Thomson N. R., Graves B., Meumann E., Gunathilake M., Hocking J. S., Bradshaw C. S., Beale M. A., Howden B. P., Chen M. Y., Fairley C. K., Ingle D. J., Williamson D. A.. Characterisation of Treponema pallidum lineages within the contemporary syphilis outbreak in Australia: A genomic epidemiological analysis. Lancet. Microbe. 2022;3(6):417–426. doi: 10.1016/S2666-5247(22)00035-0. PubMed DOI
Pospíšilová P., Grange P. A., Grillová L., Mikalová L., Martinet P., Janier M., Vermersch A., Benhaddou N., Del Giudice P., Alcaraz I., Truchetet F., Dupin N., Šmajs D.. Multi-locus sequence typing of Treponema pallidum subsp. pallidum present in clinical samples from France: Infecting treponemes are genetically diverse and belong to 18 allelic profiles. PLoS One. 2018;13(7):e0201068. doi: 10.1371/journal.pone.0201068. PubMed DOI PMC