Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 AI051334
NIAID NIH HHS - United States
R37 AI051334
NIAID NIH HHS - United States
PubMed
27606673
PubMed Central
PMC5015957
DOI
10.1371/journal.pntd.0004988
PII: PNTD-D-16-00851
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika MeSH
- králíci MeSH
- proteom analýza MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- syfilis mikrobiologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- Treponema pallidum genetika MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- bakteriální proteiny MeSH
- proteom MeSH
BACKGROUND: The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. CONCLUSIONS: This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.
Department of Biochemistry and Microbiology University of Victoria Victoria British Columbia Canada
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Division of Infectious Diseases and HIV Medicine University of Cape Town Cape Town South Africa
HIV STI Unit Institute of Tropical Medicine Antwerp Belgium
Unit of Mycobacteriology Institute of Tropical Medicine Antwerp Belgium
Zobrazit více v PubMed
Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting. PLoS One. 2015;10: e0143304 10.1371/journal.pone.0143304 PubMed DOI PMC
Read P, Fairley CK, Chow EPF. Increasing trends of syphilis among men who have sex with men in high income countries. Sex Health. CSIRO PUBLISHING; 2015;12: 155–163. 10.1071/SH14153 PubMed DOI
Newman L, Kamb M, Hawkes S, Gomez G, Say L, Seuc A, et al. Global estimates of syphilis in pregnancy and associated adverse outcomes: analysis of multinational antenatal surveillance data. PLoS Med. Public Library of Science; 2013;10: e1001396 10.1371/journal.pmed.1001396 PubMed DOI PMC
Cox DL, Riley B, Chang P, Sayahtaheri S, Tassell S, Hevelone J. Effects of molecular oxygen, oxidation-reduction potential, and antioxidants upon in vitro replication of Treponema pallidum subsp. pallidum. Appl Environ Microbiol. 1990;56: 3063–72. PubMed PMC
Cox CD, Barber MK. Oxygen uptake by Treponema pallidum. Infect Immun. 1974;10: 123–7. PubMed PMC
Cover WH, Norris SJ, Miller JN. The microaerophilic nature of Treponema pallidum: enhanced survival and incorporation of tritiated adenine under microaerobic conditions in the presence or absence of reducing compounds. Sex Transm Dis. 9: 1–8. PubMed
Harman M, Vig DK, Radolf JD, Wolgemuth CW. Viscous Dynamics of Lyme Disease and Syphilis Spirochetes Reveal Flagellar Torque and Drag. Biophys J. 2013;105: 2273–2280. 10.1016/j.bpj.2013.10.004 PubMed DOI PMC
Izard J, Renken C, Hsieh C-E, Desrosiers DC, Dunham-Ems S, La Vake C, et al. Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J Bacteriol. 2009;191: 7566–80. 10.1128/JB.01031-09 PubMed DOI PMC
Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol. 2010;403: 546–61. 10.1016/j.jmb.2010.09.020 PubMed DOI PMC
Radolf JD, Norgard M V, Schulz WW. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci U S A. 1989;86: 2051–5. PubMed PMC
Walker EM, Zampighi GA, Blanco DR, Miller JN, Lovett MA. Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol. 1989;171: 5005–11. PubMed PMC
Norris SJ, Edmondson DG. Factors affecting the multiplication and subculture of Treponema pallidum subsp. pallidum in a tissue culture system. Infect Immun. 1986;53: 534–539. PubMed PMC
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science. 1998;281: 375–88. PubMed
Pětrošová H, Pospíšilová P, Strouhal M, Čejková D, Zobaníková M, Mikalová L, et al. Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters. PLoS One. 2013;8: e74319 10.1371/journal.pone.0074319 PubMed DOI PMC
Smajs D, McKevitt M, Howell JK, Norris J, Cai W, Palzkill T, et al. Transcriptome of Treponema pallidum: Gene Expression Profile during Experimental Rabbit Infection Transcriptome of Treponema pallidum: Gene Expression Profile during Experimental Rabbit Infection †. 2005; PubMed PMC
McGill MA, Edmondson DG, Carroll J a, Cook RG, Orkiszewski RS, Norris SJ. Characterization and serologic analysis of the Treponema pallidum proteome. Infect Immun. 2010;78: 2631–43. 10.1128/IAI.00173-10 PubMed DOI PMC
Norris SJ. Treponema Pallidum Polypeptide Research Group. Polypeptides of Treponema pallidum: Progress toward Understanding Their Structural, Functional, and Immunologic Roles. Microbiol Rev. 1993;57: 750–779. PubMed PMC
Catrein I, Herrmann R. The proteome of Mycoplasma pneumoniae, a supposedly “simple” cell. Proteomics. 2011;11: 3614–32. 10.1002/pmic.201100076 PubMed DOI
Lafond RE, Lukehart SA. Biological basis for syphilis. Clin Microbiol Rev. American Society for Microbiology; 2006;19: 29–49. 10.1128/CMR.19.1.29-49.2006 PubMed DOI PMC
Weinstock GM, Hardham JM, McLeod MP, Sodergren EJ, Norris SJ. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Microbiol Rev. 1998;22: 323–32. PubMed
Schouls L. Recombinant DNA technology in syphilis research In: Wright DJM, Archard L, editors. Molecular biology of sexually transmitted diseases. London: Chapman & Hall; 1992.
Smajs D, McKevitt M, Wang L, Howell JK, Norris SJ, Palzkill T, et al. BAC library of T. pallidum DNA in E. coli. Genome Res. 2002;12: 515–22. 10.1101/gr.207302 PubMed DOI PMC
McKevitt M, Patel K, Smajs D, Marsh M, McLoughlin M, Norris SJ, et al. Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome Res. 2003;13: 1665–74. 10.1101/gr.288103 PubMed DOI PMC
McKevitt M, Brinkman MB, Mcloughlin M, Perez C, Howell JK, Weinstock GM, et al. Genome Scale Identification of Treponema pallidum Antigens. 2005;73: 4445–4450. PubMed PMC
Brinkman MB, McKevitt M, Perez C, Howell J, George M, Norris SJ, et al. Reactivity of Antibodies from Syphilis Patients to a Protein Array Representing the Treponema pallidum Proteome Reactivity of Antibodies from Syphilis Patients to a Protein Array Representing the Treponema pallidum Proteome †. 2006; PubMed PMC
Setubal JC, Reis M, Matsunaga J, Haake DA. Lipoprotein computational prediction in spirochaetal genomes. Microbiology. 2006;152: 113–21. 10.1099/mic.0.28317-0 PubMed DOI PMC
Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun. 2010;78: 5178–94. 10.1128/IAI.00834-10 PubMed DOI PMC
Naqvi AAT, Shahbaaz M, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. PLoS One. Public Library of Science; 2015;10: e0124177 10.1371/journal.pone.0124177 PubMed DOI PMC
Mikalová L, Strouhal M, Čejková D, Zobaníková M, Pospíšilová P, Norris SJ, et al. Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLoS One. Public Library of Science; 2010;5: e15713 10.1371/journal.pone.0015713 PubMed DOI PMC
Palmer G, Bankhead T, Lukehart S. “Nothing is permanent but change”†–antigenic variation in persistent bacterial pathogens. Cell Microbiol. 2009;11: 1697–1705. 10.1111/j.1462-5822.2009.01366.x PubMed DOI PMC
LaFond RE, Centurion-Lara A, Godornes C, Van Voorhis WC, Lukehart SA. TprK sequence diversity accumulates during infection of rabbits with Treponema pallidum subsp. pallidum Nichols strain. Infect Immun. 2006;74: 1896–906. 10.1128/IAI.74.3.1896-1906.2006 PubMed DOI PMC
Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, et al. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol. 2012;194: 4208–25. 10.1128/JB.00863-12 PubMed DOI PMC
Leader BT, Hevner K, Molini BJ, Barrett LK, Van Voorhis WC, Lukehart SA. Antibody Responses Elicited against the Treponema pallidum Repeat Proteins Differ during Infection with Different Isolates of Treponema pallidum subsp. pallidum. Infect Immun. 2003;71: 6054–6057. 10.1128/IAI.71.10.6054-6057.2003 PubMed DOI PMC
Morgan CA, Molini BJ, Lukehart SA, Van Voorhis WC. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol. 2002;169: 952–7. 10.4049/jimmunol.169.2.952 PubMed DOI
Reid TB, Molini BJ, Fernandez MC, Lukehart SA. Antigenic variation of TprK facilitates development of secondary syphilis. Infect Immun. 2014;82: 4959–67. 10.1128/IAI.02236-14 PubMed DOI PMC
Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, et al. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol. American Association of Immunologists; 2010;184: 3822–9. 10.4049/jimmunol.0902788 PubMed DOI PMC
Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, LeDoyt M, et al. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol. 2012;194: 2321–33. 10.1128/JB.00101-12 PubMed DOI PMC
Anand A, LeDoyt M, Karanian C, Luthra A, Koszelak-Rosenblum M, Malkowski MG, et al. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN. J Biol Chem. 2015;290: 12313–31. 10.1074/jbc.M114.629188 PubMed DOI PMC
Weigel LM, Radolf JD, Norgard M V. The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. Proc Natl Acad Sci U S A. 1994;91: 11611–5. PubMed PMC
Cha JY, Ishiwata A, Mobashery S. A novel beta-lactamase activity from a penicillin-binding protein of Treponema pallidum and why syphilis is still treatable with penicillin. J Biol Chem. 2004;279: 14917–21. 10.1074/jbc.M400666200 PubMed DOI
Deka RK, Machius M, Norgard M V, Tomchick DR. Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein. J Biol Chem. 2002;277: 41857–64. 10.1074/jbc.M207402200 PubMed DOI
Radolf JD, Arndt LL, Akins DR, Curetty LL, Levi ME, Shen Y, et al. Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytes/macrophages. J Immunol. 1995;154: 2866–77. PubMed
Kelesidis T. The cross-talk between spirochetal lipoproteins and immunity. Front Immunol. 2014;5: 85–88. PubMed PMC
Semanjski M, Macek B. Shotgun proteomics of bacterial pathogens: advances, challenges and clinical implications. Expert Rev Proteomics. Taylor & Francis; 2015; 10.1586/14789450.2016.1132168 PubMed DOI
Becher D, Hempel K, Sievers S, Zühlke D, Pané-Farré J, Otto A, et al. A proteomic view of an important human pathogen—towards the quantification of the entire Staphylococcus aureus proteome. PLoS One. Public Library of Science; 2009;4: e8176 10.1371/journal.pone.0008176 PubMed DOI PMC
Soufi B, Krug K, Harst A, Macek B. Characterization of the E. coli proteome and its modifications during growth and ethanol stress. Front Microbiol. Frontiers; 2015;6: 103 10.3389/fmicb.2015.00103 PubMed DOI PMC
Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM. Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One. Public Library of Science; 2010;5: e13938 10.1371/journal.pone.0013938 PubMed DOI PMC
Lukehart SA, Marra CM. Isolation and laboratory maintenance of Treponema pallidum. Curr Protoc Microbiol. 2007;Chapter 12: Unit 12A.1 10.1002/9780471729259.mc12a01s7 PubMed DOI
Hanff PA, Norris SJ, Lovett MA, Miller JN. Purification of Treponema pallidum, Nichols strain, by Percoll density gradient centrifugation. Sex Transm Dis. 11: 275–86. PubMed
Zobaníková M, Mikolka P, Cejková D, Pospíšilová P, Chen L, Strouhal M, et al. Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci. 2012;7: 12–21. 10.4056/sigs.2615838 PubMed DOI PMC
Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res. American Chemical Society; 2006;5: 2339–47. 10.1021/pr060161n PubMed DOI
Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods. Nature Publishing Group; 2007;4: 207–14. 10.1038/nmeth1019 PubMed DOI
Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, et al. The PeptideAtlas project. Nucleic Acids Res. Oxford University Press; 2006;34: D655–D658. 10.1093/nar/gkj040 PubMed DOI PMC
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. Nature Publishing Group; 2011;8: 785–6. 10.1038/nmeth.1701 PubMed DOI
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. Cold Spring Harbor Laboratory Press; 2003;12: 1652–62. 10.1110/ps.0303703 PubMed DOI PMC
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. Oxford University Press; 2010;26: 1608–15. 10.1093/bioinformatics/btq249 PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305: 567–80. 10.1006/jmbi.2000.4315 PubMed DOI
Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ. PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res. Oxford University Press; 2004;32: W400–4. 10.1093/nar/gkh417 PubMed DOI PMC
Yu C-S, Chen Y-C, Lu C-H, Hwang J-K. Prediction of protein subcellular localization. Proteins. Wiley Subscription Services, Inc., A Wiley Company; 2006;64: 643–51. 10.1002/prot.21018 PubMed DOI
Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS. Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput Biol. Public Library of Science; 2008;4: e1000213 10.1371/journal.pcbi.1000213 PubMed DOI PMC
Käll L, Krogh A, Sonnhammer ELL. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. Oxford University Press; 2007;35: W429–32. 10.1093/nar/gkm256 PubMed DOI PMC
Viklund H, Bernsel A, Skwark M, Elofsson A. SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. Bioinformatics. Oxford University Press; 2008;24: 2928–9. 10.1093/bioinformatics/btn550 PubMed DOI
Tusnády GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001;17: 849–50. 10.1093/bioinformatics/17.9.849 PubMed DOI
Berven FS, Flikka K, Jensen HB, Eidhammer I. BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res. Oxford University Press; 2004;32: W394–9. 10.1093/nar/gkh351 PubMed DOI PMC
Ou Y-Y, Chen S-A, Wu S-C. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs. PLoS One. Public Library of Science; 2013;8: e46572 10.1371/journal.pone.0046572 PubMed DOI PMC
Čejková D, Strouhal M, Norris SJ, Weinstock GM, Šmajs D. A Retrospective Study on Genetic Heterogeneity within Treponema Strains: Subpopulations Are Genetically Distinct in a Limited Number of Positions. PLoS Negl Trop Dis. Public Library of Science; 2015;9: e0004110 10.1371/journal.pntd.0004110 PubMed DOI PMC
Smajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 2012;12: 191–202. 10.1016/j.meegid.2011.12.001 PubMed DOI PMC
Stamm L V, Bergen HL. The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun. 2000;68: 6482–6. PubMed PMC
Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA. The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun. 2000;68: 824–31. PubMed PMC
Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. Public Library of Science; 2013;7: e2222 10.1371/journal.pntd.0002222 PubMed DOI PMC
Giacani L, Brandt SL, Ke W, Reid TB, Molini BJ, Iverson-Cabral S, et al. Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect Immun. American Society for Microbiology; 2015;83: 2275–89. 10.1128/IAI.00360-15 PubMed DOI PMC
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings M a D, et al. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol. 2011;80: 1496–515. 10.1111/j.1365-2958.2011.07662.x PubMed DOI PMC
Luthra A, Anand A, Radolf JD. Treponema pallidum in Gel Microdroplets: A Method for Topological Analysis of BamA (TP0326) and Localization of Rare Outer Membrane Proteins. Methods Mol Biol. 2015;1329: 67–75. 10.1007/978-1-4939-2871-2_6 PubMed DOI
Cameron CE, Lukehart SA, Castro C, Molini B, Godornes C, Van Voorhis WC. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis. 2000;181: 1401–13. 10.1086/315399 PubMed DOI
Cameron CE, Brown EL, Kuroiwa JMY, Schnapp LM, Brouwer NL. Treponema pallidum fibronectin-binding proteins. J Bacteriol. 2004;186: 7019–22. 10.1128/JB.186.20.7019-7022.2004 PubMed DOI PMC
Giacani L, Sambri V, Marangoni A, Cavrini F, Storni E, Donati M, et al. Immunological evaluation and cellular location analysis of the TprI antigen of Treponema pallidum subsp. pallidum. Infect Immun. 2005;73: 3817–22. 10.1128/IAI.73.6.3817-3822.2005 PubMed DOI PMC
Salazar JC, Pope CD, Moore MW, Pope J, Kiely TG, Radolf JD. Lipoprotein-dependent and -independent immune responses to spirochetal infection. Clin Diagn Lab Immunol. American Society for Microbiology; 2005;12: 949–58. 10.1128/CDLI.12.8.949-958.2005 PubMed DOI PMC
Zybailov BL, Florens L, Washburn MP. Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol Biosyst. The Royal Society of Chemistry; 2007;3: 354–60. 10.1039/b701483j PubMed DOI
Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009;583: 3966–73. 10.1016/j.febslet.2009.10.036 PubMed DOI
Giacani L, Molini B, Godornes C, Barrett L, Van Voorhis W, Centurion-Lara A, et al. Quantitative analysis of tpr gene expression in Treponema pallidum isolates: Differences among isolates and correlation with T-cell responsiveness in experimental syphilis. Infect Immun. 2007;75: 104–12. 10.1128/IAI.01124-06 PubMed DOI PMC
Kim KH, Aulakh S, Paetzel M. The bacterial outer membrane β-barrel assembly machinery. Protein Sci. 2012;21: 751–68. 10.1002/pro.2069 PubMed DOI PMC
Pagès J-M, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. Nature Publishing Group; 2008;6: 893–903. 10.1038/nrmicro1994 PubMed DOI
Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol. Nature Publishing Group; 2009;7: 206–14. 10.1038/nrmicro2069 PubMed DOI
Selkrig J, Leyton DL, Webb CT, Lithgow T. Assembly of β-barrel proteins into bacterial outer membranes. Biochim Biophys Acta. 2014;1843: 1542–50. 10.1016/j.bbamcr.2013.10.009 PubMed DOI
Lyu ZX, Zhao XS. Periplasmic quality control in biogenesis of outer membrane proteins. Biochem Soc Trans. 2015;43: 133–8. 10.1042/BST20140217 PubMed DOI
Luthra A, Anand A, Hawley KL, LeDoyt M, La Vake CJ, Caimano MJ, et al. A Homology Model Reveals Novel Structural Features and an Immunodominant Surface Loop/Opsonic Target in the Treponema pallidum BamA Ortholog TP_0326. J Bacteriol. 2015;197: 1906–20. 10.1128/JB.00086-15 PubMed DOI PMC
Tomson FL, Conley PG, Norgard M V, Hagman KE. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins. Microbes Infect. 2007;9: 1267–75. 10.1016/j.micinf.2007.05.018 PubMed DOI PMC
Bunikis I, Denker K, Ostberg Y, Andersen C, Benz R, Bergström S. An RND-type efflux system in Borrelia burgdorferi is involved in virulence and resistance to antimicrobial compounds. PLoS Pathog. 2008;4: e1000009 10.1371/journal.ppat.1000009 PubMed DOI PMC
Eshghi A, Cullen PA, Cowen L, Zuerner RL, Cameron CE. Global Proteome Analysis of Leptospira interrogans research articles. 2009; 4564–4578. PubMed PMC
Babolin C, Amedei A, Ozolins D, Zilevica A, D’Elios MM, de Bernard M. TpF1 from Treponema pallidum activates inflammasome and promotes the development of regulatory T cells. J Immunol. 2011;187: 1377–84. 10.4049/jimmunol.1100615 PubMed DOI
Weinstock GM, Smajs D, Hardham J, Norris SJ. From microbial genome sequence to applications. Res Microbiol. 2000;151: 151–158. 10.1016/S0923-2508(00)00115-7 PubMed DOI
Giacani L, Lukehart S, Centurion-Lara A. Length of guanosine homopolymeric repeats modulates promoter activity of subfamily II tpr genes of Treponema pallidum ssp. pallidum. FEMS Immunol Med Microbiol. The Oxford University Press; 2007;51: 289–301. 10.1111/j.1574-695X.2007.00303.x PubMed DOI PMC
Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejková P, Smajs D, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. American Society for Microbiology; 2008;76: 1848–57. 10.1128/IAI.01424-07 PubMed DOI PMC
Cahoon LA, Seifert HS. An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science. American Association for the Advancement of Science; 2009;325: 764–7. 10.1126/science.1175653 PubMed DOI PMC
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27: 573–80. PubMed PMC
Kolpakov R, Bana G, Kucherov G. mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res. 2003;31: 3672–8. PubMed PMC
Moxon R, Bayliss C, Hood D. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet. Annual Reviews; 2006;40: 307–33. 10.1146/annurev.genet.40.110405.090442 PubMed DOI
Jerome JP, Bell JA, Plovanich-Jones AE, Barrick JE, Brown CT, Mansfield LS. Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One. Public Library of Science; 2011;6: e16399 10.1371/journal.pone.0016399 PubMed DOI PMC
Chu Q, Ma J, Saghatelian A. Identification and characterization of sORF-encoded polypeptides. Crit Rev Biochem Mol Biol. Informa Healthcare; 2015;50: 134–41. 10.3109/10409238.2015.1016215 PubMed DOI PMC
Wadler CS, Vanderpool CK. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci. 2007;104: 20454–20459. 10.1073/pnas.0708102104 PubMed DOI PMC
Lluch-Senar M, Delgado J, Chen W-H, Lloréns-Rico V, O’Reilly FJ, Wodke JA, et al. Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium. Mol Syst Biol. 2015;11: 780 10.15252/msb.20145558 PubMed DOI PMC
Kelkar YD, Ochman H. Genome reduction promotes increase in protein functional complexity in bacteria. Genetics. Genetics; 2013;193: 303–7. 10.1534/genetics.112.145656 PubMed DOI PMC
Jeffery CJ. Moonlighting proteins: old proteins learning new tricks. Trends Genet. Elsevier; 2003;19: 415–7. 10.1016/S0168-9525(03)00167-7 PubMed DOI
Henderson B, Martin A. Bacterial moonlighting proteins and bacterial virulence. Curr Top Microbiol Immunol. Springer Berlin Heidelberg; 2013;358: 155–213. 10.1007/82_2011_188 PubMed DOI
Henderson B. An overview of protein moonlighting in bacterial infection. Biochem Soc Trans. 2014;42: 1720–7. 10.1042/BST20140236 PubMed DOI
Khan I, Chen Y, Dong T, Hong X, Takeuchi R, Mori H, et al. Genome-scale identification and characterization of moonlighting proteins. Biol Direct. BioMed Central; 2014;9: 30 10.1186/s13062-014-0030-9 PubMed DOI PMC
Khan IK, Kihara D. Computational characterization of moonlighting proteins. Biochem Soc Trans. Portland Press Limited; 2014;42: 1780–5. 10.1042/BST20140214 PubMed DOI PMC
Strugnell RA, Drummond L, Faine S. Secondary lesions in rabbits experimentally infected with Treponema pallidum. Genitourin Med. 1986;62: 4–8. PubMed PMC
Carlson JA, Dabiri G, Cribier B, Sell S. The immunopathobiology of syphilis: the manifestations and course of syphilis are determined by the level of delayed-type hypersensitivity. Am J Dermatopathol. 2011;33: 433–60. 10.1097/DAD.0b013e3181e8b587 PubMed DOI PMC
Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ. Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res. American Chemical Society; 2009;8: 104–12. 10.1021/pr800641v PubMed DOI
Tsiatsiani L, Heck AJR. Proteomics beyond trypsin. FEBS J. 2015;282: 2612–26. 10.1111/febs.13287 PubMed DOI
Maaß S, Becher D. Methods and applications of absolute protein quantification in microbial systems. J Proteomics. 2016;136: 222–33. 10.1016/j.jprot.2016.01.015 PubMed DOI