Low Density Lipoprotein Receptor Variants in the Beta-Propeller Subdomain and Their Functional Impact

. 2020 ; 11 () : 691. [epub] 20200630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32695144

Background: Pathogenic variants in the low density lipoprotein receptor gene are associated with familial hypercholesterolemia. Some of these variants can result in incorrect folding of the LDLR protein, which is then accumulated inside the cell and cannot fulfill its function to internalize LDL particles. We analyzed the functional impact of 10 LDLR variants localized in the beta-propeller of epidermal growth factor precursor homology domain. The experimental part of the work was complemented by a structural analysis on the basis of 3D LDLR protein structure. Methods: T-Rex Chinese hamster ovary cells transfected with the human LDLR gene were used for live cell imaging microscopy, flow cytometry, and qRT-PCR analysis. Results: Our results showed that the analyzed LDLR protein variants can be divided into three groups. (1) The variants buried inside the 3D protein structure expressing proteins accumulated in the endoplasmic reticulum (ER) with no or reduced plasma membrane localization and LDL particle internalization, and associated with an increased gene expression of ER-resident chaperones. (2) The variants localized on the surface of 3D protein structure with slightly reduced LDLR plasma membrane localization and LDL particle internalization, and associated with no increased mRNA level of ER-resident chaperones. (3) The variants localized on the surface of the 3D protein structure but expressing proteins with cell responses similar to the group 1. Conclusion: All analyzed LDLR variants have been evaluated as pathogenic but with different effects on protein localization and function, and expression of genes associated with ER stress.

Zobrazit více v PubMed

Araki K., Nagata K. (2012). Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 4:a015438. 10.1101/cshperspect.a015438 PubMed DOI PMC

Back S. H., Schroder M., Lee K., Zhang K., Kaufman R. J. (2005). ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35 395–416. 10.1016/j.ymeth.2005.03.001 PubMed DOI

Benito-Vicente A., Alves A. C., Etxebarria A., Medeiros A. M., Martin C., Bourbon M. (2015). The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia. Genet. Med. 17 980–988. 10.1038/gim.2015.14 PubMed DOI

Benn M., Watts G. F., Tybjaerg-Hansen A., Nordestgaard B. G. (2012). Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J. Clin. Endocrinol. Metab. 97 3956–3964. 10.1210/jc.2012-1563 PubMed DOI

Brown M. S., Goldstein J. L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232 34–47. 10.1126/science.3513311 PubMed DOI

Brown M. S., Herz J., Goldstein J. L. (1997). LDL-receptor structure. Calcium cages, acid baths and recycling receptors. Nature 388 629–630. 10.1038/41672 PubMed DOI

Chan S. L., Fu W., Zhang P., Cheng A., Lee J., Kokame K. (2004). Herp stabilizes neuronal Ca2+ homeostasis and mitochondrial function during endoplasmic reticulum stress. J. Biol. Chem. 279 28733–28743. 10.1074/jbc.M404272200 PubMed DOI

Chothia C. (1976). The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105 1–12. 10.1016/0022-2836(76)90191-1 PubMed DOI

Eletto D., Dersh D., Argon Y. (2010). GRP94 in ER quality control and stress responses. Semin. Cell Dev. Biol. 21 479–485. 10.1016/j.semcdb.2010.03.004 PubMed DOI PMC

Etxebarria A., Benito-Vicente A., Palacios L., Stef M., Cenarro A., Civeira F. (2015). Functional characterization and classification of frequent low-density lipoprotein receptor variants. Hum. Mutat. 36 129–141. 10.1002/humu.22721 PubMed DOI

Frishman D., Argos P. (1995). Knowledge-based protein secondary structure assignment. Proteins 23 566–579. 10.1002/prot.340230412 PubMed DOI

Hebert D. N., Molinari M. (2007). In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87 1377–1408. 10.1152/physrev.00050.2006 PubMed DOI

Hetz C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13 89–102. 10.1038/nrm3270 PubMed DOI

Hetz C., Chevet E., Oakes S. A. (2015). Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17 829–838. 10.1038/ncb3184 PubMed DOI PMC

Hobbs H. H., Russell D. W., Brown M. S., Goldstein J. L. (1990). The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet. 24 133–170. 10.1146/annurev.ge.24.120190.001025 PubMed DOI

Humphrey W., Dalke A., Schulten K. (1996). VMD: visual molecular dynamics. J Mol Graph 14 37–38. 10.1016/0263-7855(96)00018-5 PubMed DOI

Li S. C., Goto N. K., Williams K. A., Deber C. M. (1996). Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc. Natl. Acad. Sci. U.S.A. 93 6676–6681. 10.1073/pnas.93.13.6676 PubMed DOI PMC

Marzec M., Eletto D., Argon Y. (2012). GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim. Biophys. Acta 1823 774–787. 10.1016/j.bbamcr.2011.10.013 PubMed DOI PMC

Michalak M., Groenendyk J., Szabo E., Gold L. I., Opas M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417 651–666. 10.1042/BJ20081847 PubMed DOI

Minamino T., Komuro I., Kitakaze M. (2010). Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ. Res. 107 1071–1082. 10.1161/CIRCRESAHA.110.227819 PubMed DOI

Pavlouskova J., Reblova K., Tichy L., Freiberger T., Fajkusova L. (2016). Functional analysis of the p.(Leu15Pro) and p.(Gly20Arg) sequence changes in the signal sequence of LDL receptor. Atherosclerosis 250 9–14. 10.1016/j.atherosclerosis.2016.04.022 PubMed DOI

Rader D. J., Cohen J., Hobbs H. H. (2003). Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J. Clin. Invest. 111 1795–1803. 10.1172/JCI18925 PubMed DOI PMC

Reblova K., Kulhanek P., Fajkusova L. (2015). Computational study of missense mutations in phenylalanine hydroxylase. J. Mol. Model. 21:70. 10.1007/s00894-015-2620-6 PubMed DOI

Ron D., Walter P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8 519–529. 10.1038/nrm2199 PubMed DOI

Rudenko G., Henry L., Henderson K., Ichtchenko K., Brown M. S., Goldstein J. L. (2002). Structure of the LDL receptor extracellular domain at endosomal pH. Science 298 2353–2358. 10.1126/science.1078124 PubMed DOI

Schnell U., Dijk F., Sjollema K. A., Giepmans B. N. (2012). Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods 9 152–158. 10.1038/nmeth.1855 PubMed DOI

Schulze A., Standera S., Buerger E., Kikkert M., van Voorden S., Wiertz E. (2005). The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol. 354 1021–1027. 10.1016/j.jmb.2005.10.020 PubMed DOI

Sjouke B., Kusters D. M., Kindt I., Besseling J., Defesche J. C., Sijbrands E. J. (2015). Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur. Heart J. 36 560–565. 10.1093/eurheartj/ehu058 PubMed DOI

Sorensen S., Ranheim T., Bakken K. S., Leren T. P., Kulseth M. A. (2006). Retention of mutant low density lipoprotein receptor in endoplasmic reticulum (ER) leads to ER stress. J. Biol. Chem. 281 468–476. 10.1074/jbc.M507071200 PubMed DOI

Strom T. B., Tveten K., Holla O. L., Cameron J., Berge K. E., Leren T. P. (2011). The cytoplasmic domain is not involved in directing Class 5 mutant LDL receptors to lysosomal degradation. Biochem. Biophys. Res. Commun. 408 642–646. 10.1016/j.bbrc.2011.04.077 PubMed DOI

Tichy L., Fajkusova L., Zapletalova P., Schwarzova L., Vrablik M., Freiberger T. (2017). Molecular genetic background of an autosomal dominant hypercholesterolemia in the Czech Republic. Physiol. Res. 66(Suppl. 1) S47–S54. 10.33549/physiolres.933587 PubMed DOI

Tichy L., Freiberger T., Zapletalova P., Soska V., Ravcukova B., Fajkusova L. (2012). The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations. Atherosclerosis 223 401–408. 10.1016/j.atherosclerosis.2012.05.014 PubMed DOI

Travers K. J., Patil C. K., Wodicka L., Lockhart D. J., Weissman J. S., Walter P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101 249–258. 10.1016/s0092-8674(00)80835-1 PubMed DOI

Vrablik M., Vaclova M., Tichy L., Soska V., Blaha V., Fajkusova L. (2017). Familial hypercholesterolemia in the Czech Republic: more than 17 years of systematic screening within the MedPed project. Physiol. Res. 66(Suppl. 1) S1–S9. 10.33549/physiolres.933600 PubMed DOI

Ye J., Rawson R. B., Komuro R., Chen X., Dave U. P., Prywes R. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell. 6 1355–1364. 10.1016/s1097-2765(00)00133-7 PubMed DOI

Zamyatnin A. A. (1972). Protein volume in solution. Prog. Biophys. Mol. Biol. 24 107–123. 10.1016/0079-6107(72)90005-3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...