Low Density Lipoprotein Receptor Variants in the Beta-Propeller Subdomain and Their Functional Impact
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32695144
PubMed Central
PMC7339958
DOI
10.3389/fgene.2020.00691
Knihovny.cz E-zdroje
- Klíčová slova
- ER stress, flow cytometry, functional analysis, live cell imaging microscopy, low density lipoprotein receptor,
- Publikační typ
- časopisecké články MeSH
Background: Pathogenic variants in the low density lipoprotein receptor gene are associated with familial hypercholesterolemia. Some of these variants can result in incorrect folding of the LDLR protein, which is then accumulated inside the cell and cannot fulfill its function to internalize LDL particles. We analyzed the functional impact of 10 LDLR variants localized in the beta-propeller of epidermal growth factor precursor homology domain. The experimental part of the work was complemented by a structural analysis on the basis of 3D LDLR protein structure. Methods: T-Rex Chinese hamster ovary cells transfected with the human LDLR gene were used for live cell imaging microscopy, flow cytometry, and qRT-PCR analysis. Results: Our results showed that the analyzed LDLR protein variants can be divided into three groups. (1) The variants buried inside the 3D protein structure expressing proteins accumulated in the endoplasmic reticulum (ER) with no or reduced plasma membrane localization and LDL particle internalization, and associated with an increased gene expression of ER-resident chaperones. (2) The variants localized on the surface of 3D protein structure with slightly reduced LDLR plasma membrane localization and LDL particle internalization, and associated with no increased mRNA level of ER-resident chaperones. (3) The variants localized on the surface of the 3D protein structure but expressing proteins with cell responses similar to the group 1. Conclusion: All analyzed LDLR variants have been evaluated as pathogenic but with different effects on protein localization and function, and expression of genes associated with ER stress.
Central European Institute of Technology Masaryk University Brno Czechia
Centre for Cardiovascular Surgery and Transplantation Brno Czechia
Centre of Molecular Biology and Gene Therapy University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Araki K., Nagata K. (2012). Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 4:a015438. 10.1101/cshperspect.a015438 PubMed DOI PMC
Back S. H., Schroder M., Lee K., Zhang K., Kaufman R. J. (2005). ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35 395–416. 10.1016/j.ymeth.2005.03.001 PubMed DOI
Benito-Vicente A., Alves A. C., Etxebarria A., Medeiros A. M., Martin C., Bourbon M. (2015). The importance of an integrated analysis of clinical, molecular, and functional data for the genetic diagnosis of familial hypercholesterolemia. Genet. Med. 17 980–988. 10.1038/gim.2015.14 PubMed DOI
Benn M., Watts G. F., Tybjaerg-Hansen A., Nordestgaard B. G. (2012). Familial hypercholesterolemia in the danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J. Clin. Endocrinol. Metab. 97 3956–3964. 10.1210/jc.2012-1563 PubMed DOI
Brown M. S., Goldstein J. L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232 34–47. 10.1126/science.3513311 PubMed DOI
Brown M. S., Herz J., Goldstein J. L. (1997). LDL-receptor structure. Calcium cages, acid baths and recycling receptors. Nature 388 629–630. 10.1038/41672 PubMed DOI
Chan S. L., Fu W., Zhang P., Cheng A., Lee J., Kokame K. (2004). Herp stabilizes neuronal Ca2+ homeostasis and mitochondrial function during endoplasmic reticulum stress. J. Biol. Chem. 279 28733–28743. 10.1074/jbc.M404272200 PubMed DOI
Chothia C. (1976). The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105 1–12. 10.1016/0022-2836(76)90191-1 PubMed DOI
Eletto D., Dersh D., Argon Y. (2010). GRP94 in ER quality control and stress responses. Semin. Cell Dev. Biol. 21 479–485. 10.1016/j.semcdb.2010.03.004 PubMed DOI PMC
Etxebarria A., Benito-Vicente A., Palacios L., Stef M., Cenarro A., Civeira F. (2015). Functional characterization and classification of frequent low-density lipoprotein receptor variants. Hum. Mutat. 36 129–141. 10.1002/humu.22721 PubMed DOI
Frishman D., Argos P. (1995). Knowledge-based protein secondary structure assignment. Proteins 23 566–579. 10.1002/prot.340230412 PubMed DOI
Hebert D. N., Molinari M. (2007). In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87 1377–1408. 10.1152/physrev.00050.2006 PubMed DOI
Hetz C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13 89–102. 10.1038/nrm3270 PubMed DOI
Hetz C., Chevet E., Oakes S. A. (2015). Proteostasis control by the unfolded protein response. Nat. Cell Biol. 17 829–838. 10.1038/ncb3184 PubMed DOI PMC
Hobbs H. H., Russell D. W., Brown M. S., Goldstein J. L. (1990). The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet. 24 133–170. 10.1146/annurev.ge.24.120190.001025 PubMed DOI
Humphrey W., Dalke A., Schulten K. (1996). VMD: visual molecular dynamics. J Mol Graph 14 37–38. 10.1016/0263-7855(96)00018-5 PubMed DOI
Li S. C., Goto N. K., Williams K. A., Deber C. M. (1996). Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc. Natl. Acad. Sci. U.S.A. 93 6676–6681. 10.1073/pnas.93.13.6676 PubMed DOI PMC
Marzec M., Eletto D., Argon Y. (2012). GRP94: an HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim. Biophys. Acta 1823 774–787. 10.1016/j.bbamcr.2011.10.013 PubMed DOI PMC
Michalak M., Groenendyk J., Szabo E., Gold L. I., Opas M. (2009). Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417 651–666. 10.1042/BJ20081847 PubMed DOI
Minamino T., Komuro I., Kitakaze M. (2010). Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ. Res. 107 1071–1082. 10.1161/CIRCRESAHA.110.227819 PubMed DOI
Pavlouskova J., Reblova K., Tichy L., Freiberger T., Fajkusova L. (2016). Functional analysis of the p.(Leu15Pro) and p.(Gly20Arg) sequence changes in the signal sequence of LDL receptor. Atherosclerosis 250 9–14. 10.1016/j.atherosclerosis.2016.04.022 PubMed DOI
Rader D. J., Cohen J., Hobbs H. H. (2003). Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J. Clin. Invest. 111 1795–1803. 10.1172/JCI18925 PubMed DOI PMC
Reblova K., Kulhanek P., Fajkusova L. (2015). Computational study of missense mutations in phenylalanine hydroxylase. J. Mol. Model. 21:70. 10.1007/s00894-015-2620-6 PubMed DOI
Ron D., Walter P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8 519–529. 10.1038/nrm2199 PubMed DOI
Rudenko G., Henry L., Henderson K., Ichtchenko K., Brown M. S., Goldstein J. L. (2002). Structure of the LDL receptor extracellular domain at endosomal pH. Science 298 2353–2358. 10.1126/science.1078124 PubMed DOI
Schnell U., Dijk F., Sjollema K. A., Giepmans B. N. (2012). Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods 9 152–158. 10.1038/nmeth.1855 PubMed DOI
Schulze A., Standera S., Buerger E., Kikkert M., van Voorden S., Wiertz E. (2005). The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol. 354 1021–1027. 10.1016/j.jmb.2005.10.020 PubMed DOI
Sjouke B., Kusters D. M., Kindt I., Besseling J., Defesche J. C., Sijbrands E. J. (2015). Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur. Heart J. 36 560–565. 10.1093/eurheartj/ehu058 PubMed DOI
Sorensen S., Ranheim T., Bakken K. S., Leren T. P., Kulseth M. A. (2006). Retention of mutant low density lipoprotein receptor in endoplasmic reticulum (ER) leads to ER stress. J. Biol. Chem. 281 468–476. 10.1074/jbc.M507071200 PubMed DOI
Strom T. B., Tveten K., Holla O. L., Cameron J., Berge K. E., Leren T. P. (2011). The cytoplasmic domain is not involved in directing Class 5 mutant LDL receptors to lysosomal degradation. Biochem. Biophys. Res. Commun. 408 642–646. 10.1016/j.bbrc.2011.04.077 PubMed DOI
Tichy L., Fajkusova L., Zapletalova P., Schwarzova L., Vrablik M., Freiberger T. (2017). Molecular genetic background of an autosomal dominant hypercholesterolemia in the Czech Republic. Physiol. Res. 66(Suppl. 1) S47–S54. 10.33549/physiolres.933587 PubMed DOI
Tichy L., Freiberger T., Zapletalova P., Soska V., Ravcukova B., Fajkusova L. (2012). The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations. Atherosclerosis 223 401–408. 10.1016/j.atherosclerosis.2012.05.014 PubMed DOI
Travers K. J., Patil C. K., Wodicka L., Lockhart D. J., Weissman J. S., Walter P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101 249–258. 10.1016/s0092-8674(00)80835-1 PubMed DOI
Vrablik M., Vaclova M., Tichy L., Soska V., Blaha V., Fajkusova L. (2017). Familial hypercholesterolemia in the Czech Republic: more than 17 years of systematic screening within the MedPed project. Physiol. Res. 66(Suppl. 1) S1–S9. 10.33549/physiolres.933600 PubMed DOI
Ye J., Rawson R. B., Komuro R., Chen X., Dave U. P., Prywes R. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell. 6 1355–1364. 10.1016/s1097-2765(00)00133-7 PubMed DOI
Zamyatnin A. A. (1972). Protein volume in solution. Prog. Biophys. Mol. Biol. 24 107–123. 10.1016/0079-6107(72)90005-3 PubMed DOI