Resequencing of Treponema pallidum ssp. pallidum strains Nichols and SS14: correction of sequencing errors resulted in increased separation of syphilis treponeme subclusters
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24058545
PubMed Central
PMC3769245
DOI
10.1371/journal.pone.0074319
PII: PONE-D-13-19359
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom genetika MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA metody MeSH
- sekvenční seřazení MeSH
- syfilis genetika parazitologie MeSH
- Treponema pallidum genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, is a highly clonal bacterium showing minimal genetic variability in the genome sequence of individual strains. Nevertheless, genetically characterized syphilis strains can be clearly divided into two groups, Nichols-like strains and SS14-like strains. TPA Nichols and SS14 strains were completely sequenced in 1998 and 2008, respectively. Since publication of their complete genome sequences, a number of sequencing errors in each genome have been reported. Therefore, we have resequenced TPA Nichols and SS14 strains using next-generation sequencing techniques. METHODOLOGY/PRINCIPAL FINDINGS: The genomes of TPA strains Nichols and SS14 were resequenced using the 454 and Illumina sequencing methods that have a combined average coverage higher than 90x. In the TPA strain Nichols genome, 134 errors were identified (25 substitutions and 109 indels), and 102 of them affected protein sequences. In the TPA SS14 genome, a total of 191 errors were identified (85 substitutions and 106 indels) and 136 of them affected protein sequences. A set of new intrastrain heterogenic regions in the TPA SS14 genome were identified including the tprD gene, where both tprD and tprD2 alleles were found. The resequenced genomes of both TPA Nichols and SS14 strains clustered more closely with related strains (i.e. strains belonging to same syphilis treponeme subcluster). At the same time, groups of Nichols-like and SS14-like strains were found to be more distantly related. CONCLUSION/SIGNIFICANCE: We identified errors in 11.5% of all annotated genes and, after correction, we found a significant impact on the predicted proteomes of both Nichols and SS14 strains. Corrections of these errors resulted in protein elongations, truncations, fusions and indels in more than 11% of all annotated proteins. Moreover, it became more evident that syphilis is caused by treponemes belonging to two separate genetic subclusters.
Zobrazit více v PubMed
Pillay A, Liu H, Chen CY, Holloway B, Sturm AW, et al. (1998) Molecular subtyping of Treponema pallidum subspecies pallidum . Sex Transm Dis 25: 408–414. PubMed
McKevitt M, Patel K, Šmajs D, Marsh M, McLoughlin M, et al. (2003) Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome Res 13: 1665–1674. PubMed PMC
McKevitt M, Brinkman MB, McLoughlin M, Perez C, Howell JK, et al. (2005) Genome scale identification of Treponema pallidum antigens. Infect Immun 73: 4445–4450. PubMed PMC
Šmajs D, McKevitt M, Howell JK, Norris SJ, Cai W-W, et al. (2005) Transcriptome of Treponema pallidum: gene expression profile during experimental rabbit infection. J Bacteriol 187: 1866–1874. PubMed PMC
Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, et al. (2006) Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema . Mol Biol Evol 23: 2220–2233. PubMed
Šmajs D, Norris SJ, Weinstock GM (2012) Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis 12: 191–202. PubMed PMC
Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, et al. (2012) Whole genome sequences of three Treponema pallidum ssp. pertenue strains: yaws and syphilis treponemes differ in less than 0.2% of the genome sequence. PLOS Negl Trop Dis 6: e1471. PubMed PMC
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, et al. (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281: 375–388. PubMed
Matějková P, Strouhal M, Šmajs D, Norris SJ, Palzkill T, et al. (2008) Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays. BMC Microbiol 8: 76. PubMed PMC
Nichols HJ (1914) Observations on a strain of Spirochaeta pallida isolated from the nervous system. J Exp Med 19: 362–371. PubMed PMC
Stamm LV, Kerner TC, Bankaitis VA, Bassford PJ (1983) Identification and preliminary characterization of Treponema pallidum protein antigens expressed in Escherichia coli . Infect Immun 41: 709–721. PubMed PMC
Stamm LV, Stapleton JT, Bassford PJ Jr (1988) In vitro assay to demonstrate high-level erythromycin resistance of a clinical isolate of Treponema pallidum . Antimicrob Agents Chemother 32: 164–169. PubMed PMC
Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, et al. (2013) Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLOS Negl Trop Dis 7: e2222. PubMed PMC
Mikalová L, Strouhal M, Čejková D, Zobaníková M, Pospíšilová P, et al. (2010) Genome analysis of Treponema pallidum subsp. pallidum and subsp. pertenue strains: most of the genetic differences are localized in six regions. PLOS One 5: e15713. PubMed PMC
Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, et al. (2012) Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLOS Negl Trop Dis 6: e1832. PubMed PMC
Giacani L, Chattopadhyay S, Centurion-Lara A, Jeffrey BM, Le HT, et al. (2012) Footprint of positive selection in Treponema pallidum subsp. pallidum genome sequences suggests adaptive microevolution of the syphilis pathogen. PLOS Negl Trop Dis 6: e1698. PubMed PMC
Čejková D, Zobaníková M, Pospíšilová P, Strouhal M, Mikalová L, et al.. (2012) Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and T. paraluiscuniculi strains. J Med Microbiol. PubMed PMC
Strouhal M, Šmajs D, Matějková P, Sodergren E, Amin AG, et al. (2007) Genome differences between Treponema pallidum subsp. pallidum strain Nichols and T. paraluiscuniculi strain Cuniculi A. Infect Immun 75: 5859–5866. PubMed PMC
Rozen S, Skaletsky HJ (2010) Primer3 on the WWW for general users and for biologist programmers. Bioinformatics methods and protocols: Methods in Molecular Biology. Krawetz, S. and Misener, S. 365–386. PubMed
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760. PubMed PMC
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636–4641. PubMed PMC
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. PubMed
Giacani L, Jeffrey BM, Molini BJ, Le HT, Lukehart SA, et al. (2010) Complete genome sequence and annotation of the Treponema pallidum subsp. pallidum Chicago strain. J Bacteriol 192: 2645–2646. PubMed PMC
Zobaníková M, Mikolka P, Čejková D, Pospíšilová P, Chen L, et al. (2012) Complete genome sequence of Treponema pallidum strain DAL-1. Stand Genomic Sci 7: 12–21. PubMed PMC
Stamm LV, Bergen HL (2000) A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrob Agents Chemother 44: 806–807. PubMed PMC
Harper KN, Ocampo PS, Steiner BM, George RW, Silverman MS, et al. (2008) On the origin of the treponematoses: a phylogenetic approach. PLOS Negl Trop Dis 2: e148. PubMed PMC
Centurion-Lara A, Sun ES, Barrett LK, Castro C, Lukehart SA, et al. (2000) Multiple alleles of Treponema pallidum repeat gene D in Treponema pallidum isolates. J Bacteriol 182: 2332–2335. PubMed PMC
Sun ES, Molini BJ, Barrett LK, Centurion-Lara A, Lukehart SA, et al. (2004) Subfamily I Treponema pallidum repeat protein family: sequence variation and immunity. Microbes Infect Inst Pasteur 6: 725–737. PubMed
Šmajs D, Norris SJ, Weinstock GM (2004) Construction of small genome BAC library for functional and genomic applications. Methods Mol Biol Clifton NJ 255: 47–56. PubMed
Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36: e105–e105. PubMed PMC
Stamm LV, Bergen HL (2000) The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun 68: 6482–6486. PubMed PMC
Centurion-Lara A, Godornes C, Castro C, Van Voorhis WC, Lukehart SA (2000) The tprK gene is heterogeneous among Treponema pallidum strains and has multiple alleles. Infect Immun 68: 824–831. PubMed PMC
Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, et al. (2011) TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80: 1496–1515. PubMed PMC
Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, et al. (2012) Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J Bacteriol 194: 4208–4225. PubMed PMC
Bayliss CD, Field D, Moxon ER (2001) The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis . J Clin Invest 107: 657–666. PubMed PMC
Anand A, Luthra A, Dunham-Ems S, Caimano MJ, Karanian C, et al. (2012) TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure. J Bacteriol 194: 2321–2333. PubMed PMC
Marra CM, Sahi SK, Tantalo LC, Godornes C, Reid T, et al. (2010) Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. J Infect Dis 202: 1380–1388. PubMed PMC
Dai T, Li K, Lu H, Gu X, Wang Q, et al.. (2012) Molecular typing of Treponema pallidum: five-year surveillance in Shanghai, China. J Clin Microbiol. PubMed PMC
Wu H, Chang S-Y, Lee N-Y, Huang W-C, Wu B-R, et al. (2012) Evaluation of macrolide resistance and enhanced molecular typing of Treponema pallidum in patients with syphilis in Taiwan: a prospective multicenter study. J Clin Microbiol 50: 2299–2304. PubMed PMC
Flasarová M, Pospíšilová P, Mikalová L, Vališová Z, Dastychová E, et al. (2012) Sequencing-based molecular typing of Treponema pallidum strains in the Czech Republic: all identified genotypes are related to the sequence of the SS14 strain. Acta Derm Venereol 92: 669–674. PubMed
Tipple C, McClure MO, Taylor GP (2011) High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sex Transm Infect 87: 486–488. PubMed
Zhuo Y, Liu L, Wang Q, Liu X, Ren B, et al. (2012) Revised genome sequence of Burkholderia thailandensis MSMB43 with improved annotation. J Bacteriol 194: 4749–4750. PubMed PMC
Siezen RJ, Francke C, Renckens B, Boekhorst J, Wels M, et al. (2012) Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 194: 195–196. PubMed PMC
Rao C, Benhabib H, Ensminger AW (2013) Phylogenetic Reconstruction of the Legionella pneumophila Philadelphia-1 laboratory strains through comparative genomics. PLOS ONE 8: e64129. PubMed PMC
The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis
Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen