Nanoparticles as a Solution for Eliminating the Risk of Mycotoxins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
TJ01000116
Technologická Agentura České Republiky
IGA-2018-tym001
Mendelova Univerzita v Brně
PubMed
30223519
PubMed Central
PMC6164963
DOI
10.3390/nano8090727
PII: nano8090727
Knihovny.cz E-zdroje
- Klíčová slova
- agriculture, mycotoxin, nanoparticles, nanotechnology, toxicity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi. The occurrence of mycotoxins in food and feed causes negative health impacts on both humans and animals. Clay binders, yeast cell walls, or antioxidant additives are the most widely used products for mycotoxin elimination to reduce their impact. Although conventional methods are constantly improving, current research trends are looking for innovative solutions. Nanotechnology approaches seem to be a promising, effective, and low-cost way to minimize the health effects of mycotoxins. This review aims to shed light on the critical knowledge gap in mycotoxin elimination by nanotechnology. There are three main strategies: mold inhibition, mycotoxin adsorption, and reducing the toxic effect via nanoparticles. One of the most promising methods is the use of carbon-based nanomaterials. Graphene has been shown to have a huge surface and high binding capacity for mycotoxins. Attention has also been drawn to polymeric nanoparticles; they could substitute adsorbents or enclose any substance, which would improve the health status of the organism. In light of these findings, this review gives new insights into possible future research that might overcome challenges associated with nanotechnology utilization for mycotoxin elimination from agricultural products.
Zobrazit více v PubMed
Edwards S.G. Influence of agricultural practices on fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol. Lett. 2004;153:29–35. doi: 10.1016/j.toxlet.2004.04.022. PubMed DOI
Simpson D.R., Weston G.E., Turner J.A., Jennings P., Nicholson P. Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain. Eur. J. Plant Pathol. 2001;107:421–431. doi: 10.1023/A:1011225817707. DOI
Cunha S.C., Sa S.V.M., Fernandes J.O. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food Chem. Toxicol. 2018;114:260–269. doi: 10.1016/j.fct.2018.02.039. PubMed DOI
Santini A., Meca G., Uhlig S., Ritieni A. Fusaproliferin, beauvericin and enniatins: Occurrence in food—A review. World Mycotoxin J. 2012;5:71–81. doi: 10.3920/WMJ2011.1331. DOI
Jestoi M. Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Crit. Rev. Food Sci. Nutr. 2008;48:21–49. doi: 10.1080/10408390601062021. PubMed DOI
Marin S., Ramos A.J., Cano-Sancho G., Sanchis V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013;60:218–237. doi: 10.1016/j.fct.2013.07.047. PubMed DOI
Madalena M., Sobral C., Faria M.A., Cunha S.C., Ferreira I. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere. 2018;202:538–548. PubMed
Dellafiora L., Dall’Asta C., Galaverna G. Toxicodynamics of mycotoxins in the framework of food risk assessmentan in silico perspective. Toxins. 2018;10:52. doi: 10.3390/toxins10020052. PubMed DOI PMC
Freire L., Sant’Ana A.S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food Chem. Toxicol. 2018;111:189–205. doi: 10.1016/j.fct.2017.11.021. PubMed DOI
Berthiller F., Maragos C.M., Dall’Asta C. Introduction to masked mycotoxins. In: DallAsta C., Berthiller F., editors. Masked Mycotoxins in Food: Formation, Occurrence and Toxicological Relevance. Volume 24. Royal Society of Chemistry; London, UK: 2016. pp. 1–13.
Osweiler G.D. Mycotoxins—Contemporary issues of food animal health and productivity. Vet. Clin. N. Am. Food Anim. Pract. 2000;16:511–530. doi: 10.1016/S0749-0720(15)30084-0. PubMed DOI
Dell’Orto V., Baldi G., Cheli F. Mycotoxins in silage: Checkpoints for effective management and control. World Mycotoxin J. 2015;8:603–617. doi: 10.3920/WMJ2014.1866. DOI
Cheat S., Oswald I.P., Kolf-Clauw M. Mycotoxin Outbreak in Animal Feed. CRC Press-Taylor & Francis Group; Boca Raton, FL, USA: 2016. pp. 257–286.
Rodrigues I. A review on the effects of mycotoxins in dairy ruminants. Anim. Prod. Sci. 2014;54:1155–1165. doi: 10.1071/AN13492. DOI
Krstanovic V., Sarkanj B., Velic N., Mastanjevic K., Santek B. Mycotoxins in malting and brewing by-products used for animal feed. J. Biotechnol. 2017;256:S68–S69. doi: 10.1016/j.jbiotec.2017.06.1033. DOI
Aslam N., Rodrigues I., McGill D.M., Warriach H.M., Cowling A., Haque A., Wynn P.C. Transfer of aflatoxins from naturally contaminated feed to milk of Nili-Ravi buffaloes fed a mycotoxin binder. Anim. Prod. Sci. 2016;56:1637–1642. doi: 10.1071/AN14909. DOI
Dal Pozzo M., Viegas J., Kozloski G.V., Stefanello C.M., da Silveira A.M., Bayer C., Santurio J.M. The effect of mycotoxins adsorbents beta glucans or montmorillonite on bovine ruminal fermentation in vitro. Acta Sci. Vet. 2016;44:6. doi: 10.22456/1679-9216.80851. DOI
Bhatti S.A., Khan M.Z., Ul Hassan Z., Saleemi M.K., Saqib M., Khatoon A., Akhter M. Comparative efficacy of bentonite clay, activated charcoal and trichosporon mycotoxinivorans in regulating the feed-to-tissue transfer of mycotoxins. J. Sci. Food Agric. 2018;98:884–890. doi: 10.1002/jsfa.8533. PubMed DOI
Brown K.A., Mays T., Romoser A., Marroquin-Cardona A., Mitchell N.J., Elmore S.E., Phillips T.D. Modified hydra bioassay to evaluate the toxicity of multiple mycotoxins and predict the detoxification efficacy of a clay-based sorbent. J. Appl. Toxicol. 2014;34:40–48. doi: 10.1002/jat.2824. PubMed DOI PMC
Campagnollo F.B., Franco L.T., Rottinghaus G.E., Kobashigawa E., Ledoux D.R., Dakovic A., Oliveira C.A.F. In vitro evaluation of the ability of beer fermentation residue containing saccharomyces cerevisiae to bind mycotoxins. Food Res. Int. 2015;77:643–648. doi: 10.1016/j.foodres.2015.08.032. DOI
Mendieta C.R., Gomez G.V., Del Rio J.C.G., Cuevas A.C., Arce J.M., Avila E.G. Effect of the addition of saccharomyces cerevisiae yeast cell walls to diets with mycotoxins on the performance and immune responses of broilers. J. Poult. Sci. 2018;55:38–46. doi: 10.2141/jpsa.0170019. PubMed DOI PMC
Nathanail A.V., Gibson B., Han L., Peltonen K., Ollilainen V., Jestoi M., Laitila A. The lager yeast saccharomyces pastorianus removes and transforms fusarium trichothecene mycotoxins during fermentation of brewer’s wort. Food Chem. 2016;203:448–455. doi: 10.1016/j.foodchem.2016.02.070. PubMed DOI
Singh A., Prasad S.M. Nanotechnology and its role in agro-ecosystem: A strategic perspective. Int. J. Environ. Sci. Technol. 2017;14:2277–2300. doi: 10.1007/s13762-016-1062-8. DOI
Chen H.D., Seiber J.N., Hotze M. Acs select on nanotechnology in food and agriculture: A perspective on implications and applications. J. Agric. Food Chem. 2014;62:1209–1212. doi: 10.1021/jf5002588. PubMed DOI
Pfeiffer C., Rehbock C., Huhn D., Carrillo-Carrion C., de Aberasturi D.J., Merk V., Barcikowski S., Parak W.J. Interaction of colloidal nanoparticles with their local environment: The (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J. R. Soc. Interface. 2014;11:20130931. doi: 10.1098/rsif.2013.0931. PubMed DOI PMC
Kaushik A., Solanki P.R., Ansari A.A., Ahmad S., Malhotra B.D. A nanostructured cerium oxide film-based immunosensor for mycotoxin detection. Nanotechnology. 2009;20:055105. doi: 10.1088/0957-4484/20/5/055105. PubMed DOI
Anfossi L., Giovannoli C., Baggiani C. Mycotoxin detection. Curr. Opin. Biotechnol. 2016;37:120–126. doi: 10.1016/j.copbio.2015.11.005. PubMed DOI
Chauhan R., Singh J., Sachdev T., Basu T., Malhotra B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron. 2016;81:532–545. doi: 10.1016/j.bios.2016.03.004. PubMed DOI
Berthiller F., Brera C., Iha M.H., Krska R., Lattanzio V.M.T., MacDonald S., Malone R.J., Maragos C., Solfrizzo M., Stranska-Zachariasova M., et al. Developments in mycotoxin analysis: An update for 2015–2016. World Mycotoxin J. 2017;10:5–29. doi: 10.3920/WMJ2016.2138. DOI
Guo L.J., Feng J.S., Fang Z.C., Xu J., Lu X.N. Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci. Technol. 2015;46:252–263. doi: 10.1016/j.tifs.2015.09.005. DOI
Selvaraj J.N., Zhou L., Wang Y., Zhao Y.J., Xing F.G., Dai X.F., Liu Y. Mycotoxin detection—Recent trends at global level. J. Integr. Agric. 2015;14:2265–2281. doi: 10.1016/S2095-3119(15)61120-0. DOI
Sadhasivam S., Britzi M., Zakin V., Kostyukovsky M., Trostanetsky A., Quinn E., Sionov E. Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins. 2017;9:302. doi: 10.3390/toxins9100302. PubMed DOI PMC
Rai M., Jogee P.S., Ingle A.P. Emerging nanotechnology for detection of mycotoxins in food and feed. Int. J. Food Sci. Nutr. 2015;66:363–370. doi: 10.3109/09637486.2015.1034251. PubMed DOI
Rhouati A., Bulbul G., Latif U., Hayat A., Li Z.H., Marty J.L. Nano-aptasensing in mycotoxin analysis: Recent updates and progress. Toxins. 2017;9:349. doi: 10.3390/toxins9110349. PubMed DOI PMC
Gontero D., Lessard-Viger M., Brouard D., Bracamonte A.G., Boudreau D., Veglia A.V. Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchem. J. 2017;130:316–328. doi: 10.1016/j.microc.2016.10.007. DOI
Xie Y.J., Yang Y., Kong W.J., Yang S.H., Yang M.H. Application of nanoparticle probe-based lateral flow immunochromatographic assay in mycotoxins detection. Chin. J. Anal. Chem. 2015;43:617–628. doi: 10.1016/S1872-2040(15)60821-0. DOI
Solanki P.R., Singh J., Rupavali B., Tiwari S., Malhotra B.D. Bismuth oxide nanorods based immunosensor for mycotoxin detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;70:564–571. doi: 10.1016/j.msec.2016.09.027. PubMed DOI
Zhang W.J., Li G.X. Third-generation biosensors based on the direct electron transfer of proteins. Anal. Sci. 2004;20:603–609. doi: 10.2116/analsci.20.603. PubMed DOI
Petrakova A.V., Urusov A.E., Zherdev A.V., Liu L., Xu C., Dzantiev B.B. Application of magnetite nanoparticles for the development of highly sensitive immunochromatographic test systems for mycotoxin detection. Appl. Biochem. Microbiol. 2017;53:470–475. doi: 10.1134/S0003683817040111. DOI
Lv X., Li Y., Yan T., Pang X., Cao W., Du B., Wu D., Wei Q. Electrochemiluminescence modified electrodes based on RuSi@Ru(bpy)3 2+ loaded with gold functioned nanoporous CO/Co3O4 for detection of mycotoxin deoxynivalenol. Biosens. Bioelectron. 2015;70:28–33. doi: 10.1016/j.bios.2015.03.020. PubMed DOI
Zhao Y., Yang Y., Luo Y., Yang X., Li M., Song Q. Double detection of mycotoxins based on sers labels embedded Ag@Au core-shell nanoparticles. Acs Appl. Mater. Interfaces. 2015;7:21780–21786. doi: 10.1021/acsami.5b07804. PubMed DOI
Sun Y., Xing G., Yang J., Wang F., Deng R., Zhang G., Hu X., Zhang Y. Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin a and zearalenone in cereal. J. Sci. Food Agric. 2016;96:3673–3678. doi: 10.1002/jsfa.7550. PubMed DOI
Kong D., Liu L., Song S., Suryoprabowo S., Li A., Kuang H., Wang L., Xu C. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale. 2016;8:5245–5253. doi: 10.1039/C5NR09171C. PubMed DOI
Berthiller F., Crews C., Dall’Asta C., De Saeger S., Haesaert G., Karlovsky P., Oswald I.P., Seefelder W., Speijers G., Stroka J. Masked mycotoxins: A review. Mol. Nutr. Food Res. 2013;57:165–186. doi: 10.1002/mnfr.201100764. PubMed DOI PMC
Goryacheva I.Y., De Saeger S. Immunochemical detection of masked mycotoxins: A short review. World Mycotoxin J. 2012;5:281–287. doi: 10.3920/WMJ2012.1423. DOI
Huybrechts B., Martins J.C., Debongnie P., Uhlig S., Callebaut A. Fast and sensitive LC-MS/MS method measuring human mycotoxin exposure using biomarkers in urine. Arch. Toxicol. 2015;89:1993–2005. doi: 10.1007/s00204-014-1358-8. PubMed DOI
Nakagawa H., Ohmichi K., Sakamoto S., Sago Y., Kushiro M., Nagashima H., Yoshida M., Nakajima T. Detection of a new fusarium masked mycotoxin in wheat grain by high-resolution LC-OrbitrapTM MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011;28:1447–1456. doi: 10.1080/19440049.2011.597434. PubMed DOI
Aqai P., Peters J., Gerssen A., Haasnoot W., Nielen M.W.F. Immunomagnetic microbeads for screening with flow cytometry and identification with nano-liquid chromatography mass spectrometry of ochratoxins in wheat and cereal. Anal. Bioanal. Chem. 2011;400:3085–3096. doi: 10.1007/s00216-011-4974-7. PubMed DOI PMC
Sureka S., Chalcravorty A., Holmes E.C., Spassibojko O., Bhatt N., Wu D.L., Turgeon B.G. Standardization of functional reporter and antibiotic resistance cassettes to facilitate the genetic engineering of filamentous fungi. ACS Synth. Biol. 2014;3:960–962. doi: 10.1021/sb5000143. PubMed DOI
Niemirowicz K., Durnas B., Piktel E., Bucki R. Development of antifungal therapies using nanomaterials. Nanomedicine. 2017;12:1891–1905. doi: 10.2217/nnm-2017-0052. PubMed DOI
Roque L., Molpeceres J., Reis C., Rijo P., Reis C.P. Past, recent progresses and future perspectives of nanotechnology applied to antifungal agents. Curr. Drug Metab. 2017;18:280–290. doi: 10.2174/1389200218666170201152000. PubMed DOI
Niemirowicz K., Bucki R. Enhancing the fungicidal activity of antibiotics: Are magnetic nanoparticles the key? Nanomedicine. 2017;12:1747–1749. doi: 10.2217/nnm-2017-0051. PubMed DOI
Soliman G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm. 2017;523:15–32. doi: 10.1016/j.ijpharm.2017.03.019. PubMed DOI
Voltan A.R., Quindos G., Alarcon K.P.M., Fusco-Almeida A.M., Mendes-Giannini M.J.S., Chorilli M. Fungal diseases: Could nanostructured drug delivery systems be a novel paradigm for therapy? Int. J. Nanomed. 2016;11:3715–3730. doi: 10.2147/IJN.S93105. PubMed DOI PMC
Adelere I.A., Lateef A. A novel approach to the green synthesis of metallic nanoparticles: The use of agro-wastes, enzymes, and pigments. Nanotechnol. Rev. 2016;5:567–587. doi: 10.1515/ntrev-2016-0024. DOI
Gupta D., Chauhan P. Fungicidal activity of silver nanoparticles against Alternaria brassicicola. In: Sharma N.N., Gaol F.L., Akhtar J., editors. 2nd International Conference on Emerging Technologies: Micro to Nano 2015. Volume 1724 AIP Publishing; Melville, NY, USA: 2016.
Abdel-Hafez S.I.I., Nafady N.A., Abdel-Rahim I.R., Shaltout A.M., Daros J.A., Mohamed M.A. Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech. 2016;6:199. doi: 10.1007/s13205-016-0515-6. PubMed DOI PMC
Majumder S., Shakil N.A., Kumar J., Banerjee T., Sinha P., Singh B.B., Garg P. Eco-friendly peg-based controlled release nano-formulations of mancozeb: Synthesis and bioefficacy evaluation against phytopathogenic fungi alternaria solani and sclerotium rolfsii. J. Environ. Sci. Health Part B Pest. Contam. Agric. Wastes. 2016;51:873–880. doi: 10.1080/03601234.2016.1211917. PubMed DOI
Khalili S.T., Mohsenifar A., Beyki M., Zhaveh S., Rahmani-Cherati T., Abdollahi A., Bayat M., Tabatabaei M. Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against aspergillus flavus. LWT-Food Sci. Technol. 2015;60:502–508. doi: 10.1016/j.lwt.2014.07.054. DOI
Beyki M., Zhaveh S., Khalili S.T., Rahmani-Cherati T., Abollahi A., Bayat M., Tabatabaei M., Mohsenifar A. Encapsulation of mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against aspergillus flavus. Ind. Crops Prod. 2014;54:310–319. doi: 10.1016/j.indcrop.2014.01.033. DOI
Zhaveh S., Mohsenifar A., Beiki M., Khalili S.T., Abdollahi A., Rahmani-Cherati T., Tabatabaei M. Encapsulation of cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against aspergillus flavus. Ind. Crops Prod. 2015;69:251–256. doi: 10.1016/j.indcrop.2015.02.028. DOI
Li H.B., Shen Q.S., Zhou W., Mo H.Z., Pan D.D., Hu L.B. Nanocapsular dispersion of cinnamaldehyde for enhanced inhibitory activity against aflatoxin production by aspergillus flavus. Molecules. 2015;20:6022–6032. doi: 10.3390/molecules20046022. PubMed DOI PMC
Zhao J., Wang L., Xu D., Lu Z.S. Involvement of ros in nanosilver-caused suppression of aflatoxin production from aspergillus flavus. RSC Adv. 2017;7:23021–23026. doi: 10.1039/C7RA02312J. DOI
Babaei E., Dehnad A., Hajizadeh N., Valizadeh H., Reihani S.F.S. A study on inhibitory effects of titanium dioxide nanoparticles and its photocatalytic type on Staphylococcus aureus, Escherichia coli and Aspergillus flavus. Appl. Food Biotechnol. 2016;3:115–123.
Yu K.P., Huang Y.T., Yang S.C. The antifungal efficacy of nano-metals supported TiO2 and ozone on the resistant aspergillus niger spore. J. Hazard. Mater. 2013;261:155–162. doi: 10.1016/j.jhazmat.2013.07.029. PubMed DOI
Pinto R.J.B., Almeida A., Fernandes S.C.M., Freire C.S.R., Silvestre A.J.D., Neto C.P., Trindade T. Antifungal activity of transparent nanocomposite thin films of pullulan and silver against aspergillus niger. Colloid Surf. B Biointerfaces. 2013;103:143–148. doi: 10.1016/j.colsurfb.2012.09.045. PubMed DOI
Mitra C., Gummadidala P.M., Afshinnia K., Merrifield R.C., Baalousha M., Lead J.R., Chanda A. Citrate-coated silver nanoparticles growth-independently inhibit aflatoxin synthesis in aspergillus parasiticus. Environ. Sci. Technol. 2017;51:8085–8093. doi: 10.1021/acs.est.7b01230. PubMed DOI
Mousavi S.A.A., Pourtalebi S. Inhibitory effects of silver nanoparticles on growth and aflatoxin B-1 production by aspergillus parasiticus. Iran. J. Med. Sci. 2015;40:501–506. PubMed PMC
Rashed A.-O.M., Mohamed A.-E.-A.A.R., Abobakr M.M. Wheat protection from root rot caused by fusarium culmorum using silver nanoparticles. J. Chem. Soc. Pak. 2016;38:898–903.
Kheiri A., Moosawi Jorf S.A., Malihipour A., Saremi H., Nikkhah M. Synthesis and characterization of chitosan nanoparticles and their effect on fusarium head blight and oxidative activity in wheat. Int. J. Biol. Macromol. 2017;102:526–538. doi: 10.1016/j.ijbiomac.2017.04.034. PubMed DOI
Dananjaya S.H.S., Erandani W., Kim C.H., Nikapitiya C., Lee J., De Zoysa M. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against fusarium oxysporum species complex. Int. J. Biol. Macromol. 2017;105:478–488. doi: 10.1016/j.ijbiomac.2017.07.056. PubMed DOI
Shenashen M., Derbalah A., Hamza A., Mohamed A., El Safty S. Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by fusarium oxysporium. Pest Manag. Sci. 2017;73:1121–1126. doi: 10.1002/ps.4420. PubMed DOI
Boxi S.S., Mukherjee K., Paria S. Ag doped hollow TiO2 nanoparticles as an effective green fungicide against fusarium solani and venturia inaequalis phytopathogens. Nanotechnology. 2016;27:085103. doi: 10.1088/0957-4484/27/8/085103. PubMed DOI
He L.L., Liu Y., Mustapha A., Lin M.S. Antifungal activity of zinc oxide nanoparticles against botrytis cinerea and penicillium expansum. Microbiol. Res. 2011;166:207–215. doi: 10.1016/j.micres.2010.03.003. PubMed DOI
Khamis Y., Hashim A.F., Margarita R., Alghuthaymi M.A., Abd-Elsalam K.A. Fungicidal efficacy of chemically-produced copper nanoparticles against penicillium digitatum and fusarium solani on citrus fruit. Philipp. Agric. Sci. 2017;100:69–78.
Kotzybik K., Graf V., Kugler L., Stoll D.A., Greiner R., Geisen R., Schmidt-Heydt M. Influence of different nanomaterials on growth and mycotoxin production of penicillium verrucosum. PLoS ONE. 2016;11:e0150855. doi: 10.1371/journal.pone.0150855. PubMed DOI PMC
Zeng X.L., Zhang F.Q., He N.Y., Zhang B.Y., Liu X.Y., Li X.L. Zno nanoparticles of different shapes and their antimycotic property against penicillium and mucor. Nanosci. Nanotechnol. Lett. 2016;8:688–694. doi: 10.1166/nnl.2016.2206. DOI
Medda S., Hajra A., Dey U., Bose P., Mondal N.K. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl. Nanosci. 2015;5:875–880. doi: 10.1007/s13204-014-0387-1. DOI
Ammar H.A.M., El-Desouky T.A. Green synthesis of nanosilver particles by aspergillus terreus HA1N and penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J. Appl. Microbiol. 2016;121:89–100. doi: 10.1111/jam.13140. PubMed DOI
Devipriya D., Roopan S.M. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against aspergillus niger, aspergillus flavus. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;80:38–44. doi: 10.1016/j.msec.2017.05.130. PubMed DOI
Yassin M.A., El-Samawaty A.M.A., Dawoud T.M., Abd-Elkader O.H., Al Maary K.S., Hatamleh A.A., Elgorban A.M. Characterization and anti-aspergillus flavus impact of nanoparticles synthesized by penicillium citrinum. Saudi J. Biol. Sci. 2017;24:1243–1248. doi: 10.1016/j.sjbs.2016.10.004. PubMed DOI PMC
Shakibaie M., Mohazab N.S., Mousavi S.A.A. Antifungal activity of selenium nanoparticles synthesized by bacillus species Msh-1 against aspergillus fumigatus and candida albicans. Jundishapur J. Microbiol. 2015;8:e26381. doi: 10.5812/jjm.26381. PubMed DOI PMC
Xue B.J., He D., Gao S., Wang D.Y., Yokoyama K., Wang L. Biosynthesis of silver nanoparticles by the fungus arthroderma fulvum and its antifungal activity against genera of candida, aspergillus and fusarium. Int. J. Nanomed. 2016;11:1899–1906. PubMed PMC
Madbouly A.K., Abdel-Aziz M.S., Abdel-Wahhab M.A. Biosynthesis of nanosilver using chaetomium globosum and its application to control fusarium wilt of tomato in the greenhouse. IET Nanobiotechnol. 2017;11:702–708. doi: 10.1049/iet-nbt.2016.0213. DOI
Pietrzak K., Twaruzek M., Czyzowska A., Kosicki R., Gutarowska B. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim. Pol. 2015;62:851–857. doi: 10.18388/abp.2015_1146. PubMed DOI
Lara H.H., Romero-Urbina D.G., Pierce C., Lopez-Ribot J.L., Arellano-Jimenez M.J., Jose-Yacaman M. Effect of silver nanoparticles on candida albicans biofilms: An ultrastructural study. J. Nanobiotechnol. 2015;13:91. doi: 10.1186/s12951-015-0147-8. PubMed DOI PMC
Tang Z.Y., Kotov N.A. One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 2005;17:951–962. doi: 10.1002/adma.200401593. DOI
Stroka J., Maragos C.M. Challenges in the analysis of multiple mycotoxins. World Mycotoxin J. 2016;9:847–861. doi: 10.3920/WMJ2016.2038. DOI
Chemical and physical characteristics of the principal mycotoxins. IARC Sci. Public. 2012;158:31–38. PubMed
Gibson N., Shenderova O., Luo T.J.M., Moseenkov S., Bondar V., Puzyr A., Purtov K., Fitzgerald Z., Brenner D.W. Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater. 2009;18:620–626. doi: 10.1016/j.diamond.2008.10.049. DOI
Chen W., Duan L., Zhu D.Q. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 2007;41:8295–8300. doi: 10.1021/es071230h. PubMed DOI
Kovac T., Sarkanj B., Klapec T., Borisev I., Kovac M., Nevistic A., Strelec I. Fullerol C60(OH)24 nanoparticles and mycotoxigenic fungi: A preliminary investigation into modulation of mycotoxin production. Environ. Sci. Pollut. Res. 2017;24:16673–16681. doi: 10.1007/s11356-017-9214-z. PubMed DOI
Aoshima H., Kokubo K., Shirakawa S., Ito M., Yamana S., Oshima T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci. 2009;14:69–72. doi: 10.4265/bio.14.69. PubMed DOI
Puzyr A.P., Purtov K.V., Shenderova O.A., Luo M., Brenner D.W., Bondar V.S. The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Dokl. Biochem. Biophys. 2007;417:299–301. doi: 10.1134/S1607672907060026. PubMed DOI
Gibson N.M., Luo T.J.M., Brenner D.W., Shenderova O. Immobilization of mycotoxins on modified nanodiamond substrates. Biointerphases. 2011;6:210–217. doi: 10.1116/1.3672489. PubMed DOI
Golokhvast K.S., Chaika V.V., Kuznetsov L.V., Elumeeva K.V., Kusaikin M.I., Zakharenko A.M., Kiselev N.N., Panichev A.M., Reva G.V., Usov V.V., et al. Effects of multiwalled carbon nanotubes received orally during 6 days on the gastrointestinal tract. Bull. Exp. Biol. Med. 2013;155:788–792. doi: 10.1007/s10517-013-2253-7. PubMed DOI
Boczkowski J., Lanone S. Potential uses of carbon nanotubes in the medical field: How worried should patients be? Nanomedicine. 2007;2:407–410. doi: 10.2217/17435889.2.4.407. PubMed DOI
Han Z., Jiang K., Fan Z., Diana Di Mavungu J., Dong M., Guo W., Fan K., Campbell K., Zhao Z., Wu Y. Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Control. 2017;79:177–184. doi: 10.1016/j.foodcont.2017.03.044. DOI
Ying Y.-F., Wu Y.-L., Wen Y., Yang T., Xu X.-Q., Wang Y.-Z. Simultaneous determination of six resorcylic acid lactones in feed using liquid chromatography-tandem mass spectrometry and multi-walled carbon nanotubes as a dispersive solid phase extraction sorbent. J. Chromatogr. A. 2013;1307:41–48. doi: 10.1016/j.chroma.2013.07.079. PubMed DOI
Moreno V., Zougagh M., Rios A. Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. Microchim. Acta. 2016;183:871–880. doi: 10.1007/s00604-015-1722-2. DOI
Dong M., Si W., Wang W., Bai B., Nie D., Song W., Zhao Z., Guo Y., Han Z. Determination of type a trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2016;408:6823–6831. doi: 10.1007/s00216-016-9809-0. PubMed DOI
Jiang K., Huang P., Luan L., Fan K., Guo W., Zhao Z., Wu Y., Han Z. Iron (II, III) oxide/multi-walled carbon nanotube composite as solid-phase extraction sorbent followed by ultra-high performance liquid chromatography tandem mass spectrometry for simultaneous determination of zearalenone and type a trichothecenes in salviae miltiorrhizae radix et rhizoma (danshen) J. Chromatogr. A. 2017;1482:1–10. PubMed
Dong M., Si W., Jiang K., Nie D., Wu Y., Zhao Z., De Saeger S., Han Z. Multi-walled carbon nanotubes as solid-phase extraction sorbents for simultaneous determination of type a trichothecenes in maize, wheat and rice by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2015;1423:177–182. doi: 10.1016/j.chroma.2015.10.068. PubMed DOI
Singh C., Srivastava S., Ali M.A., Gupta T.K., Sumana G., Srivastava A., Mathur R.B., Malhotra B.D. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sens. Actuators B Chem. 2013;185:258–264. doi: 10.1016/j.snb.2013.04.040. DOI
Pirouz A.A., Selamat J., Iqbal S.Z., Mirhosseini H., Karjiban R.A., Bakar F.A. The use of innovative and efficient nanocomposite (magnetic graphene oxide) for the reduction on of fusarium mycotoxins in palm kernel cake. Sci. Rep. 2017;7:12453. doi: 10.1038/s41598-017-12341-3. PubMed DOI PMC
Magro M., Moritz D.E., Bonaiuto E., Baratella D., Terzo M., Jakubec P., Malina O., Cepe K., Falcao de Aragao G.M., Zboril R., et al. Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles. Food Chem. 2016;203:505–512. doi: 10.1016/j.foodchem.2016.01.147. PubMed DOI
Khajarern J.M., Khajarern S., Moon T.H., Lee J.H. Effects of dietary supplementation of fermented chitin-chitosan (fermkit) on toxicity of mycotoxin in ducks. Asian-Australas. J. Anim. Sci. 2003;16:706–713. doi: 10.5713/ajas.2003.706. DOI
Huang J., Huang Z., Kang Y., Wang A., Zong L. Mycotoxin Adsorbent Preparation Used for Removing Feed Mycotoxin Zearalenone and Reducing Diarrhea, and Used as Antibacterial, Involves Dissolving Chitosan in Organic Acid Solution, and then Adding Rectorite is Added to Solution. CN103831088-A. CN Patent. 2014 Jun 4; CN103831088-B, 27 January 2016.
Desai K.G.H. Chitosan nanoparticles prepared by ionotropic gelation: An overview of recent advances. Crit. Rev. Ther. Drug Carrier Syst. 2016;33:107–158. doi: 10.1615/CritRevTherDrugCarrierSyst.2016014850. PubMed DOI
Huang Y., Lapitsky Y. On the kinetics of chitosan/tripolyphosphate micro- and nanogel aggregation and their effects on particle polydispersity. J. Colloid Interface Sci. 2017;486:27–37. doi: 10.1016/j.jcis.2016.09.050. PubMed DOI
Sacco P., Paoletti S., Cok M., Asaro F., Abrami M., Grassi M., Donati I. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int. J. Biol. Macromol. 2016;92:476–483. doi: 10.1016/j.ijbiomac.2016.07.056. PubMed DOI
Graham L.M., Nguyen T.M., Lee S.B. Nanodetoxification: Emerging role of nanomaterials in drug intoxication treatment. Nanomedicine. 2011;6:921–928. doi: 10.2217/nnm.11.75. PubMed DOI PMC
Zhao Z., Liu N., Yang L., Wang J., Song S., Nie D., Yang X., Hou J., Wu A. Cross-linked chitosan polymers as generic adsorbents for simultaneous adsorption of multiple mycotoxins. Food Control. 2015;57:362–369. doi: 10.1016/j.foodcont.2015.05.014. DOI
Luo Y., Zhou Z., Yue T. Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chem. 2017;221:317–323. doi: 10.1016/j.foodchem.2016.09.008. PubMed DOI
Swain P.S., Rao S.B.N., Rajendran D., Dominic G., Selvaraju S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016;2:134–141. doi: 10.1016/j.aninu.2016.06.003. PubMed DOI PMC
Shi Y.H., Xu Z.R., Feng J.L., Wang C.Z. Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Anim. Feed Sci. Technol. 2006;129:138–148. doi: 10.1016/j.anifeedsci.2005.12.006. DOI
Al-Shemmari F.H.J., Rabah A.A., Al-Mulla E.A.J., Abd Alrahman N.O.M. Preparation and characterization of natural rubber latex/modified montmorillonite clay nano-composite. Res. Chem. Intermed. 2013;39:4293–4301. doi: 10.1007/s11164-012-0946-6. DOI
Yuan P., Tan D.Y., Annabi-Bergaya F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Appl. Clay Sci. 2015;112:75–93. doi: 10.1016/j.clay.2015.05.001. DOI
Lvov Y., Wang W.C., Zhang L.Q., Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016;28:1227–1250. doi: 10.1002/adma.201502341. PubMed DOI
Lun H.L., Ouyang J., Yang H.M. Natural halloysite nanotubes modified as an aspirin carrier. RSC Adv. 2014;4:44197–44202. doi: 10.1039/C4RA09006C. DOI
Patel S., Jammalamadaka U., Sun L., Tappa K., Mills D.K. Sustained release of antibacterial agents from doped halloysite nanotubes. Bioengineering. 2016;3:1. doi: 10.3390/bioengineering3010001. PubMed DOI PMC
Hanif M., Jabbar F., Sharif S., Abbas G., Farooq A., Aziz M. Halloysite nanotubes as a new drug-delivery system: A review. Clay Miner. 2016;51:469–477. doi: 10.1180/claymin.2016.051.3.03. DOI
Sun L., Mills D.K., IEEE Halloysite nanotube-based drug delivery system for treating osteosarcoma; Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. 26–30 August 2014; pp. 2920–2923. PubMed
Long Z.R., Zhang J., Shen Y., Zhou C.R., Liu M.X. Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;81:224–235. doi: 10.1016/j.msec.2017.07.035. PubMed DOI
Jana S., Kondakova A.V., Shevchenko S.N., Sheval E.V., Gonchar K.A., Timoshenko V.Y., Vasiliev A.N. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application. Colloid Surf. B Biointerfaces. 2017;151:249–254. doi: 10.1016/j.colsurfb.2016.12.017. PubMed DOI
Tham W.L., Poh B.T., Mohd Ishak Z.A., Chow W.S. Transparent poly(lactic acid)/halloysite nanotube nanocomposites with improved oxygen barrier and antioxidant properties. J. Ther. Anal. Calorim. 2016;126:1331–1337. doi: 10.1007/s10973-016-5834-7. DOI
Vergaro V., Lvov Y.M., Leporatti S. Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol. Biosci. 2012;12:1265–1271. doi: 10.1002/mabi.201200121. PubMed DOI
Hari J., Gyurki A., Sarkozi M., Foldes E., Pukanszky B. Competitive interactions and controlled release of a natural antioxidant from halloysite nanotubes. J. Colloid Interface Sci. 2016;462:123–129. doi: 10.1016/j.jcis.2015.09.054. PubMed DOI
Zhong B.C., Lin J., Liu M.L., Jia Z.X., Luo Y.F., Jia D.M., Liu F. Preparation of halloysite nanotubes loaded antioxidant and its antioxidative behaviour in natural rubber. Polym. Degrad. Stab. 2017;141:19–25. doi: 10.1016/j.polymdegradstab.2017.05.009. DOI
Fu Y., Zhao D.T., Yao P.J., Wang W.C., Zhang L.Q., Lvov Y. Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes. ACS Appl. Mater. Interfaces. 2015;7:8156–8165. doi: 10.1021/acsami.5b00993. PubMed DOI
Zhang Y.Y., Gao R., Liu M., Shi B.M., Shan A.S., Cheng B.J. Use of modified halloysite nanotubes in the feed reduces the toxic effects of zearalenone on sow reproduction and piglet development. Theriogenology. 2015;83:932–941. doi: 10.1016/j.theriogenology.2014.11.027. PubMed DOI
Gao R., Meng Q.W., Li J.N., Zhang Y.Y., Bi C.P., Shan A.S. Modified halloysite nanotubes reduce the toxic effects of zearalenone in gestating sows on growth and muscle development of their offsprings. J. Anim. Sci. Biotechnol. 2016;7:14. doi: 10.1186/s40104-016-0071-2. PubMed DOI PMC
Zhang Y.Y., Gao R., Liu M., Yan C.J., Shan A.S. Adsorption of modified halloysite nanotubes in vitro and the protective effect in rats exposed to zearalenone. Arch. Anim. Nutr. 2014;68:320–335. doi: 10.1080/1745039X.2014.927710. PubMed DOI
Jia Z.Q., Yin S.T., Liu M., Zhang Y.Y., Gao R., Shi B.M., Shan A.S., Chen Z.H. Modified halloysite nanotubes and the alleviation of kidney damage induced by dietary zearalenone in swine. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015;32:1312–1321. doi: 10.1080/19440049.2015.1048748. PubMed DOI
Fakhrullina G.I., Akhatova F.S., Lvov Y.M., Fakhrullin R.F. Toxicity of halloysite clay nanotubes in vivo: A caenorhabditis elegans study. Environ. Sci. Nano. 2015;2:54–59. doi: 10.1039/C4EN00135D. DOI
Fastov S.A., Terent’ev A.O., Fastov I.S., Firstova V.V., Kalmantaeva O.V. Abstracts of Papers of the American Chemical Society. Vol. 245 American Chemical Society; Washington, DC, USA: 2013. Study of halloysite clay nanotube toxicity as related to their structure.
Cardoso M.M., Peca I.N., Roque A.C.A. Antibody-conjugated nanoparticles for therapeutic applications. Curr. Med. Chem. 2012;19:3103–3127. doi: 10.2174/092986712800784667. PubMed DOI
Carter T., Mulholland P., Chester K. Antibody-targeted nanoparticles for cancer treatment. Immunotherapy. 2016;8:941–958. doi: 10.2217/imt.16.11. PubMed DOI
Welch N.G., Scoble J.A., Muir B.W., Pigram P.J. Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases. 2017;12:02D301. doi: 10.1116/1.4978435. PubMed DOI
Kumada Y. Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. Biochim. Biophys. Acta-Proteins Proteom. 2014;1844:1960–1969. doi: 10.1016/j.bbapap.2014.07.007. PubMed DOI
Rusmini F., Zhong Z., Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules. 2007;8:1775–1789. doi: 10.1021/bm061197b. PubMed DOI
Duval F., van Beek T.A., Zuilhof H. Key steps towards the oriented immobilization of antibodies using boronic acids. Analyst. 2015;140:6467–6472. doi: 10.1039/C5AN00589B. PubMed DOI
Kim H.-J., Kim S.-H., Lee J.-K., Choi C.-U., Lee H.-S., Kang H.-G., Cha S.-H. A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed. J. Vet. Sci. 2012;13:363–369. doi: 10.4142/jvs.2012.13.4.363. PubMed DOI PMC
Xiong Y., Tu Z., Huang X., Xie B., Xiong Y., Xu Y. Magnetic beads carrying poly(acrylic acid) brushes as “nanobody containers” for immunoaffinity purification of aflatoxin B1 from corn samples. RSC Adv. 2015;5:77380–77387. doi: 10.1039/C5RA15843E. DOI
Ali I., Peng C.S., Khan Z.M., Naz I. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J. Basic Microbiol. 2017;57:643–652. doi: 10.1002/jobm.201700052. PubMed DOI
Lin W., Pan Y.X., Bazylinski D.A. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ. Microbiol. Rep. 2017;9:345–356. doi: 10.1111/1758-2229.12550. PubMed DOI
Pi F., Sun J., Liu W., Sun X., Zhang Y. Elimination of aflatoxin B1 in vegetable oil based on immunomagnetosomes probes from a novel magnetotactic bacterium. Food Control. 2017;80:319–326. doi: 10.1016/j.foodcont.2017.04.004. DOI
Awad W.A., Ghareeb K., Dadak A., Hess M., Bohm J. Single and combined effects of deoxynivalenol mycotoxin and a microbial feed additive on lymphocyte DNA damage and oxidative stress in broiler chickens. PLoS ONE. 2014;9:e88028. doi: 10.1371/journal.pone.0088028. PubMed DOI PMC
Hou Y.J., Zhao Y.Y., Xiong B., Cui X.S., Kim N.H., Xu Y.X., Sun S.C. Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS ONE. 2013;8:e60374. doi: 10.1371/journal.pone.0060374. PubMed DOI PMC
Horky P., Skladanka J., Nevrkla P., Slama P. Effect of diet supplemented with antioxidants (selenium, copper, vitamins E and C) on antioxidant status and ejaculate quality of breeding boars. Ann. Anim. Sci. 2016;16:521–532. doi: 10.1515/aoas-2015-0085. DOI
Horky P., Ruttkay-Nedecky B., Kremplova M., Krystofova O., Kensova R., Hynek D., Babula P., Zitka O., Zeman L., Adam V., et al. Effect of different doses of organically bound selenium on antioxidant status and levels of metal ions in postpartum sows. Int. J. Electrochem. Sci. 2013;8:6162–6179.
Skalickova S., Milosavljevic V., Cihalova K., Horky P., Richtera L., Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017;33:83–90. doi: 10.1016/j.nut.2016.05.001. PubMed DOI
Kovacic P., Somanathan R. Biomechanisms of nanoparticles (toxicants, antioxidants and therapeutics): Electron transfer and reactive oxygen species. J. Nanosci. Nanotechnol. 2010;10:7919–7930. doi: 10.1166/jnn.2010.3028. PubMed DOI
Nelson B.C., Johnson M.E., Walker M.L., Riley K.R., Sims C.M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants. 2016;5:15. doi: 10.3390/antiox5020015. PubMed DOI PMC
Raveendran P., Fu J., Wallen S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003;125:13940–13941. doi: 10.1021/ja029267j. PubMed DOI
Kohli E., Raj H.G., Kumari R., Rohil V., Kaushik N.K., Prasad A.K., Parmar V.S. Comparison of the prevention of aflatoxin B1-induced genotoxicity by quercetin and quercetin pentaacetate. Bioorg. Med. Chem. Lett. 2002;12:2579–2582. doi: 10.1016/S0960-894X(02)00478-X. PubMed DOI
Choi K.C., Chung W.T., Kwon J.K., Yu J.Y., Jang Y.S., Park S.M., Lee S.Y., Lee J.C. Inhibitory effects of quercetin on aflatoxin B1-induced hepatic damage in mice. Food Chem. Toxicol. 2010;48:2747–2753. doi: 10.1016/j.fct.2010.07.001. PubMed DOI
Periasamy R., Kalal I.G., Krishnaswamy R., Viswanadha V. Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation. Environ. Toxicol. 2016;31:855–865. doi: 10.1002/tox.22096. PubMed DOI
Abbas Z., Blank R., Wein S., Wolffram S. Effect of quercetin on the toxicokinetics of ochratoxin A in rats. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2013;30:861–866. doi: 10.1080/19440049.2013.793823. PubMed DOI
Orsolic N., Jazvinscak Jembrek M., Terzic S. Honey and quercetin reduce ochratoxin A-induced DNA damage in the liver and the kidney through the modulation of intestinal microflora. Food Agric. Immunol. 2017;28:812–833. doi: 10.1080/09540105.2017.1313819. DOI
Lesniak-Walentyn A., Kolesarova A., Medvedova M., Maruniakova N., Capcarova M., Kalafova A., Hrabia A., Sirotkin A.V. Proliferation and apoptosis in the rabbit ovary after administration of T-2 toxin and quercetin. J. Anim. Feed Sci. 2013;22:264–271. doi: 10.22358/jafs/65995/2013. DOI
Ben Salem I., Prola A., Boussabbeh M., Guilbert A., Bacha H., Lemaire C., Abid-Essefi S. Activation of ER stress and apoptosis by alpha- and beta-zearalenol in HCT116 cells, protective role of Quercetin. Neurotoxicology. 2016;53:334–342. doi: 10.1016/j.neuro.2015.11.004. PubMed DOI
Ben Salem I., Prola A., Boussabbeh M., Guilbert A., Bacha H., Abid-Essefi S., Lemaire C. Crocin and quercetin protect HCT116 and HEK293 cells from Zearalenone-induced apoptosis by reducing endoplasmic reticulum stress. Cell Stress Chaperones. 2015;20:927–938. doi: 10.1007/s12192-015-0613-0. PubMed DOI PMC
Fernandez-Blanco C., Font G., Ruiz M.-J. Role of quercetin on Caco-2 cells against cytotoxic effects of alternariol and alternariol monomethyl ether. Food Chem. Toxicol. 2016;89:60–66. doi: 10.1016/j.fct.2016.01.011. PubMed DOI
Abdel-Wahhab M.A., Aljawish A., El-Nekeety A.A., Abdel-Aziem S.H., Hassan N.S. Chitosan nanoparticles plus quercetin suppress the oxidative stress, modulate DNA fragmentation and gene expression in the kidney of rats fed ochratoxin A-contaminated diet. Food Chem. Toxicol. 2017;99:209–221. doi: 10.1016/j.fct.2016.12.002. PubMed DOI
Sun G.Y., Chen Z.H., Jasmer K.J., Chuang D.Y., Gu Z.Z., Hannink M., Simonyi A. Quercetin attenuates inflammatory responses in BV-2 microglial cells: Role of MAPKs on the nrf2 pathway and induction of heme oxygenase-1. PLoS ONE. 2015;10:e0141509. doi: 10.1371/journal.pone.0141509. PubMed DOI PMC
Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC
Kaundal B., Dalai S., Choudhury S.R. Nanomaterial toxicity in microbes, plants and animals. In: Ranjan S., Dasgupta N., Lichtfouse E., editors. Nanoscience in Food and Agriculture 5. Springer International Publishing; Cham, Switzerland: 2017. pp. 243–266.
Suresh A.K., Pelletier D.A., Doktycz M.J. Relating nanomaterial properties and microbial toxicity. Nanoscale. 2013;5:463–474. doi: 10.1039/C2NR32447D. PubMed DOI
Chatterjee S., Kumari R.M., Nimesh S. Nanotoxicology: Evaluation of toxicity potential of nanoparticles. In: Nimesh S., Chandra R., Gupta N., editors. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Elsevier; New York City, NY, USA: 2017. pp. 187–201.
Jo H.Y., Kim Y., Park H.W., Moon H.E., Bae S., Kim J., Kim D.G., Paek S.H. The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Exp. Neurobiol. 2015;24:235–245. doi: 10.5607/en.2015.24.3.235. PubMed DOI PMC
Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013;87:1181–1200. doi: 10.1007/s00204-013-1079-4. PubMed DOI PMC
Wang Z.Y., Zhang L., Zhao J., Xing B.S. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environ. Sci. Nano. 2016;3:240–255. doi: 10.1039/C5EN00230C. DOI
Goyal P., Basniwal R.K. Toxicity of nanoparticles and their impact on environment. In: Ghorbanpour M., Khanuja M., Varma A., editors. Nanoscience and Plant-Soil Systems. Volume 48. Springer; Berlin, Germany: 2017. pp. 531–543.
Alshannaq A., Yu J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health. 2017;14:632. doi: 10.3390/ijerph14060632. PubMed DOI PMC
Kharisov B.I., Kharissova O.V., Chavez-Guerrero L. Synthesis techniques, properties, and applications of nanodiamonds. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2010;40:84–101.
Moore L., Yang J.Y., Lang T.T.H., Osawa E., Lee D.K., Johnson W.D., Xi J.Z., Chow E.K.H., Ho D. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano. 2016;10:7385–7400. doi: 10.1021/acsnano.6b00839. PubMed DOI
Sherlala A.I.A., Raman A.A.A., Bello M.M., Asghar A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere. 2018;193:1004–1017. doi: 10.1016/j.chemosphere.2017.11.093. PubMed DOI
Liu J.H., Wang T.C., Wang H.F., Gu Y.G., Xu Y.Y., Tang H., Jia G., Liu Y.F. Biocompatibility of graphene oxide intravenously administrated in mice-effects of dose, size and exposure protocols. Toxicol. Res. 2015;4:83–91. doi: 10.1039/C4TX00044G. DOI
Cervini-Silva J., Palacios E., Gomez-Vidales V. Nontronite as natural source and growth template for (nano)maghemite gamma-Fe2O3 and (nano)wustite Fe1−O. Appl. Clay Sci. 2018;156:178–186. doi: 10.1016/j.clay.2018.02.009. DOI
Shen J.M., Huang G., Zhou X., Zou J., Yang Y., Chen Y.F., Men S.K. Safety evaluation of graphene oxide-based magnetic nanocomposites as mri contrast agents and drug delivery vehicles. RSC Adv. 2014;4:50464–50477. doi: 10.1039/C4RA09657F. DOI
Divya K., Jisha M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018;16:101–112. doi: 10.1007/s10311-017-0670-y. DOI
Bowman K., Leong K.W. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed. 2006;1:117–128. doi: 10.2147/nano.2006.1.2.117. PubMed DOI PMC
Wang X.Y., Du Y.M., Luo J.W. Biopolymer/montmorillonite nanocomposite: Preparation, drug-controlled release property and cytotoxicity. Nanotechnology. 2008;19:065707. doi: 10.1088/0957-4484/19/6/065707. PubMed DOI
Baek M., Lee J.A., Choi S.J. Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Mol. Cell. Toxicol. 2012;8:95–101. doi: 10.1007/s13273-012-0012-x. DOI
Usability of graphene oxide as a mycotoxin binder: In vitro study