Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects

. 2020 Oct 13 ; 6 (4) : . [epub] 20201013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33066193

Grantová podpora
UHK (VT2019-2021) UHK CEP - Centrální evidence projektů

A facet of nanorenaissance in plant pathology hailed the research on the development and application of nanoformulations or nanoproducts for the effective management of phytopathogens deterring the growth and yield of plants and thus the overall crop productivity. Zinc nanomaterials represent a versatile class of nanoproducts and nanoenabled devices as these nanomaterials can be synthesized in quantum amounts through economically affordable processes/approaches. Further, these nanomaterials exhibit potential targeted antimicrobial properties and low to negligible phytotoxicity activities that well-qualify them to be applied directly or in a deviant manner to accomplish significant antibacterial, antimycotic, antiviral, and antitoxigenic activities against diverse phytopathogens causing plant diseases. The photo-catalytic, fluorescent, and electron generating aspects associated with zinc nanomaterials have been utilized for the development of sensor systems (optical and electrochemical biosensors), enabling quick, early, sensitive, and on-field assessment or quantification of the test phytopathogen. However, the proficient use of Zn-derived nanomaterials in the management of plant pathogenic diseases as nanopesticides and on-field sensor system demands that the associated eco- and biosafety concerns should be well discerned and effectively sorted beforehand. Current and possible utilization of zinc-based nanostructures in plant disease diagnosis and management and their safety in the agroecosystem is highlighted.

Zobrazit více v PubMed

Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3:430–439. doi: 10.1038/s41559-018-0793-y. PubMed DOI

FAO . Moving Forward on Food Loss and Waste Reduction. FAO; Rome, Italy: 2019. The State of Food and Agriculture 2019.

Rajasekaran P., Kannan H., Das S., Young M., Santra S. Comparative analysis of copper and zinc-based agrichemical biocide products: Materials characteristics, phytotoxicity and in vitro antimicrobial efficacy. AIMS Environ. Sci. 2016;3:439–455. doi: 10.3934/environsci.2016.3.439. DOI

U.S. EPA/OPPTS (Environmental Protection Agency- Office of Prevention, Pesticides and Toxic Substances) Reregistration Eligibility Decision (R.E.D.) Facts-Zinc Salts. EPA 738-R-98-007, 1992, Washington, DC, U.S. [(accessed on 12 October 2020)]; Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/zinc_salt.pdf.

Curry A.S., Price D.E., Tryhorn F.G. Absorption of zinc phosphide particles. Nature. 1959;184:642–643. doi: 10.1038/184642a0. PubMed DOI

Hood G.A. Zinc Phosphide-A new look at an old rodenticide for field rodents; Proceedings of the 5th Vertebrate Pest Conference; Fresno, CA, USA. 7–9 March 1972; pp. 85–92.

US-EPA Zinc oxide: Exemption from the requirement of a tolerance. [(accessed on 12 October 2020)];Fed. Regist. 2018 83:42783–42787. Available online: https://www.govinfo.gov/content/pkg/FR-2018-08-24/pdf/2018-18402.pdf.

Almoudi M.M., Hussein A.S., Abu Hassan M.I., Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent. J. 2018;30:283–291. doi: 10.1016/j.sdentj.2018.06.003. PubMed DOI PMC

Burgess J., Prince R.H. Zinc: Inorganic & Coordination Chemistry. In: King R.B., editor. Encyclopedia of Inorganic Chemistry. 1st ed. John Wiley & Sons, Ltd., Wiley; Hoboken, NJ, USA: 2006. pp. 1–26.

Dos Santos R.A.A., D’Addazio V., Silva J.V.G., Falqueto A.R., Barreto da Silva M., Schmildt E.R., Fernandes A.A. Antifungal Activity of Copper, Zinc and Potassium Compounds on Mycelial Growth and Conidial Germination of Fusarium solani f. sp. piperis. Microbiol. Res. J. Int. 2019;29:1–11. doi: 10.9734/mrji/2019/v29i630179. DOI

Goodwin F.E. Zinc Compounds. In: Kroschwitz J., Howe-Grant M., editors. Kirk-Othmer Encycl. Chem. Technol. John Wiley & Sons, Inc.; New York, NY, USA: 1998. pp. 840–853.

Qureshi S.A., Shafeeq A., Ijaz A., Butt M.M. Development of algae guard façade paint with statistical modeling under natural phenomena. Coatings. 2018;8:440. doi: 10.3390/coatings8120440. DOI

Gupta S., Sharma D., Gupta M. Climate change impact on plant diseases: Opinion, trends and mitigation strategies. In: Kashyap P.L., Srivastava A.K., Tiwari S.P., Kumar S., editors. Microbes for Climate Resilient Agriculture. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2018. pp. 41–56.

Luck J., Asaduzzaman M., Banerjee S., Bhattacharya I., Coughlan K., Debnath G., De Boer D., Dutta S., Forbes G., Griffiths W., et al. The Effects of Climate Change on Pests and Diseases of Major Food Crops in the Asia Pacific Region. Asia Pacific Network for Global Change Research; Kobe, Japan: 2010. Final Report for APN Project (Project Reference: ARCP2010-05CMY-Luck)

Lurwanu Y., Wang Y.P., Abdul W., Zhan J., Yang L.N. Temperature-mediated plasticity regulates the adaptation of Phytophthora infestans to azoxystrobin fungicide. Sustainability. 2020;12:1188. doi: 10.3390/su12031188. DOI

Ishii H. Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Jpn. Agric. Res. Q. 2006;40:205–211. doi: 10.6090/jarq.40.205. DOI

Kalia A., Manchanda P., Bhardwaj S., Singh G. Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. Inorg. Nano-Metal Chem. 2020;50:1053–1062. doi: 10.1080/24701556.2020.1735420. DOI

Kaur G., Kalia A., Sodhi H.S. Size controlled, time-efficient biosynthesis of silver nanoparticles from Pleurotus florida using ultra-violet, visible range, and microwave radiations. Inorg. Nano-Metal Chem. 2020;50:35–41. doi: 10.1080/24701556.2019.1661466. DOI

Munir M.U., Ihsan A., Javed I., Ansari M.T., Bajwa S.Z., Bukhari S.N.A., Ahmed A., Malik M.Z., Khan W.S. Controllably biodegradable hydroxyapatite nanostructures for cefazolin delivery against antibacterial resistance. ACS Omega. 2019;4:7524–7532. doi: 10.1021/acsomega.9b00541. DOI

Kalainila P., Ravindran R.S.E., Rohit R., Renganathan S. Anti-bacterial effect of biosynthesized silver nanoparticles using Kigelia africana. J. Nanosci. Nanoengn. 2015;1:225–232.

Jangra S.L., Stalin K., Dilbaghi N., Kumar S., Tawale J., Singh S.P., Pasricha R. Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J. Nanosci. Nanotechnol. 2012;12:7105–7112. doi: 10.1166/jnn.2012.6574. PubMed DOI

Satyavani K., Gurudeeban S., Ramanathan T., Balasubramanian T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. 2011;9:43. doi: 10.1186/1477-3155-9-43. PubMed DOI PMC

Huang F., Long Y., Liang Q., Purushotham B., Swamy M.K., Duan Y. Safed Musli (Chlorophytum borivilianum L.) Callus-Mediated Biosynthesis of Silver Nanoparticles and Evaluation of their Antimicrobial Activity and Cytotoxicity against Human Colon Cancer Cells. J. Nanomater. 2019:1–8. doi: 10.1155/2019/2418785. DOI

Azizi S., Mohamad R., Shahri M.M., McPhee D.J. Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) schrad: Characterization and biomedical applications. Molecules. 2017;22:301. doi: 10.3390/molecules22020301. PubMed DOI PMC

Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC

Singh J., Vishwakarma K., Ramawat N., Rai P., Singh V.K., Mishra R.K., Kumar V., Tripathi D.K., Sharma S. Nanomaterials and microbes’ interactions: A contemporary overview. 3 Biotech. 2019;9:68. doi: 10.1007/s13205-019-1576-0. PubMed DOI PMC

Díez-Pascual A.M. Antibacterial activity of nanomaterials. Nanomaterials. 2018;8:359. doi: 10.3390/nano8060359. PubMed DOI PMC

Mostafa M., Almoammar H., Abd-Elsalam K.A. Zinc-based nanostructures in plant protection applications. In: Abd-Elsalam K.A., Prasad R., editors. Nanobiotechnology Applications in Plant Protection, Nanotechnology in the Life Sciences. Springer Nature Switzerland AG; Cham, Switzerland: 2019. pp. 49–83.

Vollath D. Nanomaterials: An Introduction to Synthesis, Properties, and Applications. 2nd ed. Wiley-VCH, Verlag GmbH & Co. KGaA; Weinheim, Germany: 2013.

Siegel R. Nanostructured materials. In: Morán-López J.L., Sanchez J.M., editors. Advanced Topics in Materials Science and Engineering. Springer; Boston, MA, USA: New York, NY, USA: 1993. pp. 273–288.

Murr L.E. Handbook of materials structures, properties, processing and performance. In: Murr L., editor. Handbook of Materials Structures, Properties, Processing and Performance. Springer International Publishing; Cham, Switzerland: 2015. pp. 719–746.

Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10:12871–12934. doi: 10.1039/c8nr02278j. PubMed DOI

Roduner E. Physics and Chemistry of Nanostructures: Why nano is different. Encycl. Life Support Syst. 2009:1–35.

Roduner E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006;35:583–592. doi: 10.1039/b502142c. PubMed DOI

de Voorde M., Tulinski M., Jurczyk M. Engineered nanomaterials: A discussion of the major categories of nanomaterials. In: Mansfield E., Kaiser M., Fujita D., de Voorde M., editors. Metrology and Standardization for Nanotechnology: Protocols and Industrial Innovations. Wiley-VCH, Verlag GmbH & Co. KgaA; Weinheim, Germany: 2017. pp. 49–73.

Christian P. Nanomaterials: Properties, Preparation and Applications. In: Lead J.R., Smith E., editors. Environmental and Human Health Impacts of Nanotechnology. Wiley-Blackwell Publishing Ltd.; Chichester, UK: 2009. pp. 31–77.

Sun C.Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 2007;35:1–159. doi: 10.1016/j.progsolidstchem.2006.03.001. DOI

Andrievskii R.A. Size-dependent effects in properties of nanostructured materials. Rev. Adv. Mater. Sci. 2009;21:107–133.

Kalia A., Kaur J., Kaur A., Singh N. Antimycotic activity of biogenically synthesised metal and metal oxide nanoparticles against plant pathogenic fungus Fusarium moniliforme (F. fujikuroi) Indian J. Exp. Biol. 2020;58:263–270.

Khan M., Shaik M.R., Khan S.T., Adil S.F., Kuniyil M., Khan M., Al-Warthan A.A., Siddiqui M.R.H., Nawaz Tahir M. Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles. ACS Omega. 2020;5:1987–1996. doi: 10.1021/acsomega.9b03840. PubMed DOI PMC

Van Der Wal A., Norde W., Zehnder A.J.B., Lyklema J. Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf. B Biointerfaces. 1997;9:81–100. doi: 10.1016/S0927-7765(96)01340-9. DOI

Chen M., Zeng G., Xu P., Lai C., Tang L. How Do Enzymes ‘Meet’ Nanoparticles and Nanomaterials? Trends Biochem. Sci. 2017;42:914–930. doi: 10.1016/j.tibs.2017.08.008. PubMed DOI

Kaur M., Kalia A. Role of salt precursors for the synthesis of zinc oxide nanoparticles and in imparting variable antimicrobial activity. J. Appl. Nat. Sci. 2016;8:1039–1048. doi: 10.31018/jans.v8i2.918. DOI

Cai L., Liu C., Fan G., Liu C., Sun X. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. Nano. 2019;6:3653–3669. doi: 10.1039/C9EN00850K. DOI

Alum A., Rashid A., Mobasher B., Abbaszadegan M. Cement-based biocide coatings for controlling algal growth in water distribution canals. Cem. Concr. Compos. 2008;30:839–847. doi: 10.1016/j.cemconcomp.2008.06.012. DOI

Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI

Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27:4020–4028. doi: 10.1021/la104825u. PubMed DOI

El-Sayed A.S.A., Ali D.M.I. Biosynthesis and comparative bactericidal activity of silver nanoparticles synthesized by Aspergillus flavus and Penicillium crustosum against the multidrug-resistant bacteria. J. Microbiol. Biotechnol. 2018 doi: 10.4014/jmb.1806.05089. PubMed DOI

Jamdagni P., Rana J.S., Khatri P., Nehra K. Comparative account of antifungal activity of green and chemically synthesized Zinc Oxide nanoparticles in combination with agricultural fungicides. Int. J. Nano Dimens. 2018;9:198–208.

Auyeung A., Casillas-Santana M.Á., Martínez-Castañón G.A., Slavin Y.N., Zhao W., Asnis J., Häfeli U.O., Bach H. Effective control of molds using a combination of nanoparticles. PLoS ONE. 2017;12:1–13. doi: 10.1371/journal.pone.0169940. PubMed DOI PMC

Lamsal K., Kim S.W., Jung J.H., Kim Y.S., Kim K.S., Lee Y.S. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology. 2011;39:26–32. doi: 10.4489/MYCO.2011.39.1.026. PubMed DOI PMC

Park H.-J., Kim S.H., Kim H.J., Choi S.-H. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J. 2006;22:295–302. doi: 10.5423/PPJ.2006.22.3.295. DOI

Kim H., Kang H., Chu G., Byun H. Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom. 2008;135:15–18. doi: 10.4028/www.scientific.net/SSP.135.15. DOI

Li J., Sang H., Guo H., Popko J.T., He L., White J.C., Parkash Dhankher O., Jung G., Xing B. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology. 2017;28:155101. doi: 10.1088/1361-6528/aa61f3. PubMed DOI

De La Rosa-García S.C., Martínez-Torres P., Gómez-Cornelio S., Corral-Aguado M.A., Quintana P., Gómez-Ortíz N.M. Antifungal activity of ZnO and MgO nanomaterials and their mixtures against colletotrichum gloeosporioides strains from tropical fruit. J. Nanomater. 2018;2018 doi: 10.1155/2018/3498527. DOI

Karimiyan A., Najafzadeh H., Ghorbanpour M., Hekmati-Moghaddam S.H. Antifungal Effect of Magnesium Oxide, Zinc Oxide, Silicon Oxide and Copper Oxide Nanoparticles Against Candida albicans. Zahedan J. Res. Med. Sci. 2015;17:2–4. doi: 10.17795/zjrms-2179. DOI

Roy A., Gauri S.S., Bhattacharya M., Bhattacharya J. Antimicrobial activity of CaO nanoparticles. J. Biomed. Nanotechnol. 2013;9:1570–1578. doi: 10.1166/jbn.2013.1681. PubMed DOI

Malandrakis A.A., Kavroulakis N., Chrysikopoulos C.V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019;670:292–299. doi: 10.1016/j.scitotenv.2019.03.210. PubMed DOI

Choudhary M.A., Manan R., Aslam Mirza M., Rashid Khan H., Qayyum S., Ahmed Z. Biogenic Synthesis of Copper oxide and Zinc oxide Nanoparticles and their Application as Antifungal Agents. Int. J. Mater. Sci. Eng. 2018;4:1–6. doi: 10.14445/23948884/ijmse-v4i1p101. DOI

Hao Y., Cao X., Ma C., Zhang Z., Zhao N., Ali A., Hou T., Xiang Z., Zhuang J., Wu S., et al. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. Front. Plant Sci. 2017;8:1–9. doi: 10.3389/fpls.2017.01332. PubMed DOI PMC

Al-Dhabaan F.A., Shoala T., Ali A.A., Alaa M., Abd-Elsalam K., Abd-Elsalam K. Chemically-produced copper, zinc nanoparticles and chitosan-bimetallic nanocomposites and their antifungal activity against three phytopathogenic fungi. Int. J. Agric. Technol. 2017;13:753–769.

Vahedi M., Hosseini-Jazani N., Yousefi S., Ghahremani M. Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis. Iran. J. Microbiol. 2017;9:160–168. PubMed PMC

Srihasam S., Thyagarajan K., Korivi M., Lebaka V.R., Mallem S.P.R. Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 2020;10 doi: 10.3390/biom10010089. PubMed DOI PMC

Bogdan J., Zarzyńska J., Pławińska-Czarnak J. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Res. Lett. 2015;10 doi: 10.1186/s11671-015-1023-z. PubMed DOI PMC

Yehia R., Ahmed O.F. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr. J. Microbiol. Res. 2013;7:1917–1923. doi: 10.5897/ajmr2013.5668. DOI

Elsharkawy M., Derbalah A., Hamza A., El-Shaer A. Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res. 2018;27:19049–19057. doi: 10.1007/s11356-018-3806-0. PubMed DOI

Arciniegas-Grijalba P.A., Patiño-Portela M.C., Mosquera-Sánchez L.P., Guerrero-Vargas J.A., Rodríguez-Páez J.E. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 2017;7:225–241. doi: 10.1007/s13204-017-0561-3. DOI

Rana P., Abdullah M., Hameed H.Q., Hasan A.A. The effect of Olea europea L. leaves extract and ZrO2 nanoparticles on Acinetobacter baumannii. J. Pharm. Sci. Res. 2019;11:2019.

Joshi S.M., De Britto S., Jogaiah S., Ito S.I. Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules. 2019;9:419. doi: 10.3390/biom9090419. PubMed DOI PMC

Srivastava N., Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst. Eng. 2015;38 doi: 10.1007/s00449-015-1413-8. PubMed DOI

Khiralla G.M., El-Deeb B.A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT Food Sci. Technol. 2015;63:1001–1007. doi: 10.1016/j.lwt.2015.03.086. DOI

Shakibaie M., Forootanfar H., Golkari Y., Mohammadi-Khorsand T., Shakibaie M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol. 2015;29:235–241. doi: 10.1016/j.jtemb.2014.07.020. PubMed DOI

Abo Elsoud M.M., Al-Hagar O.E.A., Abdelkhalek E.S., Sidkey N.M. Synthesis and investigations on tellurium myconanoparticles. Biotechnol. Rep. 2018;18:e00247. doi: 10.1016/j.btre.2018.e00247. PubMed DOI PMC

Brown C.D., Cruz D.M., Roy A.K., Webster T.J. Synthesis and characterization of PVP-coated tellurium nanorods and their antibacterial and anticancer properties. J. Nanopart. Res. 2018;20:254. doi: 10.1007/s11051-018-4354-8. DOI

Siddiqi K.S., ur Rahman A., Tajuddin, Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018;13 doi: 10.1186/s11671-018-2532-3. PubMed DOI PMC

Jaffri S.B., Ahmad K.S. Foliar-mediated Ag:ZnO nanophotocatalysts: Green synthesis, characterization, pollutants degradation, and in vitro biocidal activity. Green Process. Synth. 2019;8:172–182. doi: 10.1515/gps-2018-0058. DOI

Mohamed M.A., Abd-Elsalam K.A. Nanoantimicrobials for Plant Pathogens Control: Potential Applications and Mechanistic Aspects. In: Abd-Elsalam K.A., Prasad R., editors. Nanobiotechnology Applications in Plant Protection-Nanotechnology in the Life Sciences. Springer International Publishing AG; Cham, Switzerland: 2018. pp. 111–135.

Agarwal H., Menon S., Venkat Kumar S., Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018;286:60–70. doi: 10.1016/j.cbi.2018.03.008. PubMed DOI

Al-Shabib N.A., Husain F.M., Ahmed F., Khan R.A., Ahmad I., Alsharaeh E., Khan M.S., Hussain A., Rehman M.T., Yusuf M., et al. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep. 2016;6:1–16. doi: 10.1038/srep36761. PubMed DOI PMC

Ogunyemi S.O., Abdallah Y., Zhang M., Fouad H., Hong X., Ibrahim E., Masum M.M.I., Hossain A., Mo J., Li B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 2019;47:341–352. doi: 10.1080/21691401.2018.1557671. PubMed DOI

Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018;9:1–18. doi: 10.3389/fmicb.2018.00898. PubMed DOI PMC

Kim S.W., Kim K.S., Lamsal K., Kim Y.J., Kim S.B., Jung M., Sim S.J., Kim H.S., Chang S.J., Kim J.K., et al. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J. Microbiol. Biotechnol. 2009;19:760–764. doi: 10.4014/jmb.0812.649. PubMed DOI

Lamsal K., Kim S.W., Jung J.H., Kim Y.S., Kim K.S., Lee Y.S. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology. 2011;39:194–199. doi: 10.5941/MYCO.2011.39.3.194. PubMed DOI PMC

Elmer W., White J.C. The Future of Nanotechnology in Plant Pathology. Annu. Rev. Phytopathol. 2018;56:111–133. doi: 10.1146/annurev-phyto-080417-050108. PubMed DOI

Park S.J., Park H.H., Kim S.Y., Kim S.J., Woo K., Ko G.P. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol. 2014;80:2343–2350. doi: 10.1128/AEM.03427-13. PubMed DOI PMC

Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–8918. doi: 10.3390/molecules16108894. PubMed DOI PMC

Zeedan G.S.G., Abd El-Razik K.A., Allam A.M., Abdalhamed A.M., Abou Zeina H.A. Evaluations of potential antiviral effects of green zinc oxide and silver nanoparticles against bovine herpesvirus-1. Adv. Anim. Vet. Sci. 2020;8:433–443. doi: 10.17582/journal.aavs/2020/8.4.433.443. DOI

Bekele A.Z., Gokulan K., Williams K.M., Khare S. Dose and Size-Dependent Antiviral Effects of Silver Nanoparticles on Feline Calicivirus, a Human Norovirus Surrogate. Foodborne Pathog. Dis. 2016;13:239–244. doi: 10.1089/fpd.2015.2054. PubMed DOI

Shionoiri N., Sato T., Fujimori Y., Nakayama T., Nemoto M., Matsunaga T., Tanaka T. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J. Biosci. Bioeng. 2012;113:580–586. doi: 10.1016/j.jbiosc.2011.12.006. PubMed DOI

Kerry R.G., Malik S., Redda Y.T., Sahoo S., Patra J.K., Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomed. Nanotechnol. Biol. Med. 2019;18:196–220. doi: 10.1016/j.nano.2019.03.004. PubMed DOI PMC

Ben Salem A.N., Zyed R., Lassoued M.A., Nidhal S., Sfar S., Mahjoub A. Plant-derived nanoparticles enhance antiviral activity against coxsakievirus B3 by acting on virus particles and vero cells. Dig. J. Nanomater. Biostructs. 2012;7:737–744.

Rai M., Deshmukh S.D., Ingle A.P., Gupta I.R., Galdiero M., Galdiero S. Metal nanoparticles: The protective nanoshield against virus infection. Crit. Rev. Microbiol. 2016;42:46–56. doi: 10.3109/1040841X.2013.879849. PubMed DOI

Singh L., Kruger H.G., Maguire G.E.M., Govender T., Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017;4:105–131. doi: 10.1177/2049936117713593. PubMed DOI PMC

Milovanovic M., Arsenijevic A., Milovanovic J., Kanjevac T., Arsenijevic N. Nanoparticles in Antiviral Therapy. Antimicrob. Nanoarchit. Synth. Appl. 2017:383–410. doi: 10.1016/B978-0-323-52733-0.00014-8. DOI

Nikaeen G., Abbaszadeh S., Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine. 2020 doi: 10.2217/nnm-2020-0117. PubMed DOI PMC

Itani R., Tobaiqy M., Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020;10:5932–5942. doi: 10.7150/thno.46691. PubMed DOI PMC

Haggag E.G., Elshamy A.M., Rabeh M.A., Gabr N.M., Salem M., Youssif K.A., Samir A., Bin Muhsinah A., Alsayari A., Abdelmohsen U.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomed. 2019;14:6217–6229. doi: 10.2147/IJN.S214171. PubMed DOI PMC

Meléndez-Villanueva M.A., Morán-Santibañez K., Martínez-Sanmiguel J.J., Rangel-López R., Garza-Navarro M.A., Rodríguez-Padilla C., Zarate-Triviño D.G., Trejo-Ávila L.M. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses. 2019;11:1111. doi: 10.3390/v11121111. PubMed DOI PMC

Kumar R., Sahoo G., Pandey K., Nayak M.K., Topno R., Rabidas V., Das P. Virostatic potential of zinc oxide (ZnO) nanoparticles on capsid protein of cytoplasmic side of chikungunya virus. Int. J. Infect. Dis. 2018;73:368. doi: 10.1016/j.ijid.2018.04.4247. DOI

Abdul W., Muhammad A., Atta Ullah K., Asmat A., Abdul B. Role of nanotechnology in diagnosing and treating COVID-19 during the Pandemi. Int. J. Clin. Virol. 2020;4:65–70. doi: 10.29328/journal.ijcv.1001017. DOI

El-Dougdoug N.K., Bondok A.M., El-Dougdoug K.A. Evaluation of Silver Nanoparticles as Antiviral Agent Against ToMV and PVY in Tomato Plants. Middle East J. Appl. Sci. 2018;8:100–111.

Shafie R.M., Salama A.M., Farroh K.Y. Silver nanoparticles activity against Tomato spotted wilt virus. Middle East J. Appl. Sci. 2018;7:1251–1267.

Elbeshehy E.K.F., Elazzazy A.M., Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015;6:1–13. doi: 10.3389/fmicb.2015.00453. PubMed DOI PMC

Elazzazy A.M., Elbeshehy E.K.F., Betiha M.A. In vitro assessment of activity of graphene silver composite sheets against multidrug-resistant bacteria and Tomato Bushy Stunt Virus. Trop. J. Pharm. Res. 2017;16:2705–2711. doi: 10.4314/tjpr.v16i11.19. DOI

Cai L., Cai L., Jia H., Liu C., Wang D., Sun X. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. Hazard. Mater. 2020;393:122415. doi: 10.1016/j.jhazmat.2020.122415. PubMed DOI

Hao Y., Yuan W., Ma C., White J.C., Zhang Z., Adeel M., Zhou T., Rui Y., Xing B. Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana) Environ. Sci. Nano. 2018;5:1685–1693. doi: 10.1039/C8EN00014J. DOI

Hanley C., Layne J., Punnoose A., Reddy K.M., Coombs I., Coombs A., Feris K., Wingett D. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;19:1–7. doi: 10.1088/0957-4484/19/29/295103. PubMed DOI PMC

Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 2011;7:184–192. doi: 10.1016/j.nano.2010.10.001. PubMed DOI

Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90:1–8. doi: 10.1063/1.2742324. PubMed DOI PMC

Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC

Tiwari V., Mishra N., Gadani K., Solanki P.S., Shah N.A., Tiwari M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018;9:1–10. doi: 10.3389/fmicb.2018.01218. PubMed DOI PMC

Sun T., Hao H., Hao W.T., Yi S.M., Li X.P., Li J.R. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts. Nanoscale Res. Lett. 2014;9:1–11. doi: 10.1186/1556-276X-9-98. PubMed DOI PMC

Jiang J., Pi J., Cai J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018;2018 doi: 10.1155/2018/1062562. PubMed DOI PMC

Pinto R.M., Lopes-De-Campos D., Martins M.C.L., Van Dijck P., Nunes C., Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol. Rev. 2019;43:622–641. doi: 10.1093/femsre/fuz021. PubMed DOI PMC

Graham J.H., Johnson E.G., Myers M.E., Young M., Rajasekaran P., Das S., Santra S. Potential of Nano-Formulated Zinc Oxide for Control of Citrus Canker on Grapefruit Trees. Plant Dis. 2016;100:2442–2447. doi: 10.1094/PDIS-05-16-0598-RE. PubMed DOI

Carvalho R., Duman K., Jones J.B., Paret M.L. Bactericidal Activity of Copper-Zinc Hybrid Nanoparticles on Copper-Tolerant Xanthomonas perforans. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-56419-6. PubMed DOI PMC

Siddiqui Z.A., Khan A., Khan M.R., Abd-Allah E.F. Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris medik.) Acta Phytopathol. Entomol. Hungarica. 2018;53:195–212. doi: 10.1556/038.53.2018.012. DOI

Khan M., Siddiqui Z.A. Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol. 2018;71:355–364. doi: 10.1007/s42360-018-0064-5. DOI

Alves M.M., Bouchami O., Tavares A., Córdoba L., Santos C.F., Miragaia M., De Fátima Montemor M. New Insights into Antibiofilm Effect of a Nanosized ZnO Coating against the Pathogenic Methicillin Resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces. 2017;9:28157–28167. doi: 10.1021/acsami.7b02320. PubMed DOI

Fontecha-Umaña F., Ríos-Castillo A.G., Ripolles-Avila C., Rodríguez-Jerez J.J. Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods. 2020;9:442. doi: 10.3390/foods9040442. PubMed DOI PMC

Jindal S., Anand S., Huang K., Goddard J., Metzger L., Amamcharla J. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk spore formers. J. Dairy Sci. 2016;99:9502–9513. doi: 10.3168/jds.2016-11395. PubMed DOI

Espitia P.J.P., Otoni C.G., Soares N.F.F. Zinc Oxide Nanoparticles for Food Packaging Applications. Elsevier Inc.; Amsterdam, The Netherlands: 2016.

Kaur M., Kalia A., Thakur A. Effect of biodegradable chitosan–rice-starch nanocomposite films on post-harvest quality of stored peach fruit. Starch/Staerke. 2017;69:1–12. doi: 10.1002/star.201600208. DOI

Naskar A., Khan H., Sarkar R., Kumar S., Halder D., Jana S. Anti-biofilm activity and food packaging application of room temperature solution process-based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Mater. Sci. Eng. C. 2018;91:743–753. doi: 10.1016/j.msec.2018.06.009. PubMed DOI

Gundersen D.E., Lee I.M., Rehner S.A., Davis R.E., Kingsbury D.T. Phylogeny of mycoplasmalike organisms (phytoplasmas): A basis for their classification. J. Bacteriol. 1994;176:5244–5254. doi: 10.1128/JB.176.17.5244-5254.1994. PubMed DOI PMC

Bové J.M., Garnier M. Walled and wall-less eubacteria from plants: Sieve-tube-restricted plant pathogens. Plant Cell. Tissue Organ Cult. 1998;52:7–16. doi: 10.1023/A:1005939622273. DOI

Lee I., Davis R.E., Dawn E. Phytoplasma: Phytopathogenic Mollicutes. Annu. Rev. Microbiol. 2000;54:221–255. doi: 10.1146/annurev.micro.54.1.221. PubMed DOI

Jurga M., Zwolińska A. Phytoplasmas in Poaceae species: A threat to the most important cereal crops in Europe. J. Plant Pathol. 2020;102:287–297. doi: 10.1007/s42161-019-00481-6. DOI

Rao G.P., Madhupriya, Thorat V., Manimekalai R., Tiwari A.K., Yadav A. A century progress of research on phytoplasma diseases in India. Phytopathog. Mollicutes. 2017;7:1. doi: 10.5958/2249-4677.2017.00001.9. DOI

Kumari S., Nagendran K., Rai A.B., Singh B., Rao G.P., Bertaccini A. Global status of phytoplasma diseases in vegetable crops. Front. Microbiol. 2019;10:1–15. doi: 10.3389/fmicb.2019.01349. PubMed DOI PMC

Namba S. Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019;95:401–418. doi: 10.2183/pjab.95.028. PubMed DOI PMC

Fletcher J., Wayadande A., Melcher U., Ye F. The phytopathogenic mollicute-insect vector interface: A closer look. Phytopathology. 1998;88:1351–1358. doi: 10.1094/PHYTO.1998.88.12.1351. PubMed DOI

Bendix C., Lewis J.D. The enemy within: Phloem-limited pathogens. Mol. Plant Pathol. 2018;19:238–254. doi: 10.1111/mpp.12526. PubMed DOI PMC

Cagliari D., Dias N.P., Galdeano D.M., dos Santos E.Á., Smagghe G., Zotti M.J. Management of pest insects and plant diseases by non-transformative RNAi. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.01319. PubMed DOI PMC

Liu S., Jaouannet M., Dempsey D.A., Imani J., Coustau C., Kogel K.H. RNA-based technologies for insect control in plant production. Biotechnol. Adv. 2020;39:107463. doi: 10.1016/j.biotechadv.2019.107463. PubMed DOI

Yang C., Powell C.A., Duan Y., Shatters R., Zhang M. Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus huanglongbing. PLoS ONE. 2015;10:1–14. doi: 10.1371/journal.pone.0133826. PubMed DOI PMC

Yang C., Zhong Y., Powell C.A., Doud M.S., Duan Y., Huang Y., Zhang M. Antimicrobial Compounds Effective against Candidatus Liberibacter asiaticus Discovered via Graft-based Assay in Citrus. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-35461-w. PubMed DOI PMC

Gabiel D.W., Zhang S. Use of Aldehydes Formulated with Nanoparticles and/or Nanoemulsions to Enhance Disease Resistance of Plants to Liberibacters. US Patent (US20170006863) 2017 Jan 12;:1–73.

Ghosh D.K., Kokane S., Kumar P., Ozcan A., Warghane A., Motghare M., Santra S., Sharma A.K. Antimicrobial nano-zinc oxide-2S albumin protein formulation significantly inhibits growth of “Candidatus Liberibacter asiaticus” in planta. PLoS ONE. 2018;13:1–20. doi: 10.1371/journal.pone.0204702. PubMed DOI PMC

Wagner G., Korenkov V., Judy J.D., Bertsch P.M. Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials. 2016;6:50. doi: 10.3390/nano6030050. PubMed DOI PMC

Zabrieski Z., Morrell E., Hortin J., Dimkpa C., McLean J., Britt D., Anderson A. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology. 2015;24:1305–1314. doi: 10.1007/s10646-015-1505-x. PubMed DOI

Patra P., Mitra S., Debnath N., Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: An in vivo and in vitro toxicity study. Langmuir. 2012;28:16966–16978. doi: 10.1021/la304120k. PubMed DOI

He L., Liu Y., Mustapha A., Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011;166:207–215. doi: 10.1016/j.micres.2010.03.003. PubMed DOI

Hassan M., Zayton M.A., El-feky S.A. Role of green synthesized ZnO nanoparticles as antifungal against post-harvest gray and black mold of sweet bell. J. Biotechnol. Bioeng. 2019;3:8–15.

Dimkpa C.O., McLean J.E., Britt D.W., Anderson A.J. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals. 2013;26:913–924. doi: 10.1007/s10534-013-9667-6. PubMed DOI

El-argawy E., Rahhal M.M.H., Elshabrawy E.M., Eltahan R.M. Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Behiera Governorate. Asian J. Plant Pathol. 2016;11:35–47. doi: 10.3923/ajppaj.2017.35.47. DOI

Sardella D., Gatt R., Valdramidis V.P. Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology. 2018;9:43–48. doi: 10.1080/21501203.2017.1369187. PubMed DOI PMC

Shoeb M., Singh B.R., Khan J.A., Khan W., Singh B.N., Singh H.B., Naqvi A.H. ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4 doi: 10.1088/2043-6262/4/3/035015. DOI

Horky P., Skalickova S., Baholet D., Skladanka J. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials. 2018;8:727. doi: 10.3390/nano8090727. PubMed DOI PMC

Gacem M.A., Gacem H., Telli A., Ould El Hadj Khelil A. Mycotoxins: Decontamination and nanocontrol methods. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology: Treating Mycotoxins in the Nano Way. Elsevier Inc.; Amsterdam, The Netherlands: 2020. pp. 189–216.

Tsang C.C., Tang J.Y.M., Lau S.K.P., Woo P.C.Y. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era—Past, present and future. Comput. Struct. Biotechnol. J. 2018;16:197–210. doi: 10.1016/j.csbj.2018.05.003. PubMed DOI PMC

El-banna A.A., Pitt J.I., Leistner L. Production of mycotoxins by Penicillium species. Syst. Appl. Microbiol. 1987;10:42–46. doi: 10.1016/S0723-2020(87)80008-5. DOI

Frisvad J.C. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J. 2018;11:73–100. doi: 10.3920/WMJ2017.2294. DOI

Jimenez-Garcia S.N., Garcia-Mier L., Garcia-Trejo J.F., Ramirez-Gomez X.S., Guevara-Gonzalez R.G., Feregrino-Perez A.A. Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers. InTech; London, UK: 2018. Fusarium mycotoxins and metabolites that modulate their production. DOI

Hulvová H., Galuszka P., Frébortová J., Frébort I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol. Adv. 2013;31:79–89. doi: 10.1016/j.biotechadv.2012.01.005. PubMed DOI

Bennett J.W., Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC

Schardl C.L. Introduction to the toxins special issue on ergot alkaloids. Toxins. 2015;7:4232–4237. doi: 10.3390/toxins7104232. PubMed DOI PMC

Ostry V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008;1:175–188. doi: 10.3920/WMJ2008.x013. DOI

Jesmin R., Chanda A. Restricting mycotoxins without killing the producers: A new paradigm in nano-fungal interactions. Appl. Microbiol. Biotechnol. 2020;104:2803–2813. doi: 10.1007/s00253-020-10373-w. PubMed DOI

Kaur A., Saini S.S. Nanoadsorbents for the preconcentration of some toxic substances: A minireview. Int. Lett. Chem. Phys. Astron. 2013;21:22–35. doi: 10.18052/www.scipress.com/ilcpa.21.22. DOI

Zahoor M., Ali Khan F. Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab. J. Chem. 2018;11:729–738. doi: 10.1016/j.arabjc.2014.08.025. DOI

Moghaddam S.H.M., Jebali A., Daliri K. The use of MgO-SiO2 nanocomposite for adsorption of aflatoxin in wheat flour samples; Proceedings of the NanoCon 2010; Olomouc, Czech Republic. 12–14 October 2010; pp. 10–15.

Daković A., Tomašević-Čanović M., Dondur V., Rottinghaus G.E., Medaković V., Zarić S. Adsorption of mycotoxins by organozeolites. Colloids Surf. B Biointerfaces. 2005;46:20–25. doi: 10.1016/j.colsurfb.2005.08.013. PubMed DOI

Kovač T., Borišev I., Crevar B., Čačić Kenjerić F., Kovač M., Strelec I., Ezekiel C.N., Sulyok M., Krska R., Šarkanj B. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B1 biosynthesis in Aspergillus flavus. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-31305-9. PubMed DOI PMC

Asghar M.A., Zahir E., Shahid S.M., Khan M.N., Asghar M.A., Iqbal J., Walker G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT Food Sci. Technol. 2018;90:98–107. doi: 10.1016/j.lwt.2017.12.009. DOI

Hernández-Meléndez D., Salas-Téllez E., Zavala-Franco A., Téllez G., Méndez-Albores A., Vázquez-Durán A. Inhibitory effect of flower-shaped zinc oxide nanostructures on the growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus Link. Materials. 2018;11:1265. doi: 10.3390/ma11081265. PubMed DOI PMC

Mitra C., Gummadidala P.M., Merrifield R., Omebeyinje M.H., Jesmin R., Lead J.R., Chanda A. Size and coating of engineered silver nanoparticles determine their ability to growth-independently inhibit aflatoxin biosynthesis in Aspergillus parasiticus. Appl. Microbiol. Biotechnol. 2019;103:4623–4632. doi: 10.1007/s00253-019-09693-3. PubMed DOI

Mitra C., Gummadidala P.M., Afshinnia K., Merrifield R.C., Baalousha M., Lead J.R., Chanda A. Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus parasiticus. Environ. Sci. Technol. 2017;51:8085–8093. doi: 10.1021/acs.est.7b01230. PubMed DOI

Lakshmeesha T.R., Kalagatur N.K., Mudili V., Mohan C.D., Rangappa S., Prasad B.D., Ashwini B.S., Hashem A., Alqarawi A.A., Malik J.A., et al. Biofabrication of zinc oxide nanoparticles with Syzygium aromaticum flower buds extract and finding its novel application in controlling the growth and mycotoxins of Fusarium graminearum. Front. Microbiol. 2019;10:1–13. doi: 10.3389/fmicb.2019.01244. PubMed DOI PMC

Mohd Yusof H., Mohamad R., Zaidan U.H., Abdul Rahman N.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019;10:1–22. doi: 10.1186/s40104-019-0368-z. PubMed DOI PMC

Jabar A.K., Aldhahi H.H.K., Salim H.A. Effect of manufactured iron oxides in control of tomato yellow leaf curl virus (TYLCV) Plant Arch. 2020;20:2131–2134.

Savi G.D., Bortoluzzi A.J., Scussel V.M. Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol. 2013;48:1834–1840. doi: 10.1111/ijfs.12158. DOI

Anderson A.J., McLean J.E., Jacobson A.R., Britt D.W. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J. Agric. Food Chem. 2018;66:6513–6524. doi: 10.1021/acs.jafc.7b01302. PubMed DOI

Liang Y., Duan Y., Fan C., Dong H., Yang J., Tang J., Tang G., Wang W., Jiang N., Cao Y. Preparation of kasugamycin conjugation based on ZnO quantum dots for improving its effective utilization. Chem. Eng. J. 2019;361:671–679. doi: 10.1016/j.cej.2018.12.129. DOI

Young M., Ozcan A., Myers M.E., Johnson E.G., Graham J.H., Santra S. Multimodal generally recognized as safe ZnO/Nanocopper composite: A novel antimicrobial material for the management of citrus phytopathogens. J. Agric. Food Chem. 2018;66:6604–6608. doi: 10.1021/acs.jafc.7b02526. PubMed DOI

Lahuf A.A., Kareem A.A., Al-Sweedi T.M., Alfarttoosi H.A. IOP Conference Series: Earth and Environmental Science. Volume 365. IOP Publishing; Bristol, UK: 2019. Evaluation the potential of indigenous biocontrol agent Trichoderma harzianum and its interactive effect with nanosized ZnO particles against the sunflower damping-off pathogen, Rhizoctonia solani. DOI

Li Z., Yu T., Paul R., Fan J., Yang Y., Wei Q. Agricultural nanodiagnostics for plant diseases: Recent advances and challenges. Nanoscale Adv. 2020 doi: 10.1039/C9NA00724E. PubMed DOI PMC

Khiyami M.A., Almoammar H., Awad Y.M., Alghuthaymi M.A. Plant pathogen nanodiagnostic techniques: Forthcoming changes? Biotechnol. Biotechnol. Equip. 2014;28:775–785. doi: 10.1080/13102818.2014.960739. PubMed DOI PMC

Giraldo J.P., Wu H., Newkirk G.M., Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019;14:541–553. doi: 10.1038/s41565-019-0470-6. PubMed DOI

Kumar V., Arora K. Trends in nano-inspired biosensors for plants. Mater. Sci. Energy Technol. 2020;3:255–273. doi: 10.1016/j.mset.2019.10.004. DOI

Ansari A.A., Kaushik A., Solanki P.R., Malhotra B.D. Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry. 2010;77:75–81. doi: 10.1016/j.bioelechem.2009.06.014. PubMed DOI

Martynenko I.V., Litvin A.P., Purcell-Milton F., Baranov A.V., Fedorov A.V., Gun’Ko Y.K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B. 2017;5:6701–6727. doi: 10.1039/c7tb01425b. PubMed DOI

Willard D.M., Carillo L.L., Jung J., van Orden A. CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay. Nano Lett. 2001;1:469–474. doi: 10.1021/nl015565n. DOI

Chen F., Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004;4:1827–1832. doi: 10.1021/nl049170q. DOI

Hong S., Lee C. The current status and future outlook of quantum dot-based biosensors for plant virus detection. Plant Pathol. J. 2018;34:85–92. doi: 10.5423/PPJ.RW.08.2017.0184. PubMed DOI PMC

Medintz I.L., Sapsford K.E., Konnert J.H., Chatterji A., Lin T., Johnson J.E., Mattoussi H. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir. 2005;21:5501–5510. doi: 10.1021/la0468287. PubMed DOI

Moulick A., Milosavljevic V., Vlachova J., Podgajny R., Hynek D., Kopel P., Adam V. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int. J. Nanomed. 2017;12:1277–1291. doi: 10.2147/IJN.S121840. PubMed DOI PMC

Rispail N., De Matteis L., Santos R., Miguel A.S., Custardoy L., Testillano P.S., Risueño M.C., Pérez-De-Luque A., Maycock C., Fevereiro P., et al. Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: Internalization and toxicity profile. ACS Appl. Mater. Interfaces. 2014;6:9100–9110. doi: 10.1021/am501029g. PubMed DOI

Tereshchenko A., Fedorenko V., Smyntyna V., Konup I., Konup A., Eriksson M., Yakimova R., Ramanavicius A., Balme S., Bechelany M. ZnO films formed by atomic layer deposition as an optical biosensor platform for the detection of Grapevine virus A-type proteins. Biosens. Bioelectron. 2017;92:763–769. doi: 10.1016/j.bios.2016.09.071. PubMed DOI

Al-Fandi M.G., Alshraiedeh N.H., Oweis R.J., Hayajneh R.H., Alhamdan I.R., Alabed R.A., Al-Rawi O.F. Direct electrochemical bacterial sensor using ZnO nanorods disposable electrode. Sens. Rev. 2018;38:326–334. doi: 10.1108/SR-06-2017-0117. DOI

Tahir M.A., Hameed S., Munawar A., Amin I., Mansoor S., Khan W.S., Bajwa S.Z. Investigating the potential of multiwalled carbon nanotubes based zinc nanocomposite as a recognition interface towards plant pathogen detection. J. Virol. Methods. 2017;249:130–136. doi: 10.1016/j.jviromet.2017.09.004. PubMed DOI

Siddiquee S., Rovina K., Yusof N.A., Rodrigues K.F., Suryani S. Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens. Bio-Sens. Res. 2014;2:16–22. doi: 10.1016/j.sbsr.2014.06.002. DOI

Kalia A., Kaur H. In: Agri-Applications of Nano-Scale Micronutrients: Prospects for Plant Growth Promotion. Raliya R., editor. CRC Press; Boca Raton, FL, USA: 2019.

Bala R., Kalia A., Dhaliwal S.S. Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant Nutr. 2019;19:379–389. doi: 10.1007/s42729-019-00040-z. DOI

Kalia A., Sharma S.P., Kaur H., Kaur H. Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: Prospects and challenges. In: Abd-Elsalam K.A., editor. Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystem. Elsevier Inc.; Amsterdam, The Netherlands: 2020. pp. 99–134.

Kalia A., Sharma S.P., Kaur H. Nanoscale Fertilizers: Harnessing Boons for Enhanced Nutrient Use Efficiency and Crop Productivity. In: Abd-Elsalam K.A., Prasad R., editors. Nanotechnology in the Life Sciences. Springer International Publishing; Cham, Switzerland: 2019.

Kairyte K., Kadys A., Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. B Biol. 2013;128:78–84. doi: 10.1016/j.jphotobiol.2013.07.017. PubMed DOI

Sun Q., Li J., Le T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. J. Agric. Food Chem. 2018;66:11209–11220. doi: 10.1021/acs.jafc.8b03210. PubMed DOI

Jameel M., Shoeb M., Khan M.T., Ullah R., Mobin M., Farooqi M.K., Adnan S.M. Enhanced Insecticidal Activity of Thiamethoxam by Zinc Oxide Nanoparticles: A Novel Nanotechnology Approach for Pest Control. ACS Omega. 2019 doi: 10.1021/acsomega.9b03680. PubMed DOI PMC

Medina-Pérez G., Fernández-Luqueño F., Vazquez-Nuñez E., López-Valdez F., Prieto-Mendez J., Madariaga-Navarrete A., Miranda-Arámbula M. Remediating Polluted Soils Using Nanotechnologies: Environmental Benefits and Risks. Polish J. Environ. Stud. 2019;28:1013–1030. doi: 10.15244/pjoes/87099. DOI

Das S., Chakraborty J., Chatterjee S., Kumar H. Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ. Sci. Nano. 2018;5:2784–2808. doi: 10.1039/C8EN00799C. DOI

Guerra F., Attia M., Whitehead D., Alexis F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules. 2018;23:1760. doi: 10.3390/molecules23071760. PubMed DOI PMC

Fu L., Wang Z., Dhankher O.P., Xing B. Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J. Exp. Bot. 2020;71:507–519. PubMed

Kookana R.S., Boxall A.B.A., Reeves P.T., Ashauer R., Beulke S., Chaudhry Q., Cornelis G., Fernandes T.F., Gan J., Kah M., et al. Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 2014;62:4227–4240. doi: 10.1021/jf500232f. PubMed DOI

Walker G.W., Kookana R.S., Smith N.E., Kah M., Doolette C.L., Reeves P.T., Lovell W., Anderson D.J., Turney T.W., Navarro D.A. Ecological risk assessment of nano-enabled pesticides: A perspective on problem formulation. J. Agric. Food Chem. 2017 doi: 10.1021/acs.jafc.7b02373. PubMed DOI PMC

Kah M., Tufenkji N., White J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019;14:532–540. doi: 10.1038/s41565-019-0439-5. PubMed DOI

Beegam A., Prasad P., Jose J., Oliveira M., Costa F.G., Soares A.M.V.M., Gonçalves P.P., Trindade T., Kalarikkal N., Thomas S., et al. Environmental Fate of Zinc Oxide Nanoparticles: Risks and Benefits. In: Soloneski S., Larramendy M.L., editors. Toxicology-New Aspects to This Scientific Conundrum. IntechOpen; London, UK: 2016. DOI

Charitidis C.A., Georgiou P., Koklioti M.A., Trompeta A.F., Markakis V. Manufacturing nanomaterials: From research to industry. Manuf. Rev. 2014;1:11. doi: 10.1051/mfreview/2014009. DOI

Kalia A., Singh S. Myco-decontamination of azo dyes: Nano-augmentation technologies. 3 Biotech. 2020;10:384. doi: 10.1007/s13205-020-02378-z. PubMed DOI PMC

Kaur P., Taggar M.S., Kalia A. Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw. Biomass Convers. Biorefinery. 2020 doi: 10.1007/s13399-020-00628-x. DOI

Huang Y., Ding L., Li C., Wu M., Wang M., Yao C., Yin X., Zhang J., Liu J., Zhang Y., et al. Safety Issue of Changed Nanotoxicity of Zinc Oxide Nanoparticles in the Multicomponent System. Part. Part. Syst. Charact. 2019;36:1–14. doi: 10.1002/ppsc.201900214. DOI

Nel A., Grainger D., Alvarez P.J., Badesha S., Castranova V., Ferrari M., Godwin H., Grodzinski P., Morris J., Savage N., et al. Nanotechnology Environmental, Health, and Safety Issues. In: Roco M.C., Hersam M.C., Mirkin C.A., editors. Nanotechnology Research Directions for Societal Needs in 2020. Springer; Dordrecht, The Netherlands: 2011. pp. 159–220.

Ali A., Phull A.R., Zia M. Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 2018;7:413–441. doi: 10.1515/ntrev-2018-0067. DOI

Paul S.K., Dutta H., Sarkar S., Sethi L.N., Ghosh S.K. Nanosized Zinc Oxide: Super-functionalities, present scenario of application, safety issues, and future prospects in food processing and allied industries. Food Rev. Int. 2019;35:505–535. doi: 10.1080/87559129.2019.1573828. DOI

Naveed Ul Haq A., Nadhman A., Ullah I., Mustafa G., Yasinzai M., Khan I. Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. J. Nanomater. 2017;2017:1–14. doi: 10.1155/2017/8510342. DOI

Haque J., Bellah M., Hassan R., Rahman S. Synthesis of ZnO nanoparticles by two different methods and comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express. 2020;1:010007. doi: 10.1088/2632-959X/ab7a43. DOI

Marsalek R. Particle size and Zeta Potential of ZnO. Procedia-Soc. Behav. Sci. 2014;9:13–17. doi: 10.1016/j.apcbee.2014.01.003. DOI

Chai M.H.H., Amir N., Yahya N., Saaid I.M. Characterization and Colloidal Stability of Surface Modified Zinc Oxide Nanoparticle Characterization and Colloidal Stability of Surface Modified Zinc Oxide Nanoparticle. IOP Conf. Ser. J. Phys. Conf. Ser. 2018:1123. doi: 10.1088/1742-6596/1123/1/012007. DOI

Zhulina E.B., Borisov O.V., Priamitsyn V.A. Theory of steric stabilization of colloid dispersions by grafted polymers. J. Colloid Interface Sci. 1990;137:495–511. doi: 10.1016/0021-9797(90)90423-L. DOI

Fiedot M., Rac O., Suchorska-Woźniak P., Karbownik I., Teterycz H. Polymer-surfactant interactions and their influence on zinc oxide nanoparticles morphology. In: Ahmad W., Ali N., editors. Manufacturing Nanostructures. One Central Press; Manchester, UK: 2014. pp. 108–128.

Meibner T., Oelschlagel K., Potthoff A. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies. Int. Nano Lett. 2014;4:116. doi: 10.1007/s40089-014-0116-5. DOI

Hsiao I., Huang Y. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 2011;409:1219–1228. doi: 10.1016/j.scitotenv.2010.12.033. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...