Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
UHK (VT2019-2021)
UHK
CEP - Centrální evidence projektů
PubMed
33066193
PubMed Central
PMC7711620
DOI
10.3390/jof6040222
PII: jof6040222
Knihovny.cz E-zdroje
- Klíčová slova
- ecotoxicity, nanomaterial, nanosensors, phytopathogens, zinc,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A facet of nanorenaissance in plant pathology hailed the research on the development and application of nanoformulations or nanoproducts for the effective management of phytopathogens deterring the growth and yield of plants and thus the overall crop productivity. Zinc nanomaterials represent a versatile class of nanoproducts and nanoenabled devices as these nanomaterials can be synthesized in quantum amounts through economically affordable processes/approaches. Further, these nanomaterials exhibit potential targeted antimicrobial properties and low to negligible phytotoxicity activities that well-qualify them to be applied directly or in a deviant manner to accomplish significant antibacterial, antimycotic, antiviral, and antitoxigenic activities against diverse phytopathogens causing plant diseases. The photo-catalytic, fluorescent, and electron generating aspects associated with zinc nanomaterials have been utilized for the development of sensor systems (optical and electrochemical biosensors), enabling quick, early, sensitive, and on-field assessment or quantification of the test phytopathogen. However, the proficient use of Zn-derived nanomaterials in the management of plant pathogenic diseases as nanopesticides and on-field sensor system demands that the associated eco- and biosafety concerns should be well discerned and effectively sorted beforehand. Current and possible utilization of zinc-based nanostructures in plant disease diagnosis and management and their safety in the agroecosystem is highlighted.
Zobrazit více v PubMed
Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3:430–439. doi: 10.1038/s41559-018-0793-y. PubMed DOI
FAO . Moving Forward on Food Loss and Waste Reduction. FAO; Rome, Italy: 2019. The State of Food and Agriculture 2019.
Rajasekaran P., Kannan H., Das S., Young M., Santra S. Comparative analysis of copper and zinc-based agrichemical biocide products: Materials characteristics, phytotoxicity and in vitro antimicrobial efficacy. AIMS Environ. Sci. 2016;3:439–455. doi: 10.3934/environsci.2016.3.439. DOI
U.S. EPA/OPPTS (Environmental Protection Agency- Office of Prevention, Pesticides and Toxic Substances) Reregistration Eligibility Decision (R.E.D.) Facts-Zinc Salts. EPA 738-R-98-007, 1992, Washington, DC, U.S. [(accessed on 12 October 2020)]; Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/zinc_salt.pdf.
Curry A.S., Price D.E., Tryhorn F.G. Absorption of zinc phosphide particles. Nature. 1959;184:642–643. doi: 10.1038/184642a0. PubMed DOI
Hood G.A. Zinc Phosphide-A new look at an old rodenticide for field rodents; Proceedings of the 5th Vertebrate Pest Conference; Fresno, CA, USA. 7–9 March 1972; pp. 85–92.
US-EPA Zinc oxide: Exemption from the requirement of a tolerance. [(accessed on 12 October 2020)];Fed. Regist. 2018 83:42783–42787. Available online: https://www.govinfo.gov/content/pkg/FR-2018-08-24/pdf/2018-18402.pdf.
Almoudi M.M., Hussein A.S., Abu Hassan M.I., Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent. J. 2018;30:283–291. doi: 10.1016/j.sdentj.2018.06.003. PubMed DOI PMC
Burgess J., Prince R.H. Zinc: Inorganic & Coordination Chemistry. In: King R.B., editor. Encyclopedia of Inorganic Chemistry. 1st ed. John Wiley & Sons, Ltd., Wiley; Hoboken, NJ, USA: 2006. pp. 1–26.
Dos Santos R.A.A., D’Addazio V., Silva J.V.G., Falqueto A.R., Barreto da Silva M., Schmildt E.R., Fernandes A.A. Antifungal Activity of Copper, Zinc and Potassium Compounds on Mycelial Growth and Conidial Germination of Fusarium solani f. sp. piperis. Microbiol. Res. J. Int. 2019;29:1–11. doi: 10.9734/mrji/2019/v29i630179. DOI
Goodwin F.E. Zinc Compounds. In: Kroschwitz J., Howe-Grant M., editors. Kirk-Othmer Encycl. Chem. Technol. John Wiley & Sons, Inc.; New York, NY, USA: 1998. pp. 840–853.
Qureshi S.A., Shafeeq A., Ijaz A., Butt M.M. Development of algae guard façade paint with statistical modeling under natural phenomena. Coatings. 2018;8:440. doi: 10.3390/coatings8120440. DOI
Gupta S., Sharma D., Gupta M. Climate change impact on plant diseases: Opinion, trends and mitigation strategies. In: Kashyap P.L., Srivastava A.K., Tiwari S.P., Kumar S., editors. Microbes for Climate Resilient Agriculture. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2018. pp. 41–56.
Luck J., Asaduzzaman M., Banerjee S., Bhattacharya I., Coughlan K., Debnath G., De Boer D., Dutta S., Forbes G., Griffiths W., et al. The Effects of Climate Change on Pests and Diseases of Major Food Crops in the Asia Pacific Region. Asia Pacific Network for Global Change Research; Kobe, Japan: 2010. Final Report for APN Project (Project Reference: ARCP2010-05CMY-Luck)
Lurwanu Y., Wang Y.P., Abdul W., Zhan J., Yang L.N. Temperature-mediated plasticity regulates the adaptation of Phytophthora infestans to azoxystrobin fungicide. Sustainability. 2020;12:1188. doi: 10.3390/su12031188. DOI
Ishii H. Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Jpn. Agric. Res. Q. 2006;40:205–211. doi: 10.6090/jarq.40.205. DOI
Kalia A., Manchanda P., Bhardwaj S., Singh G. Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. Inorg. Nano-Metal Chem. 2020;50:1053–1062. doi: 10.1080/24701556.2020.1735420. DOI
Kaur G., Kalia A., Sodhi H.S. Size controlled, time-efficient biosynthesis of silver nanoparticles from Pleurotus florida using ultra-violet, visible range, and microwave radiations. Inorg. Nano-Metal Chem. 2020;50:35–41. doi: 10.1080/24701556.2019.1661466. DOI
Munir M.U., Ihsan A., Javed I., Ansari M.T., Bajwa S.Z., Bukhari S.N.A., Ahmed A., Malik M.Z., Khan W.S. Controllably biodegradable hydroxyapatite nanostructures for cefazolin delivery against antibacterial resistance. ACS Omega. 2019;4:7524–7532. doi: 10.1021/acsomega.9b00541. DOI
Kalainila P., Ravindran R.S.E., Rohit R., Renganathan S. Anti-bacterial effect of biosynthesized silver nanoparticles using Kigelia africana. J. Nanosci. Nanoengn. 2015;1:225–232.
Jangra S.L., Stalin K., Dilbaghi N., Kumar S., Tawale J., Singh S.P., Pasricha R. Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J. Nanosci. Nanotechnol. 2012;12:7105–7112. doi: 10.1166/jnn.2012.6574. PubMed DOI
Satyavani K., Gurudeeban S., Ramanathan T., Balasubramanian T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. 2011;9:43. doi: 10.1186/1477-3155-9-43. PubMed DOI PMC
Huang F., Long Y., Liang Q., Purushotham B., Swamy M.K., Duan Y. Safed Musli (Chlorophytum borivilianum L.) Callus-Mediated Biosynthesis of Silver Nanoparticles and Evaluation of their Antimicrobial Activity and Cytotoxicity against Human Colon Cancer Cells. J. Nanomater. 2019:1–8. doi: 10.1155/2019/2418785. DOI
Azizi S., Mohamad R., Shahri M.M., McPhee D.J. Green microwave-assisted combustion synthesis of zinc oxide nanoparticles with Citrullus colocynthis (L.) schrad: Characterization and biomedical applications. Molecules. 2017;22:301. doi: 10.3390/molecules22020301. PubMed DOI PMC
Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC
Singh J., Vishwakarma K., Ramawat N., Rai P., Singh V.K., Mishra R.K., Kumar V., Tripathi D.K., Sharma S. Nanomaterials and microbes’ interactions: A contemporary overview. 3 Biotech. 2019;9:68. doi: 10.1007/s13205-019-1576-0. PubMed DOI PMC
Díez-Pascual A.M. Antibacterial activity of nanomaterials. Nanomaterials. 2018;8:359. doi: 10.3390/nano8060359. PubMed DOI PMC
Mostafa M., Almoammar H., Abd-Elsalam K.A. Zinc-based nanostructures in plant protection applications. In: Abd-Elsalam K.A., Prasad R., editors. Nanobiotechnology Applications in Plant Protection, Nanotechnology in the Life Sciences. Springer Nature Switzerland AG; Cham, Switzerland: 2019. pp. 49–83.
Vollath D. Nanomaterials: An Introduction to Synthesis, Properties, and Applications. 2nd ed. Wiley-VCH, Verlag GmbH & Co. KGaA; Weinheim, Germany: 2013.
Siegel R. Nanostructured materials. In: Morán-López J.L., Sanchez J.M., editors. Advanced Topics in Materials Science and Engineering. Springer; Boston, MA, USA: New York, NY, USA: 1993. pp. 273–288.
Murr L.E. Handbook of materials structures, properties, processing and performance. In: Murr L., editor. Handbook of Materials Structures, Properties, Processing and Performance. Springer International Publishing; Cham, Switzerland: 2015. pp. 719–746.
Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10:12871–12934. doi: 10.1039/c8nr02278j. PubMed DOI
Roduner E. Physics and Chemistry of Nanostructures: Why nano is different. Encycl. Life Support Syst. 2009:1–35.
Roduner E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006;35:583–592. doi: 10.1039/b502142c. PubMed DOI
de Voorde M., Tulinski M., Jurczyk M. Engineered nanomaterials: A discussion of the major categories of nanomaterials. In: Mansfield E., Kaiser M., Fujita D., de Voorde M., editors. Metrology and Standardization for Nanotechnology: Protocols and Industrial Innovations. Wiley-VCH, Verlag GmbH & Co. KgaA; Weinheim, Germany: 2017. pp. 49–73.
Christian P. Nanomaterials: Properties, Preparation and Applications. In: Lead J.R., Smith E., editors. Environmental and Human Health Impacts of Nanotechnology. Wiley-Blackwell Publishing Ltd.; Chichester, UK: 2009. pp. 31–77.
Sun C.Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 2007;35:1–159. doi: 10.1016/j.progsolidstchem.2006.03.001. DOI
Andrievskii R.A. Size-dependent effects in properties of nanostructured materials. Rev. Adv. Mater. Sci. 2009;21:107–133.
Kalia A., Kaur J., Kaur A., Singh N. Antimycotic activity of biogenically synthesised metal and metal oxide nanoparticles against plant pathogenic fungus Fusarium moniliforme (F. fujikuroi) Indian J. Exp. Biol. 2020;58:263–270.
Khan M., Shaik M.R., Khan S.T., Adil S.F., Kuniyil M., Khan M., Al-Warthan A.A., Siddiqui M.R.H., Nawaz Tahir M. Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles. ACS Omega. 2020;5:1987–1996. doi: 10.1021/acsomega.9b03840. PubMed DOI PMC
Van Der Wal A., Norde W., Zehnder A.J.B., Lyklema J. Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf. B Biointerfaces. 1997;9:81–100. doi: 10.1016/S0927-7765(96)01340-9. DOI
Chen M., Zeng G., Xu P., Lai C., Tang L. How Do Enzymes ‘Meet’ Nanoparticles and Nanomaterials? Trends Biochem. Sci. 2017;42:914–930. doi: 10.1016/j.tibs.2017.08.008. PubMed DOI
Kaur M., Kalia A. Role of salt precursors for the synthesis of zinc oxide nanoparticles and in imparting variable antimicrobial activity. J. Appl. Nat. Sci. 2016;8:1039–1048. doi: 10.31018/jans.v8i2.918. DOI
Cai L., Liu C., Fan G., Liu C., Sun X. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environ. Sci. Nano. 2019;6:3653–3669. doi: 10.1039/C9EN00850K. DOI
Alum A., Rashid A., Mobasher B., Abbaszadegan M. Cement-based biocide coatings for controlling algal growth in water distribution canals. Cem. Concr. Compos. 2008;30:839–847. doi: 10.1016/j.cemconcomp.2008.06.012. DOI
Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI
Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27:4020–4028. doi: 10.1021/la104825u. PubMed DOI
El-Sayed A.S.A., Ali D.M.I. Biosynthesis and comparative bactericidal activity of silver nanoparticles synthesized by Aspergillus flavus and Penicillium crustosum against the multidrug-resistant bacteria. J. Microbiol. Biotechnol. 2018 doi: 10.4014/jmb.1806.05089. PubMed DOI
Jamdagni P., Rana J.S., Khatri P., Nehra K. Comparative account of antifungal activity of green and chemically synthesized Zinc Oxide nanoparticles in combination with agricultural fungicides. Int. J. Nano Dimens. 2018;9:198–208.
Auyeung A., Casillas-Santana M.Á., Martínez-Castañón G.A., Slavin Y.N., Zhao W., Asnis J., Häfeli U.O., Bach H. Effective control of molds using a combination of nanoparticles. PLoS ONE. 2017;12:1–13. doi: 10.1371/journal.pone.0169940. PubMed DOI PMC
Lamsal K., Kim S.W., Jung J.H., Kim Y.S., Kim K.S., Lee Y.S. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology. 2011;39:26–32. doi: 10.4489/MYCO.2011.39.1.026. PubMed DOI PMC
Park H.-J., Kim S.H., Kim H.J., Choi S.-H. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J. 2006;22:295–302. doi: 10.5423/PPJ.2006.22.3.295. DOI
Kim H., Kang H., Chu G., Byun H. Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom. 2008;135:15–18. doi: 10.4028/www.scientific.net/SSP.135.15. DOI
Li J., Sang H., Guo H., Popko J.T., He L., White J.C., Parkash Dhankher O., Jung G., Xing B. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology. 2017;28:155101. doi: 10.1088/1361-6528/aa61f3. PubMed DOI
De La Rosa-García S.C., Martínez-Torres P., Gómez-Cornelio S., Corral-Aguado M.A., Quintana P., Gómez-Ortíz N.M. Antifungal activity of ZnO and MgO nanomaterials and their mixtures against colletotrichum gloeosporioides strains from tropical fruit. J. Nanomater. 2018;2018 doi: 10.1155/2018/3498527. DOI
Karimiyan A., Najafzadeh H., Ghorbanpour M., Hekmati-Moghaddam S.H. Antifungal Effect of Magnesium Oxide, Zinc Oxide, Silicon Oxide and Copper Oxide Nanoparticles Against Candida albicans. Zahedan J. Res. Med. Sci. 2015;17:2–4. doi: 10.17795/zjrms-2179. DOI
Roy A., Gauri S.S., Bhattacharya M., Bhattacharya J. Antimicrobial activity of CaO nanoparticles. J. Biomed. Nanotechnol. 2013;9:1570–1578. doi: 10.1166/jbn.2013.1681. PubMed DOI
Malandrakis A.A., Kavroulakis N., Chrysikopoulos C.V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019;670:292–299. doi: 10.1016/j.scitotenv.2019.03.210. PubMed DOI
Choudhary M.A., Manan R., Aslam Mirza M., Rashid Khan H., Qayyum S., Ahmed Z. Biogenic Synthesis of Copper oxide and Zinc oxide Nanoparticles and their Application as Antifungal Agents. Int. J. Mater. Sci. Eng. 2018;4:1–6. doi: 10.14445/23948884/ijmse-v4i1p101. DOI
Hao Y., Cao X., Ma C., Zhang Z., Zhao N., Ali A., Hou T., Xiang Z., Zhuang J., Wu S., et al. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals. Front. Plant Sci. 2017;8:1–9. doi: 10.3389/fpls.2017.01332. PubMed DOI PMC
Al-Dhabaan F.A., Shoala T., Ali A.A., Alaa M., Abd-Elsalam K., Abd-Elsalam K. Chemically-produced copper, zinc nanoparticles and chitosan-bimetallic nanocomposites and their antifungal activity against three phytopathogenic fungi. Int. J. Agric. Technol. 2017;13:753–769.
Vahedi M., Hosseini-Jazani N., Yousefi S., Ghahremani M. Evaluation of anti-bacterial effects of nickel nanoparticles on biofilm production by Staphylococcus epidermidis. Iran. J. Microbiol. 2017;9:160–168. PubMed PMC
Srihasam S., Thyagarajan K., Korivi M., Lebaka V.R., Mallem S.P.R. Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 2020;10 doi: 10.3390/biom10010089. PubMed DOI PMC
Bogdan J., Zarzyńska J., Pławińska-Czarnak J. Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach. Nanoscale Res. Lett. 2015;10 doi: 10.1186/s11671-015-1023-z. PubMed DOI PMC
Yehia R., Ahmed O.F. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr. J. Microbiol. Res. 2013;7:1917–1923. doi: 10.5897/ajmr2013.5668. DOI
Elsharkawy M., Derbalah A., Hamza A., El-Shaer A. Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res. 2018;27:19049–19057. doi: 10.1007/s11356-018-3806-0. PubMed DOI
Arciniegas-Grijalba P.A., Patiño-Portela M.C., Mosquera-Sánchez L.P., Guerrero-Vargas J.A., Rodríguez-Páez J.E. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl. Nanosci. 2017;7:225–241. doi: 10.1007/s13204-017-0561-3. DOI
Rana P., Abdullah M., Hameed H.Q., Hasan A.A. The effect of Olea europea L. leaves extract and ZrO2 nanoparticles on Acinetobacter baumannii. J. Pharm. Sci. Res. 2019;11:2019.
Joshi S.M., De Britto S., Jogaiah S., Ito S.I. Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules. 2019;9:419. doi: 10.3390/biom9090419. PubMed DOI PMC
Srivastava N., Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst. Eng. 2015;38 doi: 10.1007/s00449-015-1413-8. PubMed DOI
Khiralla G.M., El-Deeb B.A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT Food Sci. Technol. 2015;63:1001–1007. doi: 10.1016/j.lwt.2015.03.086. DOI
Shakibaie M., Forootanfar H., Golkari Y., Mohammadi-Khorsand T., Shakibaie M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol. 2015;29:235–241. doi: 10.1016/j.jtemb.2014.07.020. PubMed DOI
Abo Elsoud M.M., Al-Hagar O.E.A., Abdelkhalek E.S., Sidkey N.M. Synthesis and investigations on tellurium myconanoparticles. Biotechnol. Rep. 2018;18:e00247. doi: 10.1016/j.btre.2018.e00247. PubMed DOI PMC
Brown C.D., Cruz D.M., Roy A.K., Webster T.J. Synthesis and characterization of PVP-coated tellurium nanorods and their antibacterial and anticancer properties. J. Nanopart. Res. 2018;20:254. doi: 10.1007/s11051-018-4354-8. DOI
Siddiqi K.S., ur Rahman A., Tajuddin, Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018;13 doi: 10.1186/s11671-018-2532-3. PubMed DOI PMC
Jaffri S.B., Ahmad K.S. Foliar-mediated Ag:ZnO nanophotocatalysts: Green synthesis, characterization, pollutants degradation, and in vitro biocidal activity. Green Process. Synth. 2019;8:172–182. doi: 10.1515/gps-2018-0058. DOI
Mohamed M.A., Abd-Elsalam K.A. Nanoantimicrobials for Plant Pathogens Control: Potential Applications and Mechanistic Aspects. In: Abd-Elsalam K.A., Prasad R., editors. Nanobiotechnology Applications in Plant Protection-Nanotechnology in the Life Sciences. Springer International Publishing AG; Cham, Switzerland: 2018. pp. 111–135.
Agarwal H., Menon S., Venkat Kumar S., Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018;286:60–70. doi: 10.1016/j.cbi.2018.03.008. PubMed DOI
Al-Shabib N.A., Husain F.M., Ahmed F., Khan R.A., Ahmad I., Alsharaeh E., Khan M.S., Hussain A., Rehman M.T., Yusuf M., et al. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep. 2016;6:1–16. doi: 10.1038/srep36761. PubMed DOI PMC
Ogunyemi S.O., Abdallah Y., Zhang M., Fouad H., Hong X., Ibrahim E., Masum M.M.I., Hossain A., Mo J., Li B. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif. Cells Nanomed. Biotechnol. 2019;47:341–352. doi: 10.1080/21691401.2018.1557671. PubMed DOI
Galié S., García-Gutiérrez C., Miguélez E.M., Villar C.J., Lombó F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018;9:1–18. doi: 10.3389/fmicb.2018.00898. PubMed DOI PMC
Kim S.W., Kim K.S., Lamsal K., Kim Y.J., Kim S.B., Jung M., Sim S.J., Kim H.S., Chang S.J., Kim J.K., et al. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J. Microbiol. Biotechnol. 2009;19:760–764. doi: 10.4014/jmb.0812.649. PubMed DOI
Lamsal K., Kim S.W., Jung J.H., Kim Y.S., Kim K.S., Lee Y.S. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology. 2011;39:194–199. doi: 10.5941/MYCO.2011.39.3.194. PubMed DOI PMC
Elmer W., White J.C. The Future of Nanotechnology in Plant Pathology. Annu. Rev. Phytopathol. 2018;56:111–133. doi: 10.1146/annurev-phyto-080417-050108. PubMed DOI
Park S.J., Park H.H., Kim S.Y., Kim S.J., Woo K., Ko G.P. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl. Environ. Microbiol. 2014;80:2343–2350. doi: 10.1128/AEM.03427-13. PubMed DOI PMC
Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–8918. doi: 10.3390/molecules16108894. PubMed DOI PMC
Zeedan G.S.G., Abd El-Razik K.A., Allam A.M., Abdalhamed A.M., Abou Zeina H.A. Evaluations of potential antiviral effects of green zinc oxide and silver nanoparticles against bovine herpesvirus-1. Adv. Anim. Vet. Sci. 2020;8:433–443. doi: 10.17582/journal.aavs/2020/8.4.433.443. DOI
Bekele A.Z., Gokulan K., Williams K.M., Khare S. Dose and Size-Dependent Antiviral Effects of Silver Nanoparticles on Feline Calicivirus, a Human Norovirus Surrogate. Foodborne Pathog. Dis. 2016;13:239–244. doi: 10.1089/fpd.2015.2054. PubMed DOI
Shionoiri N., Sato T., Fujimori Y., Nakayama T., Nemoto M., Matsunaga T., Tanaka T. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J. Biosci. Bioeng. 2012;113:580–586. doi: 10.1016/j.jbiosc.2011.12.006. PubMed DOI
Kerry R.G., Malik S., Redda Y.T., Sahoo S., Patra J.K., Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomed. Nanotechnol. Biol. Med. 2019;18:196–220. doi: 10.1016/j.nano.2019.03.004. PubMed DOI PMC
Ben Salem A.N., Zyed R., Lassoued M.A., Nidhal S., Sfar S., Mahjoub A. Plant-derived nanoparticles enhance antiviral activity against coxsakievirus B3 by acting on virus particles and vero cells. Dig. J. Nanomater. Biostructs. 2012;7:737–744.
Rai M., Deshmukh S.D., Ingle A.P., Gupta I.R., Galdiero M., Galdiero S. Metal nanoparticles: The protective nanoshield against virus infection. Crit. Rev. Microbiol. 2016;42:46–56. doi: 10.3109/1040841X.2013.879849. PubMed DOI
Singh L., Kruger H.G., Maguire G.E.M., Govender T., Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis. 2017;4:105–131. doi: 10.1177/2049936117713593. PubMed DOI PMC
Milovanovic M., Arsenijevic A., Milovanovic J., Kanjevac T., Arsenijevic N. Nanoparticles in Antiviral Therapy. Antimicrob. Nanoarchit. Synth. Appl. 2017:383–410. doi: 10.1016/B978-0-323-52733-0.00014-8. DOI
Nikaeen G., Abbaszadeh S., Yousefinejad S. Application of nanomaterials in treatment, anti-infection and detection of coronaviruses. Nanomedicine. 2020 doi: 10.2217/nnm-2020-0117. PubMed DOI PMC
Itani R., Tobaiqy M., Al Faraj A. Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics. 2020;10:5932–5942. doi: 10.7150/thno.46691. PubMed DOI PMC
Haggag E.G., Elshamy A.M., Rabeh M.A., Gabr N.M., Salem M., Youssif K.A., Samir A., Bin Muhsinah A., Alsayari A., Abdelmohsen U.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomed. 2019;14:6217–6229. doi: 10.2147/IJN.S214171. PubMed DOI PMC
Meléndez-Villanueva M.A., Morán-Santibañez K., Martínez-Sanmiguel J.J., Rangel-López R., Garza-Navarro M.A., Rodríguez-Padilla C., Zarate-Triviño D.G., Trejo-Ávila L.M. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses. 2019;11:1111. doi: 10.3390/v11121111. PubMed DOI PMC
Kumar R., Sahoo G., Pandey K., Nayak M.K., Topno R., Rabidas V., Das P. Virostatic potential of zinc oxide (ZnO) nanoparticles on capsid protein of cytoplasmic side of chikungunya virus. Int. J. Infect. Dis. 2018;73:368. doi: 10.1016/j.ijid.2018.04.4247. DOI
Abdul W., Muhammad A., Atta Ullah K., Asmat A., Abdul B. Role of nanotechnology in diagnosing and treating COVID-19 during the Pandemi. Int. J. Clin. Virol. 2020;4:65–70. doi: 10.29328/journal.ijcv.1001017. DOI
El-Dougdoug N.K., Bondok A.M., El-Dougdoug K.A. Evaluation of Silver Nanoparticles as Antiviral Agent Against ToMV and PVY in Tomato Plants. Middle East J. Appl. Sci. 2018;8:100–111.
Shafie R.M., Salama A.M., Farroh K.Y. Silver nanoparticles activity against Tomato spotted wilt virus. Middle East J. Appl. Sci. 2018;7:1251–1267.
Elbeshehy E.K.F., Elazzazy A.M., Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015;6:1–13. doi: 10.3389/fmicb.2015.00453. PubMed DOI PMC
Elazzazy A.M., Elbeshehy E.K.F., Betiha M.A. In vitro assessment of activity of graphene silver composite sheets against multidrug-resistant bacteria and Tomato Bushy Stunt Virus. Trop. J. Pharm. Res. 2017;16:2705–2711. doi: 10.4314/tjpr.v16i11.19. DOI
Cai L., Cai L., Jia H., Liu C., Wang D., Sun X. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. Hazard. Mater. 2020;393:122415. doi: 10.1016/j.jhazmat.2020.122415. PubMed DOI
Hao Y., Yuan W., Ma C., White J.C., Zhang Z., Adeel M., Zhou T., Rui Y., Xing B. Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana) Environ. Sci. Nano. 2018;5:1685–1693. doi: 10.1039/C8EN00014J. DOI
Hanley C., Layne J., Punnoose A., Reddy K.M., Coombs I., Coombs A., Feris K., Wingett D. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;19:1–7. doi: 10.1088/0957-4484/19/29/295103. PubMed DOI PMC
Premanathan M., Karthikeyan K., Jeyasubramanian K., Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 2011;7:184–192. doi: 10.1016/j.nano.2010.10.001. PubMed DOI
Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007;90:1–8. doi: 10.1063/1.2742324. PubMed DOI PMC
Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. PubMed DOI PMC
Tiwari V., Mishra N., Gadani K., Solanki P.S., Shah N.A., Tiwari M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018;9:1–10. doi: 10.3389/fmicb.2018.01218. PubMed DOI PMC
Sun T., Hao H., Hao W.T., Yi S.M., Li X.P., Li J.R. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts. Nanoscale Res. Lett. 2014;9:1–11. doi: 10.1186/1556-276X-9-98. PubMed DOI PMC
Jiang J., Pi J., Cai J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018;2018 doi: 10.1155/2018/1062562. PubMed DOI PMC
Pinto R.M., Lopes-De-Campos D., Martins M.C.L., Van Dijck P., Nunes C., Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol. Rev. 2019;43:622–641. doi: 10.1093/femsre/fuz021. PubMed DOI PMC
Graham J.H., Johnson E.G., Myers M.E., Young M., Rajasekaran P., Das S., Santra S. Potential of Nano-Formulated Zinc Oxide for Control of Citrus Canker on Grapefruit Trees. Plant Dis. 2016;100:2442–2447. doi: 10.1094/PDIS-05-16-0598-RE. PubMed DOI
Carvalho R., Duman K., Jones J.B., Paret M.L. Bactericidal Activity of Copper-Zinc Hybrid Nanoparticles on Copper-Tolerant Xanthomonas perforans. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-56419-6. PubMed DOI PMC
Siddiqui Z.A., Khan A., Khan M.R., Abd-Allah E.F. Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris medik.) Acta Phytopathol. Entomol. Hungarica. 2018;53:195–212. doi: 10.1556/038.53.2018.012. DOI
Khan M., Siddiqui Z.A. Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol. 2018;71:355–364. doi: 10.1007/s42360-018-0064-5. DOI
Alves M.M., Bouchami O., Tavares A., Córdoba L., Santos C.F., Miragaia M., De Fátima Montemor M. New Insights into Antibiofilm Effect of a Nanosized ZnO Coating against the Pathogenic Methicillin Resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces. 2017;9:28157–28167. doi: 10.1021/acsami.7b02320. PubMed DOI
Fontecha-Umaña F., Ríos-Castillo A.G., Ripolles-Avila C., Rodríguez-Jerez J.J. Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods. 2020;9:442. doi: 10.3390/foods9040442. PubMed DOI PMC
Jindal S., Anand S., Huang K., Goddard J., Metzger L., Amamcharla J. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk spore formers. J. Dairy Sci. 2016;99:9502–9513. doi: 10.3168/jds.2016-11395. PubMed DOI
Espitia P.J.P., Otoni C.G., Soares N.F.F. Zinc Oxide Nanoparticles for Food Packaging Applications. Elsevier Inc.; Amsterdam, The Netherlands: 2016.
Kaur M., Kalia A., Thakur A. Effect of biodegradable chitosan–rice-starch nanocomposite films on post-harvest quality of stored peach fruit. Starch/Staerke. 2017;69:1–12. doi: 10.1002/star.201600208. DOI
Naskar A., Khan H., Sarkar R., Kumar S., Halder D., Jana S. Anti-biofilm activity and food packaging application of room temperature solution process-based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Mater. Sci. Eng. C. 2018;91:743–753. doi: 10.1016/j.msec.2018.06.009. PubMed DOI
Gundersen D.E., Lee I.M., Rehner S.A., Davis R.E., Kingsbury D.T. Phylogeny of mycoplasmalike organisms (phytoplasmas): A basis for their classification. J. Bacteriol. 1994;176:5244–5254. doi: 10.1128/JB.176.17.5244-5254.1994. PubMed DOI PMC
Bové J.M., Garnier M. Walled and wall-less eubacteria from plants: Sieve-tube-restricted plant pathogens. Plant Cell. Tissue Organ Cult. 1998;52:7–16. doi: 10.1023/A:1005939622273. DOI
Lee I., Davis R.E., Dawn E. Phytoplasma: Phytopathogenic Mollicutes. Annu. Rev. Microbiol. 2000;54:221–255. doi: 10.1146/annurev.micro.54.1.221. PubMed DOI
Jurga M., Zwolińska A. Phytoplasmas in Poaceae species: A threat to the most important cereal crops in Europe. J. Plant Pathol. 2020;102:287–297. doi: 10.1007/s42161-019-00481-6. DOI
Rao G.P., Madhupriya, Thorat V., Manimekalai R., Tiwari A.K., Yadav A. A century progress of research on phytoplasma diseases in India. Phytopathog. Mollicutes. 2017;7:1. doi: 10.5958/2249-4677.2017.00001.9. DOI
Kumari S., Nagendran K., Rai A.B., Singh B., Rao G.P., Bertaccini A. Global status of phytoplasma diseases in vegetable crops. Front. Microbiol. 2019;10:1–15. doi: 10.3389/fmicb.2019.01349. PubMed DOI PMC
Namba S. Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019;95:401–418. doi: 10.2183/pjab.95.028. PubMed DOI PMC
Fletcher J., Wayadande A., Melcher U., Ye F. The phytopathogenic mollicute-insect vector interface: A closer look. Phytopathology. 1998;88:1351–1358. doi: 10.1094/PHYTO.1998.88.12.1351. PubMed DOI
Bendix C., Lewis J.D. The enemy within: Phloem-limited pathogens. Mol. Plant Pathol. 2018;19:238–254. doi: 10.1111/mpp.12526. PubMed DOI PMC
Cagliari D., Dias N.P., Galdeano D.M., dos Santos E.Á., Smagghe G., Zotti M.J. Management of pest insects and plant diseases by non-transformative RNAi. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.01319. PubMed DOI PMC
Liu S., Jaouannet M., Dempsey D.A., Imani J., Coustau C., Kogel K.H. RNA-based technologies for insect control in plant production. Biotechnol. Adv. 2020;39:107463. doi: 10.1016/j.biotechadv.2019.107463. PubMed DOI
Yang C., Powell C.A., Duan Y., Shatters R., Zhang M. Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus huanglongbing. PLoS ONE. 2015;10:1–14. doi: 10.1371/journal.pone.0133826. PubMed DOI PMC
Yang C., Zhong Y., Powell C.A., Doud M.S., Duan Y., Huang Y., Zhang M. Antimicrobial Compounds Effective against Candidatus Liberibacter asiaticus Discovered via Graft-based Assay in Citrus. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-35461-w. PubMed DOI PMC
Gabiel D.W., Zhang S. Use of Aldehydes Formulated with Nanoparticles and/or Nanoemulsions to Enhance Disease Resistance of Plants to Liberibacters. US Patent (US20170006863) 2017 Jan 12;:1–73.
Ghosh D.K., Kokane S., Kumar P., Ozcan A., Warghane A., Motghare M., Santra S., Sharma A.K. Antimicrobial nano-zinc oxide-2S albumin protein formulation significantly inhibits growth of “Candidatus Liberibacter asiaticus” in planta. PLoS ONE. 2018;13:1–20. doi: 10.1371/journal.pone.0204702. PubMed DOI PMC
Wagner G., Korenkov V., Judy J.D., Bertsch P.M. Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials. 2016;6:50. doi: 10.3390/nano6030050. PubMed DOI PMC
Zabrieski Z., Morrell E., Hortin J., Dimkpa C., McLean J., Britt D., Anderson A. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology. 2015;24:1305–1314. doi: 10.1007/s10646-015-1505-x. PubMed DOI
Patra P., Mitra S., Debnath N., Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: An in vivo and in vitro toxicity study. Langmuir. 2012;28:16966–16978. doi: 10.1021/la304120k. PubMed DOI
He L., Liu Y., Mustapha A., Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011;166:207–215. doi: 10.1016/j.micres.2010.03.003. PubMed DOI
Hassan M., Zayton M.A., El-feky S.A. Role of green synthesized ZnO nanoparticles as antifungal against post-harvest gray and black mold of sweet bell. J. Biotechnol. Bioeng. 2019;3:8–15.
Dimkpa C.O., McLean J.E., Britt D.W., Anderson A.J. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. BioMetals. 2013;26:913–924. doi: 10.1007/s10534-013-9667-6. PubMed DOI
El-argawy E., Rahhal M.M.H., Elshabrawy E.M., Eltahan R.M. Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Behiera Governorate. Asian J. Plant Pathol. 2016;11:35–47. doi: 10.3923/ajppaj.2017.35.47. DOI
Sardella D., Gatt R., Valdramidis V.P. Assessing the efficacy of zinc oxide nanoparticles against Penicillium expansum by automated turbidimetric analysis. Mycology. 2018;9:43–48. doi: 10.1080/21501203.2017.1369187. PubMed DOI PMC
Shoeb M., Singh B.R., Khan J.A., Khan W., Singh B.N., Singh H.B., Naqvi A.H. ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013;4 doi: 10.1088/2043-6262/4/3/035015. DOI
Horky P., Skalickova S., Baholet D., Skladanka J. Nanoparticles as a solution for eliminating the risk of mycotoxins. Nanomaterials. 2018;8:727. doi: 10.3390/nano8090727. PubMed DOI PMC
Gacem M.A., Gacem H., Telli A., Ould El Hadj Khelil A. Mycotoxins: Decontamination and nanocontrol methods. In: Rai M., Abd-Elsalam K.A., editors. Nanomycotoxicology: Treating Mycotoxins in the Nano Way. Elsevier Inc.; Amsterdam, The Netherlands: 2020. pp. 189–216.
Tsang C.C., Tang J.Y.M., Lau S.K.P., Woo P.C.Y. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era—Past, present and future. Comput. Struct. Biotechnol. J. 2018;16:197–210. doi: 10.1016/j.csbj.2018.05.003. PubMed DOI PMC
El-banna A.A., Pitt J.I., Leistner L. Production of mycotoxins by Penicillium species. Syst. Appl. Microbiol. 1987;10:42–46. doi: 10.1016/S0723-2020(87)80008-5. DOI
Frisvad J.C. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J. 2018;11:73–100. doi: 10.3920/WMJ2017.2294. DOI
Jimenez-Garcia S.N., Garcia-Mier L., Garcia-Trejo J.F., Ramirez-Gomez X.S., Guevara-Gonzalez R.G., Feregrino-Perez A.A. Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers. InTech; London, UK: 2018. Fusarium mycotoxins and metabolites that modulate their production. DOI
Hulvová H., Galuszka P., Frébortová J., Frébort I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol. Adv. 2013;31:79–89. doi: 10.1016/j.biotechadv.2012.01.005. PubMed DOI
Bennett J.W., Klich M. Mycotoxins. Clin. Microbiol. Rev. 2003;16:497–516. doi: 10.1128/CMR.16.3.497-516.2003. PubMed DOI PMC
Schardl C.L. Introduction to the toxins special issue on ergot alkaloids. Toxins. 2015;7:4232–4237. doi: 10.3390/toxins7104232. PubMed DOI PMC
Ostry V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008;1:175–188. doi: 10.3920/WMJ2008.x013. DOI
Jesmin R., Chanda A. Restricting mycotoxins without killing the producers: A new paradigm in nano-fungal interactions. Appl. Microbiol. Biotechnol. 2020;104:2803–2813. doi: 10.1007/s00253-020-10373-w. PubMed DOI
Kaur A., Saini S.S. Nanoadsorbents for the preconcentration of some toxic substances: A minireview. Int. Lett. Chem. Phys. Astron. 2013;21:22–35. doi: 10.18052/www.scipress.com/ilcpa.21.22. DOI
Zahoor M., Ali Khan F. Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab. J. Chem. 2018;11:729–738. doi: 10.1016/j.arabjc.2014.08.025. DOI
Moghaddam S.H.M., Jebali A., Daliri K. The use of MgO-SiO2 nanocomposite for adsorption of aflatoxin in wheat flour samples; Proceedings of the NanoCon 2010; Olomouc, Czech Republic. 12–14 October 2010; pp. 10–15.
Daković A., Tomašević-Čanović M., Dondur V., Rottinghaus G.E., Medaković V., Zarić S. Adsorption of mycotoxins by organozeolites. Colloids Surf. B Biointerfaces. 2005;46:20–25. doi: 10.1016/j.colsurfb.2005.08.013. PubMed DOI
Kovač T., Borišev I., Crevar B., Čačić Kenjerić F., Kovač M., Strelec I., Ezekiel C.N., Sulyok M., Krska R., Šarkanj B. Fullerol C60(OH)24 nanoparticles modulate aflatoxin B1 biosynthesis in Aspergillus flavus. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-31305-9. PubMed DOI PMC
Asghar M.A., Zahir E., Shahid S.M., Khan M.N., Asghar M.A., Iqbal J., Walker G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT Food Sci. Technol. 2018;90:98–107. doi: 10.1016/j.lwt.2017.12.009. DOI
Hernández-Meléndez D., Salas-Téllez E., Zavala-Franco A., Téllez G., Méndez-Albores A., Vázquez-Durán A. Inhibitory effect of flower-shaped zinc oxide nanostructures on the growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus Link. Materials. 2018;11:1265. doi: 10.3390/ma11081265. PubMed DOI PMC
Mitra C., Gummadidala P.M., Merrifield R., Omebeyinje M.H., Jesmin R., Lead J.R., Chanda A. Size and coating of engineered silver nanoparticles determine their ability to growth-independently inhibit aflatoxin biosynthesis in Aspergillus parasiticus. Appl. Microbiol. Biotechnol. 2019;103:4623–4632. doi: 10.1007/s00253-019-09693-3. PubMed DOI
Mitra C., Gummadidala P.M., Afshinnia K., Merrifield R.C., Baalousha M., Lead J.R., Chanda A. Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in Aspergillus parasiticus. Environ. Sci. Technol. 2017;51:8085–8093. doi: 10.1021/acs.est.7b01230. PubMed DOI
Lakshmeesha T.R., Kalagatur N.K., Mudili V., Mohan C.D., Rangappa S., Prasad B.D., Ashwini B.S., Hashem A., Alqarawi A.A., Malik J.A., et al. Biofabrication of zinc oxide nanoparticles with Syzygium aromaticum flower buds extract and finding its novel application in controlling the growth and mycotoxins of Fusarium graminearum. Front. Microbiol. 2019;10:1–13. doi: 10.3389/fmicb.2019.01244. PubMed DOI PMC
Mohd Yusof H., Mohamad R., Zaidan U.H., Abdul Rahman N.A. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J. Anim. Sci. Biotechnol. 2019;10:1–22. doi: 10.1186/s40104-019-0368-z. PubMed DOI PMC
Jabar A.K., Aldhahi H.H.K., Salim H.A. Effect of manufactured iron oxides in control of tomato yellow leaf curl virus (TYLCV) Plant Arch. 2020;20:2131–2134.
Savi G.D., Bortoluzzi A.J., Scussel V.M. Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. Int. J. Food Sci. Technol. 2013;48:1834–1840. doi: 10.1111/ijfs.12158. DOI
Anderson A.J., McLean J.E., Jacobson A.R., Britt D.W. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J. Agric. Food Chem. 2018;66:6513–6524. doi: 10.1021/acs.jafc.7b01302. PubMed DOI
Liang Y., Duan Y., Fan C., Dong H., Yang J., Tang J., Tang G., Wang W., Jiang N., Cao Y. Preparation of kasugamycin conjugation based on ZnO quantum dots for improving its effective utilization. Chem. Eng. J. 2019;361:671–679. doi: 10.1016/j.cej.2018.12.129. DOI
Young M., Ozcan A., Myers M.E., Johnson E.G., Graham J.H., Santra S. Multimodal generally recognized as safe ZnO/Nanocopper composite: A novel antimicrobial material for the management of citrus phytopathogens. J. Agric. Food Chem. 2018;66:6604–6608. doi: 10.1021/acs.jafc.7b02526. PubMed DOI
Lahuf A.A., Kareem A.A., Al-Sweedi T.M., Alfarttoosi H.A. IOP Conference Series: Earth and Environmental Science. Volume 365. IOP Publishing; Bristol, UK: 2019. Evaluation the potential of indigenous biocontrol agent Trichoderma harzianum and its interactive effect with nanosized ZnO particles against the sunflower damping-off pathogen, Rhizoctonia solani. DOI
Li Z., Yu T., Paul R., Fan J., Yang Y., Wei Q. Agricultural nanodiagnostics for plant diseases: Recent advances and challenges. Nanoscale Adv. 2020 doi: 10.1039/C9NA00724E. PubMed DOI PMC
Khiyami M.A., Almoammar H., Awad Y.M., Alghuthaymi M.A. Plant pathogen nanodiagnostic techniques: Forthcoming changes? Biotechnol. Biotechnol. Equip. 2014;28:775–785. doi: 10.1080/13102818.2014.960739. PubMed DOI PMC
Giraldo J.P., Wu H., Newkirk G.M., Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019;14:541–553. doi: 10.1038/s41565-019-0470-6. PubMed DOI
Kumar V., Arora K. Trends in nano-inspired biosensors for plants. Mater. Sci. Energy Technol. 2020;3:255–273. doi: 10.1016/j.mset.2019.10.004. DOI
Ansari A.A., Kaushik A., Solanki P.R., Malhotra B.D. Nanostructured zinc oxide platform for mycotoxin detection. Bioelectrochemistry. 2010;77:75–81. doi: 10.1016/j.bioelechem.2009.06.014. PubMed DOI
Martynenko I.V., Litvin A.P., Purcell-Milton F., Baranov A.V., Fedorov A.V., Gun’Ko Y.K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B. 2017;5:6701–6727. doi: 10.1039/c7tb01425b. PubMed DOI
Willard D.M., Carillo L.L., Jung J., van Orden A. CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay. Nano Lett. 2001;1:469–474. doi: 10.1021/nl015565n. DOI
Chen F., Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004;4:1827–1832. doi: 10.1021/nl049170q. DOI
Hong S., Lee C. The current status and future outlook of quantum dot-based biosensors for plant virus detection. Plant Pathol. J. 2018;34:85–92. doi: 10.5423/PPJ.RW.08.2017.0184. PubMed DOI PMC
Medintz I.L., Sapsford K.E., Konnert J.H., Chatterji A., Lin T., Johnson J.E., Mattoussi H. Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir. 2005;21:5501–5510. doi: 10.1021/la0468287. PubMed DOI
Moulick A., Milosavljevic V., Vlachova J., Podgajny R., Hynek D., Kopel P., Adam V. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int. J. Nanomed. 2017;12:1277–1291. doi: 10.2147/IJN.S121840. PubMed DOI PMC
Rispail N., De Matteis L., Santos R., Miguel A.S., Custardoy L., Testillano P.S., Risueño M.C., Pérez-De-Luque A., Maycock C., Fevereiro P., et al. Quantum dot and superparamagnetic nanoparticle interaction with pathogenic fungi: Internalization and toxicity profile. ACS Appl. Mater. Interfaces. 2014;6:9100–9110. doi: 10.1021/am501029g. PubMed DOI
Tereshchenko A., Fedorenko V., Smyntyna V., Konup I., Konup A., Eriksson M., Yakimova R., Ramanavicius A., Balme S., Bechelany M. ZnO films formed by atomic layer deposition as an optical biosensor platform for the detection of Grapevine virus A-type proteins. Biosens. Bioelectron. 2017;92:763–769. doi: 10.1016/j.bios.2016.09.071. PubMed DOI
Al-Fandi M.G., Alshraiedeh N.H., Oweis R.J., Hayajneh R.H., Alhamdan I.R., Alabed R.A., Al-Rawi O.F. Direct electrochemical bacterial sensor using ZnO nanorods disposable electrode. Sens. Rev. 2018;38:326–334. doi: 10.1108/SR-06-2017-0117. DOI
Tahir M.A., Hameed S., Munawar A., Amin I., Mansoor S., Khan W.S., Bajwa S.Z. Investigating the potential of multiwalled carbon nanotubes based zinc nanocomposite as a recognition interface towards plant pathogen detection. J. Virol. Methods. 2017;249:130–136. doi: 10.1016/j.jviromet.2017.09.004. PubMed DOI
Siddiquee S., Rovina K., Yusof N.A., Rodrigues K.F., Suryani S. Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens. Bio-Sens. Res. 2014;2:16–22. doi: 10.1016/j.sbsr.2014.06.002. DOI
Kalia A., Kaur H. In: Agri-Applications of Nano-Scale Micronutrients: Prospects for Plant Growth Promotion. Raliya R., editor. CRC Press; Boca Raton, FL, USA: 2019.
Bala R., Kalia A., Dhaliwal S.S. Evaluation of Efficacy of ZnO Nanoparticles as Remedial Zinc Nanofertilizer for Rice. J. Soil Sci. Plant Nutr. 2019;19:379–389. doi: 10.1007/s42729-019-00040-z. DOI
Kalia A., Sharma S.P., Kaur H., Kaur H. Novel nanocomposite-based controlled-release fertilizer and pesticide formulations: Prospects and challenges. In: Abd-Elsalam K.A., editor. Multifunctional Hybrid Nanomaterials for Sustainable Agri-food and Ecosystem. Elsevier Inc.; Amsterdam, The Netherlands: 2020. pp. 99–134.
Kalia A., Sharma S.P., Kaur H. Nanoscale Fertilizers: Harnessing Boons for Enhanced Nutrient Use Efficiency and Crop Productivity. In: Abd-Elsalam K.A., Prasad R., editors. Nanotechnology in the Life Sciences. Springer International Publishing; Cham, Switzerland: 2019.
Kairyte K., Kadys A., Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. B Biol. 2013;128:78–84. doi: 10.1016/j.jphotobiol.2013.07.017. PubMed DOI
Sun Q., Li J., Le T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. J. Agric. Food Chem. 2018;66:11209–11220. doi: 10.1021/acs.jafc.8b03210. PubMed DOI
Jameel M., Shoeb M., Khan M.T., Ullah R., Mobin M., Farooqi M.K., Adnan S.M. Enhanced Insecticidal Activity of Thiamethoxam by Zinc Oxide Nanoparticles: A Novel Nanotechnology Approach for Pest Control. ACS Omega. 2019 doi: 10.1021/acsomega.9b03680. PubMed DOI PMC
Medina-Pérez G., Fernández-Luqueño F., Vazquez-Nuñez E., López-Valdez F., Prieto-Mendez J., Madariaga-Navarrete A., Miranda-Arámbula M. Remediating Polluted Soils Using Nanotechnologies: Environmental Benefits and Risks. Polish J. Environ. Stud. 2019;28:1013–1030. doi: 10.15244/pjoes/87099. DOI
Das S., Chakraborty J., Chatterjee S., Kumar H. Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ. Sci. Nano. 2018;5:2784–2808. doi: 10.1039/C8EN00799C. DOI
Guerra F., Attia M., Whitehead D., Alexis F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules. 2018;23:1760. doi: 10.3390/molecules23071760. PubMed DOI PMC
Fu L., Wang Z., Dhankher O.P., Xing B. Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J. Exp. Bot. 2020;71:507–519. PubMed
Kookana R.S., Boxall A.B.A., Reeves P.T., Ashauer R., Beulke S., Chaudhry Q., Cornelis G., Fernandes T.F., Gan J., Kah M., et al. Nanopesticides: Guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 2014;62:4227–4240. doi: 10.1021/jf500232f. PubMed DOI
Walker G.W., Kookana R.S., Smith N.E., Kah M., Doolette C.L., Reeves P.T., Lovell W., Anderson D.J., Turney T.W., Navarro D.A. Ecological risk assessment of nano-enabled pesticides: A perspective on problem formulation. J. Agric. Food Chem. 2017 doi: 10.1021/acs.jafc.7b02373. PubMed DOI PMC
Kah M., Tufenkji N., White J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019;14:532–540. doi: 10.1038/s41565-019-0439-5. PubMed DOI
Beegam A., Prasad P., Jose J., Oliveira M., Costa F.G., Soares A.M.V.M., Gonçalves P.P., Trindade T., Kalarikkal N., Thomas S., et al. Environmental Fate of Zinc Oxide Nanoparticles: Risks and Benefits. In: Soloneski S., Larramendy M.L., editors. Toxicology-New Aspects to This Scientific Conundrum. IntechOpen; London, UK: 2016. DOI
Charitidis C.A., Georgiou P., Koklioti M.A., Trompeta A.F., Markakis V. Manufacturing nanomaterials: From research to industry. Manuf. Rev. 2014;1:11. doi: 10.1051/mfreview/2014009. DOI
Kalia A., Singh S. Myco-decontamination of azo dyes: Nano-augmentation technologies. 3 Biotech. 2020;10:384. doi: 10.1007/s13205-020-02378-z. PubMed DOI PMC
Kaur P., Taggar M.S., Kalia A. Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw. Biomass Convers. Biorefinery. 2020 doi: 10.1007/s13399-020-00628-x. DOI
Huang Y., Ding L., Li C., Wu M., Wang M., Yao C., Yin X., Zhang J., Liu J., Zhang Y., et al. Safety Issue of Changed Nanotoxicity of Zinc Oxide Nanoparticles in the Multicomponent System. Part. Part. Syst. Charact. 2019;36:1–14. doi: 10.1002/ppsc.201900214. DOI
Nel A., Grainger D., Alvarez P.J., Badesha S., Castranova V., Ferrari M., Godwin H., Grodzinski P., Morris J., Savage N., et al. Nanotechnology Environmental, Health, and Safety Issues. In: Roco M.C., Hersam M.C., Mirkin C.A., editors. Nanotechnology Research Directions for Societal Needs in 2020. Springer; Dordrecht, The Netherlands: 2011. pp. 159–220.
Ali A., Phull A.R., Zia M. Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 2018;7:413–441. doi: 10.1515/ntrev-2018-0067. DOI
Paul S.K., Dutta H., Sarkar S., Sethi L.N., Ghosh S.K. Nanosized Zinc Oxide: Super-functionalities, present scenario of application, safety issues, and future prospects in food processing and allied industries. Food Rev. Int. 2019;35:505–535. doi: 10.1080/87559129.2019.1573828. DOI
Naveed Ul Haq A., Nadhman A., Ullah I., Mustafa G., Yasinzai M., Khan I. Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. J. Nanomater. 2017;2017:1–14. doi: 10.1155/2017/8510342. DOI
Haque J., Bellah M., Hassan R., Rahman S. Synthesis of ZnO nanoparticles by two different methods and comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express. 2020;1:010007. doi: 10.1088/2632-959X/ab7a43. DOI
Marsalek R. Particle size and Zeta Potential of ZnO. Procedia-Soc. Behav. Sci. 2014;9:13–17. doi: 10.1016/j.apcbee.2014.01.003. DOI
Chai M.H.H., Amir N., Yahya N., Saaid I.M. Characterization and Colloidal Stability of Surface Modified Zinc Oxide Nanoparticle Characterization and Colloidal Stability of Surface Modified Zinc Oxide Nanoparticle. IOP Conf. Ser. J. Phys. Conf. Ser. 2018:1123. doi: 10.1088/1742-6596/1123/1/012007. DOI
Zhulina E.B., Borisov O.V., Priamitsyn V.A. Theory of steric stabilization of colloid dispersions by grafted polymers. J. Colloid Interface Sci. 1990;137:495–511. doi: 10.1016/0021-9797(90)90423-L. DOI
Fiedot M., Rac O., Suchorska-Woźniak P., Karbownik I., Teterycz H. Polymer-surfactant interactions and their influence on zinc oxide nanoparticles morphology. In: Ahmad W., Ali N., editors. Manufacturing Nanostructures. One Central Press; Manchester, UK: 2014. pp. 108–128.
Meibner T., Oelschlagel K., Potthoff A. Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies. Int. Nano Lett. 2014;4:116. doi: 10.1007/s40089-014-0116-5. DOI
Hsiao I., Huang Y. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 2011;409:1219–1228. doi: 10.1016/j.scitotenv.2010.12.033. PubMed DOI
Antifungal Nano-Therapy in Veterinary Medicine: Current Status and Future Prospects
Nanohybrid Antifungals for Control of Plant Diseases: Current Status and Future Perspectives