Antifungal Nano-Therapy in Veterinary Medicine: Current Status and Future Prospects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
UHK VT2019-2021
University of Hradec Kralove
PubMed
34206304
PubMed Central
PMC8303737
DOI
10.3390/jof7070494
PII: jof7070494
Knihovny.cz E-zdroje
- Klíčová slova
- mycotoxin degradation, nanoantifungal, theragnostic, veterinary,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The global recognition for the potential of nanoproducts and processes in human biomedicine has given impetus for the development of novel strategies for rapid, reliable, and proficient diagnosis, prevention, and control of animal diseases. Nanomaterials exhibit significant antifungal and antimycotoxin activities against mycosis and mycotoxicosis disorders in animals, as evidenced through reports published over the recent decade and more. These nanoantifungals can be potentially utilized for the development of a variety of products of pharmaceutical and biomedical significance including the nano-scale vaccines, adjuvants, anticancer and gene therapy systems, farm disinfectants, animal husbandry, and nutritional products. This review will provide details on the therapeutic and preventative aspects of nanoantifungals against diverse fungal and mycotoxin-related diseases in animals. The predominant mechanisms of action of these nanoantifungals and their potential as antifungal and cytotoxicity-causing agents will also be illustrated. Also, the other theragnostic applications of nanoantifungals in veterinary medicine will be identified.
Biology Department Science and Humanities College Shaqra University Alquwayiyah 19245 Saudi Arabia
Department of Mycology Animal Health Research Institute 12611 Giza Egypt
Plant Pathology Research Institute Agricultural Research Center 9 Gamaa St 12619 Giza Egypt
Zobrazit více v PubMed
Hassan A.A., Sayed-ElAhl R.M.H., Oraby N.H., El-Hamaky A.M.A. Nanomycotoxicology. Elsevier; Amsterdam, The Netherlands: 2020. Metal nanoparticles for management of mycotoxigenic fungi and mycotoxicosis diseases of animals and poultry; pp. 251–269.
Tiew P.Y., Mac Aogain M., Ali N.A.B.M., Thng K.X., Goh K., Lau K.J.X., Chotirmall S.H. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia. 2020;185:207–231. doi: 10.1007/s11046-019-00413-z. PubMed DOI PMC
Hassan A.A., Mansour M.K., Sayed-ElAhl R.M.H., El Hamaky A.M.A., Oraby N.H. Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier; Amsterdam, The Netherlands: 2020. Toxic and beneficial effects of carbon nanomaterials on human and animal health; pp. 535–555.
Fesseha H., Degu T., Getachew Y. Nanotechnology and its Application in Animal Production: A Review. Vet. Med. Open J. 2020;5:43–50. doi: 10.17140/VMOJ-5-148. DOI
Hassan A.A., Mansour M.K., El Hamaky A.M., Sayed-ElAhl R.M.H., Oraby N.H. Nanomaterials and Nanocomposite Applications in Veterinary Medicine. Elsevier; Amsterdam, The Netherlands: 2020.
Brunet K., Alanio A., Lortholary O., Rammaert B. Reactivation of dormant/latent fungal infection. J. Infect. 2018;77:463–468. doi: 10.1016/j.jinf.2018.06.016. PubMed DOI
Di Mambro T., Guerriero I., Aurisicchio L., Magnani M., Marra E. The yin and yang of current antifungal therapeutic strategies: How can we harness our natural defenses? Front. Pharmacol. 2019;10:1–11. doi: 10.3389/fphar.2019.00080. PubMed DOI PMC
Gintjee T.J., Donnelley M.A., Thompson G.R. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi. 2020;6:28. doi: 10.3390/jof6010028. PubMed DOI PMC
El-Sayed A., Kamel M. Advanced applications of nanotechnology in veterinary medicine. Environ. Sci. Pollut. Res. 2020;27:19073–19086. doi: 10.1007/s11356-018-3913-y. PubMed DOI
Youssef F.S., El-Banna H.A., Elzorba H.Y., Galal A.M. Application of some nanoparticles in the field of veterinary medicine. Int. J. Vet. Sci. Med. 2019;7:78–93. doi: 10.1080/23144599.2019.1691379. PubMed DOI PMC
Saragusty J., Arav A. Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction. 2011;141:1–19. doi: 10.1530/REP-10-0236. PubMed DOI
Hill E.K., Li J. Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 2017;8:1–13. doi: 10.1186/s40104-017-0157-5. PubMed DOI PMC
Souza A.C.O., Amaral A.C. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front. Microbiol. 2017;8:1–13. doi: 10.3389/fmicb.2017.00336. PubMed DOI PMC
Sousa F., Ferreira D., Reis S., Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals. 2020;13:248. doi: 10.3390/ph13090248. PubMed DOI PMC
Martínez-Montelongo J.H., Medina-Ramírez I.E., Romo-Lozano Y., González-Gutiérrez A., Macías-Díaz J.E. Development of nano-antifungal therapy for systemic and endemic mycoses. J. Fungi. 2021;7:158. doi: 10.3390/jof7020158. PubMed DOI PMC
Hassan A.A., Abo-Zaid K.F., Oraby N.H. Molecular and conventional detection of antimicrobial activity of zinc oxide nanoparticles and cinnamon oil against escherichia coli and aspergillus flavus. Adv. Anim. Vet. Sci. 2020;8:839–847. doi: 10.17582/journal.aavs/2020/8.8.839.847. DOI
Torres-Sangiao E., Holban A.M., Gestal M.C. Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases. Molecules. 2016;21:867. doi: 10.3390/molecules21070867. PubMed DOI PMC
Riley M.K., Vermerris W. Recent advances in nanomaterials for gene delivery—A review. Nanomaterials. 2017;7:94. doi: 10.3390/nano7050094. PubMed DOI PMC
Ferraz M.P., Mateus A.Y., Sousa J.C., Monteiro F.J. Nanohydroxyapatite microspheres as delivery system for antibiotics: Release kinetics, antimicrobial activity, and interaction with osteoblasts. J. Biomed. Mater. Res. Part A. 2007;81A:994–1004. doi: 10.1002/jbm.a.31151. PubMed DOI
Prabhu R.H., Patravale V.B., Joshi M.D. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine. 2015;10:1001–1018. doi: 10.2147/IJN.S56932. PubMed DOI PMC
Krishnan S.R., George S.K. Nanotherapeutics in Cancer Prevention, Diagnosis and Treatment. Pharmacol. Ther. 2014 doi: 10.5772/58419. DOI
Mishra B., Patel B.B., Tiwari S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed. Nanotechnol. Biol. Med. 2010;6:9–24. doi: 10.1016/j.nano.2009.04.008. PubMed DOI
Mohanty N.N., Palai T.K., Prusty B.R., Mohapatra J.K. An Overview of Nanomedicine in Veterinary Science. Vet. Res. Int. 2014;2:90–95.
Elgqvist J. Nanoparticles as theranostic vehicles in experimental and clinical applications-focus on prostate and breast cancer. Int. J. Mol. Sci. 2017;18:1102. doi: 10.3390/ijms18051102. PubMed DOI PMC
De Serrano L.O., Burkhart D.J. Liposomal vaccine formulations as prophylactic agents: Design considerations for modern vaccines. J. Nanobiotechnology. 2017;15:1–23. doi: 10.1186/s12951-017-0319-9. PubMed DOI PMC
Jurj A., Braicu C., Pop L.A., Tomuleasa C., Gherman C.D., Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther. 2017;11:2871–2890. doi: 10.2147/DDDT.S142337. PubMed DOI PMC
Nagarsekar K., Ashtikar M., Thamm J., Steiniger F., Schacher F., Fahr A., May S. Electron microscopy and theoretical modeling of cochleates. Langmuir. 2014;30:13143–13151. doi: 10.1021/la502775b. PubMed DOI
Pawar A., Bothiraja C., Shaikh K., Mali A. An insight into cochleates, a potential drug delivery system. RSC Adv. 2015;5:81188–81202. doi: 10.1039/C5RA08550K. DOI
Kischkel B., Rossi S.A., Santos S.R., Nosanchuk J.D., Travassos L.R., Taborda C.P. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front. Cell. Infect. Microbiol. 2020;10 doi: 10.3389/fcimb.2020.00463. PubMed DOI PMC
Aigner M., Lass-Flörl C. Encochleated amphotericin B: Is the oral availability of amphotericin B finally reached? J. Fungi. 2020;6:66. doi: 10.3390/jof6020066. PubMed DOI PMC
Faustino C., Pinheiro L. Lipid systems for the delivery of amphotericin B in antifungal therapy. Pharmaceutics. 2020;12:29. doi: 10.3390/pharmaceutics12010029. PubMed DOI PMC
Vikrama Chakravarthi P., Balaji S.N. Applications of nanotechnology in veterinary medicine. Vet. World. 2010;3:477–480. doi: 10.5455/vetworld.2010.477-480. DOI
Aboalnaja K.O., Yaghmoor S., Kumosani T.A., McClements D.J. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems. Expert Opin. Drug Deliv. 2016;13:1327–1336. doi: 10.1517/17425247.2016.1162154. PubMed DOI
Rodríguez-Burneo N., Busquets M.A., Estelrich J. Magnetic nanoemulsions: Comparison between nanoemulsions formed by ultrasonication and by spontaneous emulsification. Nanomaterials. 2017;7:190. doi: 10.3390/nano7070190. PubMed DOI PMC
Hassan A.A., Mansour M.K., Sayed-ElAhl R.M.H., Tag El-Din H.A., Awad M.E.A., Younis E.M. Influence of Selenium Nanoparticles on The Effects of Poisoning with Aflatoxins. Adv. Anim. Vet. Sci. 2020;8 doi: 10.17582/journal.aavs/2020/8.s2.64.73. DOI
Huang W., Yan M., Duan H., Bi Y., Cheng X., Yu H. Synergistic Antifungal Activity of Green Synthesized Silver Nanoparticles and Epoxiconazole against Setosphaeria turcica. J. Nanomater. 2020;2020 doi: 10.1155/2020/9535432. DOI
Kischkel B., De Castilho P.F.D., De Oliveira K.M.P., Rezende P.S.T., Bruschi M.L., Svidzinski T.I.E., Negri M., Negri M. Silver nanoparticles stabilized with propolis show reduced toxicity and potential activity against fungal infections. Future Microbiol. 2020;15:521–539. doi: 10.2217/fmb-2019-0173. PubMed DOI
Nabawy G.A., Hassan A.A., Sayed-ElAhl R.M.H., Refai M.K. Effect of Metal Nanoparticles in Comparison With Commercial Antifungal Feed Additives on the Growth of Aspergillus Flavus and Aflatoxin B1 Production. J. Glob. Biosci. 2014;3:954–971.
Manuja A., Kumar B., Singh R.K. Nanotechnology developments: Opportunities for animal health and production. Nanotechnol. Dev. 2012;2:4. doi: 10.4081/nd.2012.e4. DOI
Meena N.S., Sahni Y.P., Singh R.P. Applications of nanotechnology in veterinary therapeutics. J. Entomol. Zool. Stud. 2018;6:167–175.
Dahman Y. Nanotechnology and Functional Materials for Engineers. Elsevier; Amsterdam, The Netherlands: 2017. Nanoshells; pp. 175–190.
Loo C., Lin A., Hirsch L., Lee M.H., Barton J., Halas N., West J., Drezek R. Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technol. Cancer Res. Treat. 2004;3:33–40. doi: 10.1177/153303460400300104. PubMed DOI
Loo C., Lin A., Hirsch L., Lee M.H., Barton J., Halas N., West J., Drezek R. Diagnostic and Therapeutic Applications of Metal Nanoshells. Nanofabrication Towar. Biomed. Appl. Tech. Tools Appl. Impact. 2005:327–342. doi: 10.1002/3527603476.ch12. DOI
Nghiem T.H.L., Le T.N., Do T.H., Vu T.T.D., Do Q.H., Tran H.N. Preparation and characterization of silica-gold core-shell nanoparticles. J. Nanoparticle Res. 2013;15 doi: 10.1007/s11051-013-2091-6. DOI
Mochizuki C., Nakamura J., Nakamura M. Development of non-porous silica nanoparticles towards cancer photo-theranostics. Biomedicines. 2021;9:73. doi: 10.3390/biomedicines9010073. PubMed DOI PMC
Dobrovolskaia M.A., Shurin M., Shvedova A.A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 2016;299:78–89. doi: 10.1016/j.taap.2015.12.022. PubMed DOI PMC
Chowdhury A., Kunjiappan S., Panneerselvam T., Somasundaram B., Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int. Nano Lett. 2017;7:91–122. doi: 10.1007/s40089-017-0208-0. DOI
Reilly R.M. Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine. J. Nucl. Med. 2007;48:1039–1042. doi: 10.2967/jnumed.107.041723. PubMed DOI
Rapoport N., Gao Z., Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J. Natl. Cancer Inst. 2007;99:1095–1106. doi: 10.1093/jnci/djm043. PubMed DOI
Bhandari P., Novikova G., Goergen C.J., Irudayaraj J. Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-20363-8. PubMed DOI PMC
Song L., Wang G., Hou X., Kala S., Qiu Z., Wong K.F., Cao F., Sun L. Biogenic nanobubbles for effective oxygen delivery and enhanced photodynamic therapy of cancer. Acta Biomater. 2020;108:313–325. doi: 10.1016/j.actbio.2020.03.034. PubMed DOI
Shen S., Li Y., Xiao Y., Zhao Z., Zhang C., Wang J., Li H., Liu F., He N., Yuan Y., et al. Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion. Biomaterials. 2018;181:293–306. doi: 10.1016/j.biomaterials.2018.07.030. PubMed DOI
Khan M.S., Hwang J., Lee K., Choi Y., Seo Y., Jeon H., Hong J.W., Choi J. Anti-tumor drug-loaded oxygen nanobubbles for the degradation of HIF-1α and the upregulation of reactive oxygen species in tumor cells. Cancers. 2019;11:1464. doi: 10.3390/cancers11101464. PubMed DOI PMC
Underwood C., van Eps A.W. Nanomedicine and veterinary science: The reality and the practicality. Vet. J. 2012;193:12–23. doi: 10.1016/j.tvjl.2012.01.002. PubMed DOI
Moyer T.J., Zmolek A.C., Irvine D.J. Beyond antigens and adjuvants: Formulating future vaccines. J. Clin. Invest. 2016;126:799–808. doi: 10.1172/JCI81083. PubMed DOI PMC
Qasim Nasar M., Zohra T., Khalil A.T., Saqib S., Ayaz M., Ahmad A., Shinwari Z.K. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem. Lett. Rev. 2019;12:310–322. doi: 10.1080/17518253.2019.1643929. DOI
Hassan A.A., Howayda M.E., Mahmoud H.H. Effect of Zinc Oxide Nanoparticles on the Growth of Mycotoxigenic Mould. Stud. Chem. Process Technol. 2013;1:66–74.
Refai H., Badawy M., Hassan A., Sakr H., Baraka Y. Antimicrobial Effect of Biologically Prepared Silver Nanoparticles (AgNPs) on Two Different Obturator’s Soft Linings in Maxillectomy Patients. Eur. J. Acad. Essays. 2017;4:15–25.
Hassan A.A., Mansour M.K., Mahmoud H. Biosynthesis of silver nanoparticles (Ag-Nps) (a model of metals) by Candida albicans and its antifungal activity on Some fungal pathogens (Trichophyton mentagrophytes and Candida albicans) N. Y. Sci. J. 2013;6:27–34.
Al Abboud M.A. Fungal biosynthesis of silver nanoparticles and their role in control of Fusarium wilt of sweet pepper and soil-borne fungi in vitro. Int. J. Pharmacol. 2018;14:773–780. doi: 10.3923/ijp.2018.773.780. DOI
Pietrzak K., Twaruzek M., Czyzowska A., Kosicki R., Gutarowska B. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim. Pol. 2015;62:851–857. doi: 10.18388/abp.2015_1146. PubMed DOI
Abd-Elsalam K.A., Hashim A.F., Alghuthaymi M.A., Said-Galiev E. Food Preservation. Elsevier; Amsterdam, The Netherlands: 2017. Nanobiotechnological strategies for toxigenic fungi and mycotoxin control; pp. 337–364.
Hosseini S.S., Mohammadi R., Joshaghani H.R., Eskandari M. Antifungal effect of Sodium Dodecil Sulfate and Nano particle ZnO on growth inhibition of standard strain of Candida albicans. J. Gorgan Univ. Med. Sci. 2011;12:64–69.
Hernández-Meléndez D., Salas-Téllez E., Zavala-Franco A., Téllez G., Méndez-Albores A., Vázquez-Durán A. Inhibitory effect of flower-shaped zinc oxide nanostructures on the growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus Link. Materials. 2018;11:1265. doi: 10.3390/ma11081265. PubMed DOI PMC
Mouhamed A.E., Hassan A.A., Hassan A., Hariri M.E., Refai M. Effect of Metal Nanoparticles on the Growth of Ochratoxigenic Moulds and Ochratoxin A Production Isolated From Food and Feed. Int. J. Res. Stud. Biosci. 2015;3:1–14.
El-Tawab A.A.A., El-Hofy F.I., Metwally A. A Comparative Study on Antifungal Activity of Fe2O3, and Fe3O4 Nanoparticles. Int. J. Adv. Res. 2018;6:189–194. doi: 10.21474/IJAR01/6204. DOI
Kheiri A., Moosawi Jorf S.A., Mallihipour A., Saremi H., Nikkhah M. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int. J. Biol. Macromol. 2016;93:1261–1272. doi: 10.1016/j.ijbiomac.2016.09.072. PubMed DOI
Ahmed F., Soliman F.M., Adly M.A., Soliman H.A.M., El-Matbouli M., Saleh M. In vitro assessment of the antimicrobial efficacy of chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines. J. Fish Dis. 2020;43:1049–1063. doi: 10.1111/jfd.13212. PubMed DOI PMC
Abd-Elsalam K.A., Alghuthaymi M.A., Shami A., Rubina M.S., Abramchuk S.S., Shtykova E.V., Vasil’kov A.Y. Copper-chitosan nanocomposite hydrogels against aflatoxigenic Aspergillus flavus from dairy cattle feed. J. Fungi. 2020;6:112. doi: 10.3390/jof6030112. PubMed DOI PMC
Anaraki M.R., Jangjoo A., Alimoradi F., Dizaj S.M. Comparison of Antifungal Properties of Acrylic Resin Reinforced with ZnO and Ag Nanoparticles. Tabriz Univ. Med. Sci. 2017;23:207–214. doi: 10.15171/PS.2017.31. DOI
Shokrollahi H. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Mater. Sci. Eng. C. 2013;33:2476–2487. doi: 10.1016/j.msec.2013.03.028. PubMed DOI
Atef H.A., Mansour M.K., Ibrahim E.M., Sayed-ElAhl R.M.H., Al-Kalamawey N.M., El Kattan Y.A., Ali M.A. Efficacy of Zinc Oxide Nanoparticles and Curcumin in Amelioration the Toxic Effects in Aflatoxicated Rabbits. Int. J. Curr. Microbiol. Appl. Sci. 2016;5:795–818. doi: 10.20546/ijcmas.2016.512.090. DOI
Sanchez V.C., Jachak A., Hurt R.H., Kane A.B. Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review. Chem. Res. Toxicol. 2012;25:15–34. doi: 10.1021/tx200339h. PubMed DOI PMC
Hassan A.A., Oraby N.H., Manal M.E.-M. Detection of Mycotoxigenic Fusarium Species in Poultry Rations and Their Detection of Mycotoxigenic Fusarium Species in Poultry Rations and Their Growth Control by Zinc Nanoparticles. Anim. Health Res. J. 2019;7:1075–1091.
Wang J.J., Liu B.H., Hsu Y.T., Yu F.Y. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control. 2011;22:964–969. doi: 10.1016/j.foodcont.2010.12.003. DOI
Osama E., El-Sheikh S.M.A., Khairy M.H., Galal A.A.A. Nanoparticles and their potential applications in veterinary medicine. J. Adv. Vet. Res. 2020;10:268–273.
Hamad K.M., Mahmoud N.N., Al-Dabash S., Al-Samad L.A., Abdallah M., Al-Bakri A.G. Fluconazole conjugated-gold nanorods as an antifungal nanomedicine with low cytotoxicity against human dermal fibroblasts. RSC Adv. 2020;10:25889–25897. doi: 10.1039/D0RA00297F. PubMed DOI PMC
Carvalho G.C., Sábio R.M., de Cássia Ribeiro T., Monteiro A.S., Pereira D.V., Ribeiro S.J.L., Chorilli M. Highlights in Mesoporous Silica Nanoparticles as a Multifunctional Controlled Drug Delivery Nanoplatform for Infectious Diseases Treatment. Pharm. Res. 2020;37 doi: 10.1007/s11095-020-02917-6. PubMed DOI PMC
Vallet-Regí M. Mesoporous Silica Nanoparticles: Their Projection in Nanomedicine. ISRN Mater. Sci. 2012;2012:1–20. doi: 10.5402/2012/608548. DOI
Castillo R.R., Lozano D., Vallet-Regí M. Mesoporous silica nanoparticles as carriers for therapeutic biomolecules. Pharmaceutics. 2020;12:432. doi: 10.3390/pharmaceutics12050432. PubMed DOI PMC
Kanugala S., Jinka S., Puvvada N., Banerjee R., Kumar C.G. Phenazine-1-carboxamide functionalized mesoporous silica nanoparticles as antimicrobial coatings on silicone urethral catheters. Sci. Rep. 2019;9:1–16. doi: 10.1038/s41598-019-42722-9. PubMed DOI PMC
Montazeri M., Razzaghi-Abyaneh M., Nasrollahi S.A., Maibach H., Nafisi S. Enhanced topical econazole antifungal efficacy by amine-functionalized silica nanoparticles. Bull. Mater. Sci. 2020;43 doi: 10.1007/s12034-019-1974-2. DOI
Deaguero I.G., Huda M.N., Rodriguez V., Zicari J., Al-hilal T.A., Badruddoza A.Z.M., Nurunnabi M. Nano-vesicle based anti-fungal formulation shows higher stability, skin diffusion, biosafety and anti-fungal efficacy in vitro. Pharmaceutics. 2020;12:516. doi: 10.3390/pharmaceutics12060516. PubMed DOI PMC
Siopi M., Mouton J.W., Pournaras S., Meletiadis J. In Vitro and In Vivo Exposure-Effect Relationship of Liposomal Amphotericin B against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2019;63:1–7. doi: 10.1128/AAC.02673-18. PubMed DOI PMC
Kunjumon S., Krishnakumar K., Nair S.K. Nanomicelles Formulation: In Vitro Anti-Fungal Study. Int. J. Pharm. Sci. Rev. Res. 2020;62:78–81.
Lee A.L.Z., Wang Y., Pervaiz S., Fan W., Yang Y.Y. Synergistic Anticancer Effects Achieved by Co-Delivery of TRAIL and Paclitaxel Using Cationic Polymeric Micelles. Macromol. Biosci. 2011;11:296–307. doi: 10.1002/mabi.201000332. PubMed DOI
Vail D.M., von Euler H., Rusk A.W., Barber L., Clifford C., Elmslie R., Fulton L., Hirschberger J., Klein M., London C., et al. A Randomized Trial Investigating the Efficacy and Safety of Water Soluble Micellar Paclitaxel (Paccal Vet) for Treatment of Nonresectable Grade 2 or 3 Mast Cell Tumors in Dogs. J. Vet. Intern. Med. 2012;26:598–607. doi: 10.1111/j.1939-1676.2012.00897.x. PubMed DOI PMC
Malachowski T., Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Eng. Regen. 2020;1:35–50. doi: 10.1016/j.engreg.2020.06.001. DOI
Kurantowicz N., Strojny B., Sawosz E., Jaworski S., Kutwin M., Grodzik M., Wierzbicki M., Lipińska L., Mitura K., Chwalibog A. Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. Nanoscale Res. Lett. 2015;10 doi: 10.1186/s11671-015-1107-9. PubMed DOI PMC
Ajmal M., Yunus U., Matin A., Haq N.U. Synthesis, characterization and in vitro evaluation of methotrexate conjugated fluorescent carbon nanoparticles as drug delivery system for human lung cancer targeting. J. Photochem. Photobiol. B Biol. 2015;153:111–120. doi: 10.1016/j.jphotobiol.2015.09.006. PubMed DOI
Kim J.M., Kim D.H., Park H.J., Ma H.W., Park I.S., Son M., Ro S.Y., Hong S., Han H.K., Lim S.J., et al. Nanocomposites-based targeted oral drug delivery systems with infliximab in a murine colitis model. J. Nanobiotechnology. 2020;18:1–13. doi: 10.1186/s12951-020-00693-4. PubMed DOI PMC
Paskiabi F.A., Bonakdar S., Shokrgozar M.A., Imani M., Jahanshiri Z., Shams-Ghahfarokhi M., Razzaghi-Abyaneh M. Terbinafine-loaded wound dressing for chronic superficial fungal infections. Mater. Sci. Eng. C. 2017;73:130–136. doi: 10.1016/j.msec.2016.12.078. PubMed DOI
El-Nahass E.-S., Moselhy W.A., Hassan N.E.-H.Y., Hassan A.A. Evaluation of the Protective Effects of Adsorbent Materials and Ethanolic Herbal Extracts against Aflatoxins Hepatotoxicity in Albino Rats: Histological, Morphometric and Immunohistochemical Study. Adv. Anim. Vet. Sci. 2019;7:1140–1147. doi: 10.17582/journal.aavs/2019/7.12.1140.1147. DOI
Abd El-Fatah S., Bakry H., Abo Salem M., Hassan A. Comparative Study between the Use of Bulk and Nanoparticles of Zinc Oxide in Amelioration the Toxic Effects of Aflatoxins in rats. Benha Vet. Med. J. 2017;33:329–342. doi: 10.21608/bvmj.2017.30496. DOI
Gholami-Ahangaran M., Zia-Jahromi N. Nanosilver effects on growth parameters in experimental aflatoxicosis in broiler chickens. Toxicol. Ind. Health. 2013;29:121–125. doi: 10.1177/0748233711425078. PubMed DOI
Gholami-Ahangaran M., Zia-Jahromi N. Effect of nanosilver on blood parameters in chickens having aflatoxicosis. Toxicol. Ind. Health. 2014;30:192–196. doi: 10.1177/0748233712452611. PubMed DOI
Asghari-Paskiabi F., Imani M., Rafii-Tabar H., Razzaghi-Abyaneh M. Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 2019;516:1078–1084. doi: 10.1016/j.bbrc.2019.07.007. PubMed DOI
Fadl S.E., El-Shenawy A.M., Gad D.M., El Daysty E.M., El-Sheshtawy H.S., Abdo W.S. Trial for reduction of Ochratoxin A residues in fish feed by using nano particles of hydrated sodium aluminum silicates (NPsHSCAS) and copper oxide. Toxicon. 2020;184:1–9. doi: 10.1016/j.toxicon.2020.05.014. PubMed DOI
Gibson N.M., Luo T.J.M., Brenner D.W., Shenderova O. Immobilization of mycotoxins on modified nanodiamond substrates. Biointerphases. 2011;6:210–217. doi: 10.1116/1.3672489. PubMed DOI
Asghar M.A., Zahir E., Shahid S.M., Khan M.N., Asghar M.A., Iqbal J., Walker G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT Food Sci. Technol. 2018;90:98–107. doi: 10.1016/j.lwt.2017.12.009. DOI
Moghaddam S.H.M., Jebali A., Daliri K. The Use of Mgo-Sio2 Nanocomposite for Adsorption of Aflatoxin in Wheat Flour Samples; Proceedings of the NanoCon 2010; Olomouc, Czech Republic. 12–14 October 2010; pp. 10–15.
Scorzoni L., de Paula e Silva A.C.A., Marcos C.M., Assato P.A., de Melo W.C.M.A., de Oliveira H.C., Costa-Orlandi C.B., Mendes-Giannini M.J.S., Fusco-Almeida A.M. Antifungal therapy: New advances in the understanding and treatment of mycosis. Front. Microbiol. 2017;8:1–23. doi: 10.3389/fmicb.2017.00036. PubMed DOI PMC
Arias L.S., Pessan J.P., de Souza Neto F.N., Lima B.H.R., de Camargo E.R., Ramage G., Delbem A.C.B., Monteiro D.R. Novel nanocarrier of miconazole based on chitosan-coated iron oxide nanoparticles as a nanotherapy to fight Candida biofilms. Colloids Surf. B Biointerfaces. 2020;192:111080. doi: 10.1016/j.colsurfb.2020.111080. PubMed DOI
Araujo H.C., da Silva A.C.G., Paião L.I., Magario M.K.W., Frasnelli S.C.T., Oliveira S.H.P., Pessan J.P., Monteiro D.R. Antimicrobial, antibiofilm and cytotoxic effects of a colloidal nanocarrier composed by chitosan-coated iron oxide nanoparticles loaded with chlorhexidine. J. Dent. 2020;101 doi: 10.1016/j.jdent.2020.103453. PubMed DOI
Zahoor M., Ali Khan F. Adsorption of aflatoxin B1 on magnetic carbon nanocomposites prepared from bagasse. Arab. J. Chem. 2018;11:729–738. doi: 10.1016/j.arabjc.2014.08.025. DOI
Pirouz A.A., Selamat J., Iqbal S.Z., Mirhosseini H., Karjiban R.A., Bakar F.A. The use of innovative and efficient nanocomposite (magnetic graphene oxide) for the reduction on of Fusarium mycotoxins in palm kernel cake. Sci. Rep. 2017;7:1–9. doi: 10.1038/s41598-017-12341-3. PubMed DOI PMC
Gao R., Meng Q., Li J., Liu M., Zhang Y., Bi C., Shan A. Modified halloysite nanotubes reduce the toxic effects of zearalenone in gestating sows on growth and muscle development of their offsprings. J. Anim. Sci. Biotechnol. 2016;7:1–9. doi: 10.1186/s40104-016-0071-2. PubMed DOI PMC
Ji J., Xie W. Detoxification of Aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils. J. Hazard. Mater. 2020;381:120915. doi: 10.1016/j.jhazmat.2019.120915. PubMed DOI
González-Jartín J.M., de Castro Alves L., Alfonso A., Piñeiro Y., Vilar S.Y., Gomez M.G., Osorio Z.V., Sainz M.J., Vieytes M.R., Rivas J., et al. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chem. 2019;294:60–66. doi: 10.1016/j.foodchem.2019.05.013. PubMed DOI
Zhai X., Zhang C., Zhao G., Stoll S., Ren F., Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnology. 2017;15:1–12. doi: 10.1186/s12951-016-0243-4. PubMed DOI PMC
Luo Y., Zhou Z., Yue T. Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous. Food Chem. 2017;221:317–323. doi: 10.1016/j.foodchem.2016.09.008. PubMed DOI
Hamza Z., El-Hashash M., Aly S., Hathout A., Soto E., Sabry B., Ostroff G. Preparation and characterization of yeast cell wall beta-glucan encapsulated humic acid nanoparticles as an enhanced aflatoxin B1 binder. Carbohydr. Polym. 2019;203:185–192. doi: 10.1016/j.carbpol.2018.08.047. PubMed DOI
Nikolova M.P., Chavali M.S. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5:27. doi: 10.3390/biomimetics5020027. PubMed DOI PMC
Norouzi M., Yathindranath V., Thliveris J.A., Kopec B.M., Siahaan T.J., Miller D.W. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci. Rep. 2020;10:1–18. doi: 10.1038/s41598-020-68017-y. PubMed DOI PMC
Soetaert F., Korangath P., Serantes D., Fiering S., Ivkov R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Adv. Drug Deliv. Rev. 2020;163–164:65–83. doi: 10.1016/j.addr.2020.06.025. PubMed DOI PMC
Nabil A., Elshemy M.M., Asem M., Abdel-Motaal M., Gomaa H.F., Zahran F., Uto K., Ebara M. Zinc Oxide Nanoparticle Synergizes Sorafenib Anticancer Efficacy with Minimizing Its Cytotoxicity. Oxid. Med. Cell. Longev. 2020;2020 doi: 10.1155/2020/1362104. PubMed DOI PMC
Xu C., Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 2013;65:732–743. doi: 10.1016/j.addr.2012.10.008. PubMed DOI
Smith T., Affram K., Nottingham E.L., Han B., Amissah F., Krishnan S., Trevino J., Agyare E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-73218-6. PubMed DOI PMC
Xie P., Yang S.T., He T., Yang S., Tang X.H. Bioaccumulation and toxicity of carbon nanoparticles suspension injection in intravenously exposed mice. Int. J. Mol. Sci. 2017;18:2562. doi: 10.3390/ijms18122562. PubMed DOI PMC
Frank A., Eric M.P., Robert L., Omid C.F. Drug Delievery. Volume 197. Springer; Berlin/Heidelberg, Germany: 2010. Nanoparticles Technologies For Cancer Therapy.
Axiak-Bechtel S.M., Upendran A., Lattimer J.C., Kelsey J., Cutler C.S., Selting K.A., Bryan J.N., Henry C.J., Boote E., Tate D.J., et al. Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int. J. Nanomedicine. 2014;9:5001–5011. doi: 10.2147/IJN.S67333. PubMed DOI PMC
Lu J., Liong M., Li Z., Zink J.I., Tamanoi F. Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small. 2010;6:1794–1805. doi: 10.1002/smll.201000538. PubMed DOI PMC
Xiao Y.D., Paudel R., Liu J., Ma C., Zhang Z.S., Zhou S.K. MRI contrast agents: Classification and application (Review) Int. J. Mol. Med. 2016;38:1319–1326. doi: 10.3892/ijmm.2016.2744. PubMed DOI
Soenen S.J.H., Himmelreich U., Nuytten N., Pisanic T.R., Ferrari A., De Cuyper M. Intracellular Nanoparticle Coating Stability Determines Nanoparticle Diagnostics Efficacy and Cell Functionality. Small. 2010;6 doi: 10.1002/smll.201090067. PubMed DOI
Thomas G., Boudon J., Maurizi L., Moreau M., Walker P., Severin I., Oudot A., Goze C., Poty S., Vrigneaud J.M., et al. Innovative Magnetic Nanoparticles for PET/MRI Bimodal Imaging. ACS Omega. 2019;4:2637–2648. doi: 10.1021/acsomega.8b03283. PubMed DOI PMC
Lee C., Kim J., Zhang Y., Jeon M., Liu C., Song L., Lovell J.F., Kim C. Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials. 2015;73:142–148. doi: 10.1016/j.biomaterials.2015.09.023. PubMed DOI
Martynenko I.V., Litvin A.P., Purcell-Milton F., Baranov A.V., Fedorov A.V., Gun’Ko Y.K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B. 2017;5:6701–6727. doi: 10.1039/C7TB01425B. PubMed DOI
Feugang J.M., Youngblood R.C., Greene J.M., Willard S.T., Ryan P.L. Self-illuminating quantum dots for non-invasive bioluminescence imaging of mammalian gametes. J. Nanobiotechnology. 2015;13:1–16. doi: 10.1186/s12951-015-0097-1. PubMed DOI PMC
Chen F., Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 2004;4:1827–1832. doi: 10.1021/nl049170q. DOI
Wagner A.M., Knipe J.M., Orive G., Peppas N.A. Quantum dots in biomedical applications. Acta Biomater. 2019;94:44–63. doi: 10.1016/j.actbio.2019.05.022. PubMed DOI PMC
Dey R., Mazumder S., Mitra M.K., Mukherjee S., Das G.C. Review: Biofunctionalized quantum dots in biology and medicine. J. Nanomater. 2009;2009 doi: 10.1155/2009/815734. DOI
Matea C.T., Mocan T., Tabaran F., Pop T., Mosteanu O., Puia C., Iancu C., Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine. 2017;12:5421–5431. doi: 10.2147/IJN.S138624. PubMed DOI PMC
Abdel-Salam M., Omran B., Whitehead K., Baek K.H. Superior properties and biomedical applications of microorganism-derived fluorescent quantum dots. Molecules. 2020;25:4486. doi: 10.3390/molecules25194486. PubMed DOI PMC
Sahoo S.L., Liu C.H., Kumari M., Wu W.C., Wang C.C. Biocompatible quantum dot-antibody conjugate for cell imaging, targeting and fluorometric immunoassay: Crosslinking, characterization and applications. RSC Adv. 2019;9:32791–32803. doi: 10.1039/C9RA07352C. PubMed DOI PMC
Patric Joshua P., Valli C., Balakrishnan V. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Vet. World. 2016;9:287–294. doi: 10.14202/vetworld.2016.287-294. PubMed DOI PMC
Scott A., Vadalasetty K.P., Chwalibog A., Sawosz E. Copper nanoparticles as an alternative feed additive in poultry diet: A review. Nanotechnol. Rev. 2018;7:69–93. doi: 10.1515/ntrev-2017-0159. DOI
Mishra A., Swain R., Mishra S., Panda N., Sethy K. Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J. Anim. Nutr. 2014;31:384–388.
Swain P.S., Rajendran D., Rao S.B.N., Dominic G. Preparation and effects of nano mineral particle feeding in livestock: A review. Vet. World. 2015;8:888–891. doi: 10.14202/vetworld.2015.888-891. PubMed DOI PMC
Bhanja S.K., Hotowy A., Mehra M., Sawosz E., Pineda L., Vadalasetty K.P., Kurantowicz N., Chwalibog A. In ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. Int. J. Mol. Sci. 2015;16:9484–9503. doi: 10.3390/ijms16059484. PubMed DOI PMC
Feugang J.M., Youngblood R.C., Greene J.M., Fahad A.S., Monroe W.A., Willard S.T., Ryan P.L. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J. Nanobiotechnology. 2012;10:1–8. doi: 10.1186/1477-3155-10-45. PubMed DOI PMC
Petruska P., Capcarova M., Sutovsky P. Antioxidant supplementation and purification of semen for improved artificial insemination in livestock species. Turkish J. Vet. Anim. Sci. 2014;38:643–652. doi: 10.3906/vet-1404-61. DOI
Barkalina N., Jones C., Kashir J., Coote S., Huang X., Morrison R., Townley H., Coward K. Effects of mesoporous silica nanoparticles upon the function of mammalian sperm in vitro. Nanomedicine Nanotechnology Biol. Med. 2014;10:859–870. doi: 10.1016/j.nano.2013.10.011. PubMed DOI
Pawar K., Kaul G. Toxicity of titanium oxide nanoparticles causes functionality and DNA damage in buffalo (Bubalus bubalis) sperm in vitro. Toxicol. Ind. Health. 2014;30:520–533. doi: 10.1177/0748233712462475. PubMed DOI
Rey A.I., Segura J., Arandilla E., López-Bote C.J. Short- and long-term effect of oral administration of micellized natural vitamin E (D-α-tocopherol) on oxidative status in race horses under intense training. J. Anim. Sci. 2013;91:1277–1284. doi: 10.2527/jas.2012-5125. PubMed DOI
Rey A., Amazan D., Cordero G., Olivares A., López-Bote C.J. Lower Oral Doses of Micellized α-Tocopherol Compared to α-Tocopheryl Acetate in Feed Modify Fatty Acid Profiles and Improve Oxidative Status in Pigs. Int. J. Vitam. Nutr. Res. 2014;84:229–243. doi: 10.1024/0300-9831/a000209. PubMed DOI
King T., Osmond-McLeod M.J., Duffy L.L. Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci. Technol. 2018;72:62–73. doi: 10.1016/j.tifs.2017.11.015. DOI
Stankic S., Suman S., Haque F., Vidic J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnology. 2016;14:1–20. doi: 10.1186/s12951-016-0225-6. PubMed DOI PMC
Hwang I.S., Lee J., Hwang J.H., Kim K.J., Lee D.G. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J. 2012;279:1327–1338. doi: 10.1111/j.1742-4658.2012.08527.x. PubMed DOI
Kalia A., Abd-Elsalam K.A., Kuca K. Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects. J. Fungi. 2020;6:222. doi: 10.3390/jof6040222. PubMed DOI PMC
Dilbaghi N., Kaur H., Kumar R., Arora P., Kumar S. Nanoscale device for veterinay technology: Trends and future prospective. Adv. Mater. Lett. 2013;4:175–184. doi: 10.5185/amlett.2012.7399. DOI
Oberdörster G., Kuhlbusch T.A.J. In vivo effects: Methodologies and biokinetics of inhaled nanomaterials. NanoImpact. 2018;10:38–60. doi: 10.1016/j.impact.2017.10.007. DOI
Aschberger K., Micheletti C., Sokull-Klüttgen B., Christensen F.M. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—Lessons learned from four case studies. Environ. Int. 2011;37:1143–1156. doi: 10.1016/j.envint.2011.02.005. PubMed DOI
Barkhordari A., Hekmatimoghaddam S., Jebali A., Khalili M.A., Talebi A., Noorani M. Effect of zinc oxide nanoparticles on viability of human spermatozoa. Int. J. Reprod. Biomed. 2013;11:767–771. PubMed PMC
Baltic M., Boskovic M., Ivanovic J., Dokmanovic M., Janjic J., Loncina J., Baltic T. Nanotechnology and its potential applications in meat industry. Tehnologija Mesa. 2013;54:168–175. doi: 10.5937/tehmesa1302168B. DOI
Elder A., Lynch I., Grieger K., Chan-Remillard S., Gatti A., Gnewuch H., Kenawy E., Korenstein R., Kuhlbusch T., Linker F., et al. Human Health Risks of Engineered Nanomaterials. In: Linkov I., Steevens J., editors. Nanomaterials: Risks and Benefits. Springer Science+Business Media; New York, NY, USA: 2009. pp. 3–29.
Pekkanen J., Peters A., Hoek G., Tiittanen P., Brunekreef B., De Hartog J., Heinrich J., Ibald-Mulli A., Kreyling W.G., Lanki T., et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: The exposure and risk assessment for fine and ultrafine particles in ambient air (ULTRA) study. Circulation. 2002;106:933–938. doi: 10.1161/01.CIR.0000027561.41736.3C. PubMed DOI
Nurkiewicz T.R., Porter D.W., Hubbs A.F., Cumpston J.L., Chen B.T., Frazer D.G., Castranova V. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part. Fibre Toxicol. 2008;5:1–12. doi: 10.1186/1743-8977-5-1. PubMed DOI PMC
Oberdörster G., Castranova V., Asgharian B., Sayre P. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): Methodology and Dosimetry. J. Toxicol. Environ. Health Part B Crit. Rev. 2015;18:121–212. doi: 10.1080/10937404.2015.1051611. PubMed DOI PMC
Orsi M., Al Hatem C., Leinardi R., Huaux F. Carbon nanotubes under scrutiny: Their toxicity and utility in mesothelioma research. Appl. Sci. 2020;10:4513. doi: 10.3390/app10134513. DOI
Chopra M., Bernela M., Kaur P., Manuja A., Kumar B., Thakur R. Alginate/gum acacia bipolymeric nanohydrogels-Promising carrier for Zinc oxide nanoparticles. Int. J. Biol. Macromol. 2015;72:827–833. doi: 10.1016/j.ijbiomac.2014.09.037. PubMed DOI